JPH0271891A - Solar still containing heat storage tank - Google Patents

Solar still containing heat storage tank

Info

Publication number
JPH0271891A
JPH0271891A JP63224907A JP22490788A JPH0271891A JP H0271891 A JPH0271891 A JP H0271891A JP 63224907 A JP63224907 A JP 63224907A JP 22490788 A JP22490788 A JP 22490788A JP H0271891 A JPH0271891 A JP H0271891A
Authority
JP
Japan
Prior art keywords
heat
storage tank
heat storage
plate
seawater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63224907A
Other languages
Japanese (ja)
Inventor
Kenji Tsumura
津村 健児
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63224907A priority Critical patent/JPH0271891A/en
Publication of JPH0271891A publication Critical patent/JPH0271891A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

PURPOSE:To operate the title still day and night by using a heat storage tank contg. a heating medium for cooling instead of seawater, and utilizing the heat storage tank as a heat source at night. CONSTITUTION:A heat collecting plate 3 is provided so that a substantially closed distillation chamber 2 is formed between the outer surface of the heat storage tank 1 and the plate 3. A seawater supply means 4 is furnished respectively in the vicinity of the outer surface of the tank 1 and inner surface of the plate 3, and fluid recovery means 5 and 6 are provided at the respective bottoms. The tank 1 consists of a vessel made of a material having relatively high heat conductivity and inert to the heating medium such as titanium, stainless steel, a corrosion-resistant coating material, an industrial heat-resistant synthetic resin, and the heating medium contained in the vessel. Alternatively, the distance between the tank 1 and the plate 3 is increased, and a heat-transfer plate 25 can be provided in between. By such a constitution, solar heat energy is absorbed in the one tank 1 in the daytime, the heat is liberated at night, seawater can be respectively evaporated and condensed in the process, the pipeline is simplified, and the whole still is also simplified.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は蓄熱槽を内蔵したソーラースチルに関する。さ
らに詳しくは、海水の加熱および水蒸気の凝縮に必要な
熱の授受が地球上に存在する昼と夜のサイクルを利用し
て1つの蓄熱槽に交互に蓄積される冷熱および温熱を介
して昼間および夜間にわたって行なわれるソーラースチ
ルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solar still with a built-in heat storage tank. More specifically, the heat required for heating seawater and condensing water vapor is exchanged during the day and through cold and hot heat that are alternately stored in one heat storage tank by taking advantage of the day and night cycles that exist on Earth. Concerning solar stills performed throughout the night.

[従来の技術] 海水を淡水化するためのソーラースチルは従来より種々
のタイプが知られている。この種のソーラースチルは、
太陽熱というコントロールができずかつ単位面積あたり
の熱量が比較的小さい熱エネルギーに頼っているため、
その熱エネルギーをできるだけ効率よく利用できるよう
に構成することが最重要課題とされている。
[Prior Art] Various types of solar stills for desalinating seawater have been known. This kind of solar still is
Because we rely on solar heat, which is thermal energy that cannot be controlled and has a relatively small amount of heat per unit area,
The most important issue is to create a structure that can utilize that thermal energy as efficiently as possible.

これらの装置の基本的技術の一つとして、蒸発板と凝縮
板とが対面している蒸留室を設け、蒸留室内を実質的に
密閉系に保ちながら蒸発板を太陽熱で加熱して蒸発板の
内表面を流下している海水を蒸発濃縮して水蒸気をえ、
これを対面する凝縮阪内面で凝縮させて蒸留水をうるち
のが知られている。
One of the basic technologies for these devices is to provide a distillation chamber in which an evaporation plate and a condensation plate face each other, and heat the evaporation plate with solar heat while keeping the distillation chamber essentially closed. The seawater flowing down the inner surface is evaporated and concentrated to produce water vapor.
It is known that this is condensed on the inner surface of the condensing tube facing each other to produce distilled water.

さらにこの技術を発展させたものとして、蒸発板と凝縮
板間に1枚以上の伝熱板を挿入し、蒸発板で発生した水
蒸気を伝熱板上で凝縮させて蒸留水をつると共に、その
際与えられる凝縮潜熱により伝熱板を加熱して次段の蒸
発を行ない、最終段の凝縮板で放熱を行なうシステムが
あり、多重効用型のソーラースチルと称されている。こ
の多重効用型のソーラースチルは水蒸気の凝縮潜熱をそ
のまま次段の加熱に用いることにより高い熱効率を達成
している。
As a further development of this technology, one or more heat transfer plates are inserted between the evaporation plate and the condensation plate, and the water vapor generated on the evaporation plate is condensed on the heat transfer plate to produce distilled water. There is a system in which the heat exchanger plate is heated by the condensation latent heat given during the process to perform the next stage of evaporation, and the heat is radiated at the final stage of the condensation plate, which is called a multi-effect solar still. This multi-effect solar still achieves high thermal efficiency by directly using the latent heat of condensation of water vapor for the next stage of heating.

そのような多重効用型ソーラースチルとして特公昭57
−41314号公報や特開昭57−184442号公報
に記載されているものが知られている。
As such a multi-effect solar still, the
Those described in JP-A-41314 and JP-A-57-184442 are known.

かかるソーラースチルにおいて熱効率を高める重要なフ
ァクターは、凝縮板に最終的に与えられる凝縮潜熱の放
出にある。すなわち、適切に放熱をしておかなければ凝
縮板の温度が上がりすぎ、凝縮に必要な温度差かえられ
なくなる。
An important factor for increasing thermal efficiency in such solar stills is the release of latent heat of condensation, which is ultimately given to the condensing plate. In other words, if heat is not dissipated appropriately, the temperature of the condensing plate will rise too much, making it impossible to change the temperature difference necessary for condensation.

そこで多くのばあい、凝縮板を空冷または液冷している
。その例としては、たとえばオルドラ(Oltra)が
提案しているソーラースチルがあげられる(「太陽エネ
ルギー利用ハンドブック」、859〜880頁、日本太
陽エネルギー学会発行(1985年))。
Therefore, in many cases, the condensing plate is air-cooled or liquid-cooled. An example of this is the solar still proposed by Oltra ("Solar Energy Utilization Handbook", pp. 859-880, published by the Japan Solar Energy Society (1985)).

このオルドラの装置では、凝縮板の外側にも円管が溶接
されており、その中を下方から上方に向けて海水が通さ
れている。海水は円管中を上昇しつつ予熱されたのち蒸
留室に供給される。
In Ordra's device, a circular tube is also welded to the outside of the condensing plate, and seawater is passed through it from the bottom to the top. Seawater is preheated as it rises in the tube and then supplied to the distillation chamber.

もともと海水は蒸発板により加熱され高温となり、その
まま濃縮水として系外に排出されるため、通常の水冷式
の蒸留系では熱量となるものであるが、このオルドラの
装置ではその熱量分に凝縮板から回収した熱量を当て、
熱源からの受熱量を理想的にはすべて蒸発のために利用
しようとするものである。
Originally, seawater is heated by the evaporator plate to a high temperature, and then discharged as concentrated water outside the system, which generates heat in a normal water-cooled distillation system, but in this Ordra device, the condensation plate Apply the heat recovered from the
Ideally, all of the heat received from the heat source is used for evaporation.

[発明が解決しようとする課題] 前述のオルドラの装置では海水の予熱用に熱を回収して
いるのであるが、凝縮板の充分な冷却を達成するために
は、放出潜熱は水蒸気1kg当り5BQkcalである
から、大量のしかも低温の海水が必要となり、その量は
蒸留に供する量を超えるものとなる。さらに海水が通過
する装置の部分が多くなるため、スケールの発生や腐食
などの問題も増える。
[Problems to be Solved by the Invention] In the Aldra device mentioned above, heat is recovered for preheating seawater, but in order to achieve sufficient cooling of the condensing plate, the released latent heat must be 5 BQkcal per 1 kg of water vapor. Therefore, a large amount of low-temperature seawater is required, which exceeds the amount used for distillation. Furthermore, because there are more parts of the equipment through which seawater passes, problems such as scale formation and corrosion will also increase.

さらに従来のいずれの装置も配管設備やポンプなどの動
力設備が大がかりとなりがちである。
Furthermore, all conventional devices tend to require large-scale power equipment such as piping equipment and pumps.

本発明の目的は、かかる水冷式の蒸留法の改良にかかわ
るものであり、と(に冷却用に海水ではなく熱媒を収容
した蓄熱槽を用い、その蓄熱槽を夜間に熱源として利用
することにより日中および夜間の終日運転が可能なソー
ラースチルを提供することを目的としている。
The purpose of the present invention is to improve such a water-cooled distillation method, and to use a heat storage tank containing a heat medium instead of seawater for cooling, and to use the heat storage tank as a heat source at night. The purpose of this project is to provide a solar still that can be operated throughout the day and at night.

さらに本発明は配管設備が少なく、構造が簡単で、スケ
ールや腐食の問題をできるだけ少なくしたソーラースチ
ルを提供することを目的としている。
A further object of the present invention is to provide a solar still that requires less piping equipment, has a simple structure, and minimizes scale and corrosion problems.

[課題を解決するための手段] 本発明の蓄熱槽を内蔵したソーラースチルは、蓄熱槽と
、該蓄熱槽の外表面との間に実質的に密閉の蒸留室を形
成すべく空間を介して設けられる集熱板と、蓄熱槽の外
表面および集熱板の内表面のそれぞれの頂部付近に設け
られる海水供給手段と、蓄熱槽の外表面および集熱板の
内表面に沿って流下する液体を別々に回収するための回
収手段とから構成される。
[Means for Solving the Problems] The solar still incorporating a heat storage tank of the present invention has a space between the heat storage tank and the outer surface of the heat storage tank to form a substantially sealed distillation chamber. A heat collecting plate provided, a seawater supply means provided near the top of each of the outer surface of the heat storage tank and the inner surface of the heat collecting plate, and a liquid flowing down along the outer surface of the heat storage tank and the inner surface of the heat collecting plate. and collection means for separately collecting the.

前記蓄熱槽と集熱板との間を区画するように少なくとも
1枚の伝熱板を設け、該伝熱板の内表面および外表面の
それぞれの頂部付近にさらに他の海水供給手段を設け、
かつ底部付近に他の回収手段を設けるときは、多重効用
型のソーラースチルとすることができる。
At least one heat transfer plate is provided to partition the space between the heat storage tank and the heat collection plate, and further seawater supply means is provided near the top of each of the inner and outer surfaces of the heat transfer plate,
In addition, when other collection means are provided near the bottom, a multi-effect solar still can be used.

[作 用] 日中においては集熱板側の海水供給手段より海水を供給
する。それにより太陽により加熱された集熱板の内表面
を流下する海水が蒸発し、濃縮された海水は集熱板側の
回収手段から回収され、排出される。また蒸発した水蒸
気は蓄熱槽の表面に凝縮し、流下して蓄熱槽側の回収手
段より淡水として取り出される。
[Operation] During the day, seawater is supplied from the seawater supply means on the heat collecting plate side. As a result, the seawater flowing down the inner surface of the heat collecting plate heated by the sun evaporates, and the concentrated seawater is collected from the collecting means on the heat collecting plate side and discharged. Further, the evaporated water vapor condenses on the surface of the heat storage tank, flows down, and is taken out as fresh water by the recovery means on the heat storage tank side.

日照時における作動中は蓄熱槽は冷熱源として作用し、
それ自体はしだいに凝縮熱を蓄積して温度が上昇する。
During operation during sunlight, the heat storage tank acts as a cold source,
itself gradually accumulates heat of condensation and its temperature rises.

つぎに夜間においては蓄熱槽側の海水供給手段より海水
を供給する。それにより蓄熱槽の外表面上を流下する海
水は蓄熱槽に蓄えられていた熱によって蒸発し、濃縮さ
れた海水は蓄熱槽側の回収手段によって回収され、排出
される。
Next, at night, seawater is supplied from the seawater supply means on the heat storage tank side. Thereby, the seawater flowing down on the outer surface of the heat storage tank is evaporated by the heat stored in the heat storage tank, and the concentrated seawater is recovered by the recovery means on the heat storage tank side and discharged.

また蒸発した水蒸気は夜間の外気により冷却される集熱
板の内表面上に凝縮し、流下して集熱板側の回収手段に
よって取り出される。
Further, the evaporated water vapor condenses on the inner surface of the heat collecting plate, which is cooled by the outside air at night, flows down, and is taken out by the recovery means on the heat collecting plate side.

したがって夜間においては蓄熱槽は熱源として作用し、
それ自体は蒸発潜熱合奪われることにより冷却されて温
度が降下するので、っぎの日中の操作において冷熱源と
して有効に利用される。
Therefore, at night, the heat storage tank acts as a heat source,
Since it is cooled and its temperature drops by removing latent heat of vaporization, it is effectively used as a cold heat source during daytime operations.

以上のごとく本発明の装置では日中と夜間の蓄熱槽およ
び集熱板のたがいに逆となる温度差を利用して海水を淡
水化するものである。
As described above, the apparatus of the present invention desalinates seawater by utilizing the opposite temperature difference between the heat storage tank and the heat collecting plate during the day and night.

すなわち従来の太陽熱利用の淡水化方法では、昼間の日
照による高温熱源を直接利用するが、または−時貯蔵し
て利用するのが一般であるが、本発明は日照による昼と
夜のリズミカルな熱源サイクルに対し、半周期の遅れを
もった1個の蓄熱槽の熱源サイクルを組み合わせて淡水
化装置を構成したのである。
In other words, in the conventional desalination method using solar heat, a high-temperature heat source generated by daytime sunlight is used directly or is generally stored and used, but the present invention uses a rhythmic day and night heat source generated by sunlight. The desalination equipment was constructed by combining a heat source cycle of one heat storage tank with a half-cycle delay.

なお蓄熱槽と集熱板の間に1枚あるいは複数枚、たとえ
ばn枚の伝熱板を介在させるときは、理想状態において
水の蒸発潜熱LVはみかけのうえでl/nに減少するの
で、前述した多重効用型の省エネルギ式ソーラースチル
としてさらに効率よく海水の淡水化を行なうことができ
る。
Note that when one or more heat transfer plates, for example n heat transfer plates, are interposed between the heat storage tank and the heat collection plate, the latent heat of vaporization LV of water in an ideal state is apparently reduced to l/n, so as mentioned above, As a multi-effect, energy-saving solar still, seawater can be desalinated more efficiently.

[実施例] つぎに図面を参照しながら本発明のソーラースチル(以
下、装置という)を説明する。
[Example] Next, a solar still (hereinafter referred to as an apparatus) of the present invention will be explained with reference to the drawings.

第1図は本発明の装置の一実施例を示す断面図、第2図
は本発明の装置の他の実施例を示す断面図、第3図は本
発明の装置の他の実施例を示す要部断面図、第4図は本
発明の装置の他の実施例を示す縦断面図、第5図は第4
図のM−M線断面図、第6図は本発明の装置の効果を示
すグラフである。
FIG. 1 is a sectional view showing one embodiment of the device of the present invention, FIG. 2 is a sectional view showing another embodiment of the device of the present invention, and FIG. 3 is a sectional view showing another embodiment of the device of the present invention. 4 is a longitudinal sectional view showing another embodiment of the device of the present invention, and FIG. 5 is a sectional view of main parts.
6 is a graph showing the effects of the device of the present invention.

第1図は本発明の装置の基本的な実施例を示している。FIG. 1 shows a basic embodiment of the device of the invention.

その装置は蓄熱槽(1)と、その蓄熱槽(1)との間に
蒸留室(′2Jを形成するように設けられる集熱板(3
)とから構成される。蓄熱槽(1)の外表面および集熱
板(3)の内表面のそれぞれの頂部付近には、海水供給
手段(4)が設けられており、さらにそれぞれの底部に
は回収手段(5)、(6)が設けられている。
The device consists of a heat storage tank (1) and a heat collection plate (3
). A seawater supply means (4) is provided near the top of each of the outer surface of the heat storage tank (1) and the inner surface of the heat collection plate (3), and a recovery means (5) is provided at the bottom of each. (6) is provided.

蓄熱槽(1)はチタン、ステンレス、キュプロニッケル
含金、または耐蝕性被覆材、工業用耐熱合成樹脂などの
伝熱効果が比較的高く、熱媒によって侵されない材料か
ら実質的に密閉状に構成される容器と、その内部に収容
される熱媒とから構成される。なお蓄熱槽(1)の蒸留
室側を除く外周は断熱材(1a)で覆われており、蓄熱
槽(1)の上部には熱媒を入れるための開口部(1b)
が設けられている。さらに開口部(1b)には自動空気
抜きバルブ(lc)が設けられている。
The heat storage tank (1) is made of a material such as titanium, stainless steel, cupronickel-containing metal, corrosion-resistant coating material, industrial heat-resistant synthetic resin, etc., which has a relatively high heat transfer effect and is not corroded by the heat medium, and is substantially sealed. It consists of a container and a heating medium housed inside the container. The outer periphery of the heat storage tank (1) except for the distillation chamber side is covered with a heat insulating material (1a), and the upper part of the heat storage tank (1) has an opening (1b) for introducing a heat medium.
is provided. Furthermore, the opening (1b) is provided with an automatic air vent valve (lc).

熱媒の種類や量などは熱的安定性や熱容量の大きさなど
によって選定すればよいが、伝熱係数の高いことが必要
であり、また装置に対する腐蝕が少なく、不燃性で安価
、無害かつ不凍性であることも必要とされる。具体的に
は不凍剤を溶解した水溶液またはグリセリン、プロピレ
ングリコールもしくはこれらと水との混合液などが好ま
しく用いられる。とくに高温のばあいは、油性の媒体も
使用できる。
The type and amount of heat medium can be selected based on thermal stability and heat capacity, but it must have a high heat transfer coefficient, be less corrosive to equipment, be nonflammable, inexpensive, harmless, and It is also required to be anti-freeze. Specifically, an aqueous solution in which an antifreeze agent is dissolved, glycerin, propylene glycol, or a mixture of these and water is preferably used. Especially in the case of high temperatures, oil-based media can also be used.

前記集熱板(3)も蓄熱[(1)の容器と同じ材料から
115成されるが、その外表面は集熱・放熱効果を高め
るよう黒色塗料を塗布し、または選択吸収膜を施してお
くのが好ましい。
The heat collection plate (3) is also made of the same material as the heat storage container (1), but its outer surface is coated with black paint or coated with a selective absorption film to enhance heat collection and heat dissipation effects. It is preferable to leave it there.

第1図の装置では集熱板(3)の外側にガラス製のカバ
ー(8)が設けられており、集熱板(3)との間に加熱
室(9)を形成している。加熱室(9)の上下にはそれ
ぞれ通風用ダンパ(9a)が設けられている。
In the apparatus shown in FIG. 1, a glass cover (8) is provided on the outside of the heat collecting plate (3), and a heating chamber (9) is formed between the heat collecting plate (3) and the cover (8). Ventilation dampers (9a) are provided above and below the heating chamber (9), respectively.

蓄熱槽(1)の外表面と集熱板(3)の内表面はそれぞ
れ蒸発面および凝縮面の両方の作用を昼間と夜間との交
互に行なうものであり、上部から供給流下される海水の
蒸発および水蒸気の凝縮が効果的に行なわれるよう親水
性ウィック復、(II)がそれぞれ耐食性接着剤(第3
図の0り)などで貼付されている。すなわち親水性ウィ
ックは海水および蒸留水の流下の状態と速度とを制御し
、熱の授受を容易にするためのものである。
The outer surface of the heat storage tank (1) and the inner surface of the heat collecting plate (3) act as both an evaporation surface and a condensation surface alternately during the day and at night, and the seawater supplied and flowing down from the top acts Hydrophilic wick adhesive (II) and corrosion-resistant adhesive (III) are used to ensure effective evaporation and water vapor condensation.
It is pasted as shown in the figure. That is, the hydrophilic wick is used to control the flow state and speed of seawater and distilled water, and to facilitate the exchange of heat.

前記海水供給手段(4)としては、たとえば四方弁など
の切り替えバルブ03を介して海水タンクまたは海水供
給ポンプと交互に連結される配管経路(141、石およ
び蒸留室(2)の頂部に設けられるガイド板(leなど
から構成される。ガイド板(18は配管経路Q41.(
E9から流下する海水を蓄熱槽(1)の外表面および集
熱板(3)の内表面に導くように傾斜している。
The seawater supply means (4) includes a piping route (141) provided at the top of the stone and distillation chamber (2) that is alternately connected to a seawater tank or a seawater supply pump via a switching valve 03 such as a four-way valve. Consists of a guide plate (le, etc.).Guide plate (18 is the piping route Q41.(
It is inclined so as to guide the seawater flowing down from E9 to the outer surface of the heat storage tank (1) and the inner surface of the heat collecting plate (3).

前記回収手段(5)、(6)は蒸留室(2)の底板0力
上に、蓄熱槽(1)側と集熱板(3)側とを区分して蒸
留水と濃縮水との混合を防止するために立設されている
仕切り板暗と、底板(17)に設けた外部への流出路0
9、■とから構成されている。流出路Og、■も好まし
くは四方弁のなどを介して蒸留水タンクに連結されてい
る。
The recovery means (5) and (6) separate the heat storage tank (1) side and the heat collection plate (3) side on the bottom plate of the distillation chamber (2) and mix distilled water and concentrated water. There is a partition plate erected to prevent
It is composed of 9 and ■. The outlet Og, (2) is also preferably connected to the distilled water tank via a four-way valve or the like.

つぎに斜上のごとく構成されるソーラースチルの使用方
法および作用を説明する。
Next, we will explain how to use and function of the solar still, which is constructed in a diagonal manner.

まず日中においては実線で示される配管経路面によって
海水を導き、集熱板(3)の内表面の親水性ウィックI
HI)の上部から海水を流下させる。
First, during the day, seawater is guided through the piping route surface shown by the solid line, and the hydrophilic wick I on the inner surface of the heat collecting plate (3)
Let seawater flow down from the top of HI).

そのばあい集熱板(3)の内面は蒸発面として作用し、
その内面の親水性ウィック層01)を伝わって降下する
海水は、直射太陽熱および加熱室(9)で乱反射などの
間接輻射熱によって加熱されている集熱板(3)から熱
を受け、蒸発し、降下するにしたがって塩分濃度を高め
て外側の流出路頭から外部に出される。
In that case, the inner surface of the heat collector plate (3) acts as an evaporation surface,
The seawater that descends through the hydrophilic wick layer 01) on its inner surface receives heat from the heat collecting plate (3), which is heated by direct solar heat and indirect radiant heat such as diffused reflection in the heating chamber (9), and evaporates. As it descends, the salt concentration increases and is discharged from the outer outflow head.

蒸留室(2)内の水蒸気は集熱板(3)の内表面と対向
している蓄熱槽(1)の外表面上に凝縮する。凝縮した
蒸留水は、蓄熱槽側表面の親水性ウィック(ト))を伝
わって下降し、内側の流出路□□□を通って蒸留水タン
クに収容される。
The water vapor in the distillation chamber (2) condenses on the outer surface of the heat storage tank (1) facing the inner surface of the heat collecting plate (3). The condensed distilled water descends through the hydrophilic wick (T) on the surface of the heat storage tank, passes through the inner outlet passage □□□, and is stored in the distilled water tank.

以上の蒸発・凝縮作用は日照時に装置の外側が高温で内
部はど低温となる温度勾配の存在によるものであるが、
後述するように蓄熱槽(1)は夜間に冷却されているの
で蒸気の凝縮作用が効率的に行なわれる。
The above evaporation and condensation effects are due to the existence of a temperature gradient in which the outside of the device is hot and the inside is cold during sunlight.
As will be described later, since the heat storage tank (1) is cooled at night, the steam condensation action is performed efficiently.

なお日中の操作運転中は、蓄熱槽(1)内の熱媒は水蒸
気から凝縮熱を奪って蓄熱し、しだいに自らの温度を上
げることになる。そのため蓄熱槽(1)の熱容量はでき
るだけ大きいものが好ましい。つぎに夜間においては、
まず切替バルブ03などを切り替えておく。それにより
、破線で示される夜間用の配管経路0Φによって海水を
導き、蓄熱FfI(11の外表面に沿って流下させ、濃
縮水を内側の流出路Ogから排出する。そのばあい日中
に蓄熱した蓄熱槽の熱媒の熱が海水の蒸発熱として利用
され、熱媒自体は冷却させられる。
During daytime operation, the heat medium in the heat storage tank (1) absorbs condensation heat from water vapor and stores heat, gradually raising its own temperature. Therefore, it is preferable that the heat capacity of the heat storage tank (1) is as large as possible. Next, at night,
First, switch the switching valve 03 and the like. As a result, seawater is guided through the nighttime piping route 0Φ shown by the broken line, flowing down along the outer surface of the heat storage FfI (11), and concentrated water is discharged from the inner outlet Og. The heat of the heat medium in the heat storage tank is used as the heat of evaporation of seawater, and the heat medium itself is cooled.

また夜間の外気により冷却させられた集熱板(3)の内
表面には蒸留室(2)内の蒸気が凝縮し、集熱板(3)
の親水性ウィック層01)および外側の流出路頭を経て
回収される。
In addition, the steam in the distillation chamber (2) condenses on the inner surface of the heat collecting plate (3), which is cooled by the outside air at night, and the heat collecting plate (3)
is recovered via the hydrophilic wick layer 01) and the outer outflow channel head.

夜間に冷却された蓄熱槽(1)の熱媒は前述するように
日中の凝縮作用の冷熱源として利用される。
As described above, the heat medium in the heat storage tank (1) cooled at night is used as a cold source for condensation during the day.

本発明の装置では蓄熱槽(1)の外表面と集熱板(3)
の内表面とが交互に蒸発面および凝縮面として用いられ
る。そのため日中と夜間の切り換え時には、それまで蒸
発面として利用されていた側の親水性ウィックへの海水
の供給を中止し、凝縮し始めた真水で短時間自己洗浄し
、さらに排出して蒸留水中への塩分の混入を防止するの
が好ましい。なおかかる洗浄により海水中からのスケー
ルを溶解し親水性ウィック中に常時沈着することを防止
するメリットがある。
In the device of the present invention, the outer surface of the heat storage tank (1) and the heat collecting plate (3)
The inner surface of the tube is used alternately as the evaporation surface and the condensation surface. Therefore, when switching between day and night, the seawater supply to the hydrophilic wick on the side previously used as an evaporation surface is discontinued, it is self-cleaned for a short period of time with fresh water that has begun to condense, and then drained into distilled water. It is preferable to prevent salt from being mixed into the water. Note that such cleaning has the advantage of dissolving scale from seawater and preventing it from being constantly deposited in the hydrophilic wick.

以上、第1図に基づいて本発明の基本的な構成および作
用を説明したが、本発明を実用化するにあたっては、第
2〜3図に示す装置あるいは第4〜5図に示す装置のよ
うに蓄熱槽(1)と集熱板(3)の間に複数枚の伝熱板
色を介在させ、効用数を高めて多重効用型の省エネルギ
ーソーラースチルとするのが好ましい。
The basic structure and operation of the present invention have been explained above based on FIG. It is preferable to interpose a plurality of heat exchanger plates between the heat storage tank (1) and the heat collecting plate (3) to increase the number of effects and create a multiple effect type energy-saving solar still.

第2図に示す装置は蓄熱槽(1)と集熱板(3)との間
隔を大きくし、その間に2枚の伝熱板色を設け、蒸留効
用数を3に近づけたものである。伝熱板色の内表面およ
び外表面にはそれぞれ前述のばあいと同様の親水性ウィ
ック層(ト))、01)が設けられている。
In the apparatus shown in FIG. 2, the distance between the heat storage tank (1) and the heat collecting plate (3) is increased, and two heat exchanger plates are provided between them, so that the number of distillation effects approaches three. The inner and outer surfaces of the heat exchanger plate are respectively provided with hydrophilic wick layers (g) and 01) similar to those described above.

伝熱板としては水蒸気を透過せず、伝熱率の高いものが
好ましく、たとえばチタン、ステンレスなどの、 0.
01〜1mm厚の金属薄板または箔、あるいは50〜2
00AIm厚のポリエステル系、ナイロン系またはポリ
ハロゲン化ビニリデン系のフィルムが適している。
The heat transfer plate is preferably one that does not transmit water vapor and has a high heat transfer rate, such as titanium, stainless steel, etc.
01~1mm thick metal sheet or foil, or 50~2mm thick
Polyester, nylon or polyvinylidene halide films with a thickness of 0.00 Alm are suitable.

このものは日中は伝熱板(至)の外表面が凝縮面として
作用し、そのときの凝縮熱によって内表面側を蒸発面と
して作用させるという従来の多重効率型の利点を何する
。また夜間においては逆に伝熱板−の内表面が凝縮面と
して作用し、外表面が蒸発面として作用する。しかし他
の点については第1図の基本的構造のものと同じである
This device has the advantage of the conventional multi-efficiency type in that the outer surface of the heat exchanger plate acts as a condensing surface during the day, and the inner surface acts as an evaporation surface using the heat of condensation. Conversely, at night, the inner surface of the heat exchanger plate acts as a condensation surface, and the outer surface acts as an evaporation surface. However, in other respects, the basic structure is the same as that shown in FIG.

前記いずれの装置においても蒸発面と凝縮面とはできる
だけ接近させた方がよいが、接近しすぎるとわずかな外
力により接触する慣れがある。そこで第3図に示すよう
に両ウィック00)、旧)の間には撥水性透気膜のと網
状スペーサのを入れ、水蒸気のみは通過させるが海水と
蒸留水とは接触しないようにするのが好ましい。
In any of the above devices, it is better to have the evaporating surface and the condensing surface as close as possible, but if they are too close, they tend to come into contact with each other due to a slight external force. Therefore, as shown in Figure 3, a water-repellent air-permeable membrane and a mesh spacer are inserted between the wicks 00) and 00) to allow only water vapor to pass through but prevent seawater and distilled water from coming into contact with each other. is preferred.

第1〜2図に示す装置はいずれも平板形の集熱板(3)
、伝熱板のおよび蒸留室(2を有するが、本発明はかか
るばあいに限定されるものでなく、たとえば第3〜5図
に示す円筒状のものなど種々の形状を採用しうる。
The devices shown in Figures 1 and 2 all have flat heat collecting plates (3).
, a heat exchanger plate, and a distillation chamber (2), but the present invention is not limited to such a case, and various shapes can be adopted, such as the cylindrical shape shown in FIGS. 3 to 5, for example.

なお第3図の円筒状の装置において(8)は円筒状のガ
ラスカバーであり、集熱板(3)との間の加熱室(9)
は温度の高い空気を保持するものである。
In the cylindrical device shown in Fig. 3, (8) is a cylindrical glass cover, and the heating chamber (9) is located between the heat collecting plate (3) and the heating chamber (9).
is for holding high temperature air.

また第3図の(7)は熱媒の対流をスムーズにするため
の整流板であり、たとえば蓄熱槽(1)が冷熱源となる
昼間では矢印(P)方向の対流を容易にせしめる。
Further, (7) in FIG. 3 is a rectifying plate for smoothing the convection of the heat medium, and facilitates convection in the direction of the arrow (P), for example, during the day when the heat storage tank (1) is a source of cold heat.

昼間の蒸留によって蓄熱槽(1)に吸収した熱エネルギ
ーは夜間に外部に放出されるとき、再び蒸留を行ない、
−昼夜で一往復の蒸留を行なう。
When the thermal energy absorbed in the heat storage tank (1) during daytime distillation is released to the outside at night, distillation is performed again.
- Distillation is carried out one round trip during the day and night.

そのため第3図の装置の効用数は、理想状態において4
X2”−8となる。
Therefore, the utility number of the device in Figure 3 is 4 in the ideal state.
It becomes X2”-8.

第3〜5図に示す装置は中心に円筒状の蓄熱槽(1)を
有し、その外側に同じく円筒状の伝熱板色を2〜3枚同
心状に配置し、さらにその外側に円筒状の集熱板(3)
を設けたものである。さらに蓄熱t! (11の内部に
は円筒状の整流板(7)が設けられている。このものの
作用および効果は第1図の平板状の装置と実質的に同じ
である。
The device shown in Figures 3 to 5 has a cylindrical heat storage tank (1) in the center, and two or three similarly cylindrical heat exchanger plates are arranged concentrically on the outside of the tank, and a cylindrical heat storage tank (1) is arranged concentrically on the outside of the tank. shaped heat collecting plate (3)
It has been established. Even more heat storage! (A cylindrical current plate (7) is provided inside 11. The function and effect of this plate are substantially the same as those of the flat plate-like device shown in FIG. 1.

つぎに前記多層型のソーラースチルの作用を1日の日照
のサイクルにしたがって順を追って具体的に説明する。
Next, the operation of the multilayer solar still will be explained in detail according to the daily sunlight cycle.

なお以下の説明および実験データは第2図に示す3層(
伝熱板が2枚)の平板形ソーラースチルについてのもの
である。
The following explanation and experimental data are based on the three layers shown in Figure 2 (
This is for a flat solar still with two heat exchanger plates.

第2図に示すソーラースチルを用いて、1985年8月
24日〜8月25日(晴天臼)に、兵庫県において海水
淡水化の実験を行なった。そのときの集熱板の温度サイ
クル(A)、蓄熱槽の熱媒の温度サイクル(B)および
外気温サイクル(C)の測定結果を第6図に示す。なお
集熱板温度および蓄熱槽温度はそれぞれ最上部の位置で
測定した値を表示した。
Using the solar still shown in Figure 2, seawater desalination experiments were conducted in Hyogo Prefecture from August 24th to August 25th, 1985 (Sunny Weather). The measurement results of the temperature cycle of the heat collecting plate (A), the temperature cycle of the heat medium in the heat storage tank (B), and the outside temperature cycle (C) at that time are shown in FIG. Note that for the heat collecting plate temperature and the heat storage tank temperature, the values measured at the top position are respectively displayed.

夜明は後の日射がガラスカバー(8)を透過して集熱面
(3)を加熱し始めると、サイクル(A)に沿って集熱
板(3)の温度が上昇し始める。そこで昼間の海水供給
手段を通じて海水を供給し、蒸留を行なった。
At dawn, when the later solar radiation begins to pass through the glass cover (8) and heat the heat collecting surface (3), the temperature of the heat collecting plate (3) begins to rise along the cycle (A). Therefore, seawater was supplied through a seawater supply means during the day and distillation was performed.

その間、集熱板に吸収された太陽の熱エネルギーは3層
の蒸留室を通過して、各層ごとに蒸発(潜熱吸収)−凝
縮(潜熱放出)を合計で3回繰返し、最後に蓄熱槽(1
)の冷熱媒に熱エネルギーを蓄え、蓄熱槽の温度をサイ
クル(B)に沿って上昇させる。
During that time, the solar thermal energy absorbed by the heat collecting plate passes through three layers of distillation chambers, repeating evaporation (latent heat absorption) and condensation (latent heat release) three times in total for each layer, and finally the heat storage tank ( 1
), and the temperature of the heat storage tank is increased along cycle (B).

時刻が12時を過ぎる頃から日射量は極大値を示し、そ
の後は漸時減少し始め、199時頃はOになる。したが
って集熱板温度もサイクル(A)のごとく変化し、19
9時頃その温度は外気温と等しくなり、朝方(6時頃)
まで外気温と等しい状態で続く。
The amount of solar radiation reaches its maximum value from around 12:00, and then gradually begins to decrease, reaching 0 around 199:00. Therefore, the temperature of the heat collecting plate also changes as in cycle (A), and 19
Around 9 o'clock the temperature becomes equal to the outside temperature, and in the morning (around 6 o'clock)
The temperature remains the same as the outside temperature until

他方、蓄熱槽温度のサイクル(B)は日照量が減っても
すぐには下降せず、166時頃ら朝方(5時頃)まで緩
やかに下降していく。
On the other hand, cycle (B) of the heat storage tank temperature does not drop immediately even when the amount of sunlight decreases, but gradually drops from around 166:00 until the morning (around 5:00).

したがって集熱板温度のサイクル(A)と蓄熱槽温度の
サイクル(B)とは15時通過に交差し、それ以後は朝
方まで蓄熱槽温度サイクル(B)の方が集熱板温度のサ
イクル(C)よりも高くなっており、朝方、の5通過ぎ
にいたってサイクル(B)とサイクル(C)とはほぼ同
時に外気温に近接する。
Therefore, the heat collection plate temperature cycle (A) and the heat storage tank temperature cycle (B) intersect at 3:00 p.m. From then until morning, the heat storage tank temperature cycle (B) is the heat collection plate temperature cycle ( Cycle (B) and Cycle (C) approach the outside temperature almost at the same time until after the 5th cycle in the morning.

斜上の説明で理解できるように、本発明のソーラースチ
ルは適切な蓄熱槽を内蔵することによって、日中は(A
)−(B)の温度差を利用して蒸留し、昼間は(B)−
(A)の温度差を応用して再び蒸留を可能ならしめるソ
ーラースチルといえる。
As can be understood from the explanation above, the solar still of the present invention has a built-in suitable heat storage tank, so that during the day (A
) - (B) is distilled using the temperature difference, and during the day (B) -
It can be said to be a solar still that makes distillation possible again by applying the temperature difference in (A).

つぎに従来から広く知られているベイスン型ソーラース
チル(「太陽エネルギー利用ハンドブック」、第10章
、No、2、851頁、日本太陽エネルギー学会発行参
照)を比較例とし、それと第5図の実施例の装置とで同
時に行なった蒸留水採取の比較実験を説明する。なお両
方の装置共、その蒸留水収量などは集熱面積l111′
の値について比較した。1985年8月24日の朝6時
から8月25日の朝6時までの24時間について測定し
た結果を表1に示す。
Next, we will use the widely known basin-type solar still (see "Solar Energy Utilization Handbook", Chapter 10, No. 2, page 851, published by the Japan Solar Energy Society) as a comparative example, and use it and the implementation of Figure 5. A comparative experiment of distilled water collection conducted simultaneously with the example device will be explained. In addition, for both devices, the distilled water yield etc. are based on the heat collecting area l111'
The values were compared. Table 1 shows the results of measurements taken over a 24-hour period from 6 a.m. on August 24, 1985 to 6 a.m. on August 25, 1985.

なお表1中に記載されている全効率は蒸留水収量分を蒸
発させるに要する潜熱エネルギー量を日射エネルギー量
で割ったもの、すなわち蒸発潜熱を5BOkcal /
kgとして、((蒸留水収量x O,560)/日射f
f1) xto。
The total efficiency listed in Table 1 is the amount of latent heat energy required to evaporate the yield of distilled water divided by the amount of solar radiation energy, that is, the latent heat of vaporization is calculated as 5BOkcal/
kg, ((distilled water yield x O,560)/solar radiation f
f1) xto.

で計算している。It is calculated by

表1から第5図のソーラー、スチルはベイスン型ソーラ
ースチルの5〜6倍程度のエネルギー効率を有すること
がわかる。
It can be seen from Tables 1 to 5 that the solar stills shown in FIG. 5 have an energy efficiency about 5 to 6 times that of the basin type solar still.

E発明の効果] 本発明の装置は日中は蓄熱槽を冷媒として利用し、日中
に蓄えた熱エネルギーを夜間に放出して海水の蒸発に利
用する。すなわち本発明の装置では日中は太陽熱エネル
ギーを1個の蓄熱槽に吸収させて、夜間はこれを放熱す
るという、あたかも充電・放電を繰り返す蓄電池のごと
き作用を行ない、その過程において海水の蒸発と凝縮を
繰り返すものである。それにより本発明の装置では間接
加熱式や水冷式のものに比して配管系統が簡略化され、
装置全体が簡単である。
E Effects of the Invention] The device of the present invention uses a heat storage tank as a refrigerant during the day, and releases the thermal energy stored during the day at night to use it for evaporation of seawater. In other words, the device of the present invention absorbs solar thermal energy into a single heat storage tank during the day and radiates it at night, acting like a storage battery that repeatedly charges and discharges. It repeats condensation. As a result, in the device of the present invention, the piping system is simplified compared to indirect heating type or water cooling type.
The whole device is simple.

しかも海水中のスケールがたまりにくいのでメンテナン
スも容易である利点がある。また日中、夜間を通じて蒸
留作用を行うので、投影面積当りの蒸留水の回収効率が
いちじるしく高い。
Moreover, it has the advantage of being easy to maintain because scale in seawater does not accumulate easily. Furthermore, since the distillation action is carried out throughout the day and night, the recovery efficiency of distilled water per projected area is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の装置の一実施例を示す断面図、第2図
は本発明の装置の他の実施例を示す断面図、第3図は本
発明の装置の他の実施例を示す要部断面図、第4図は本
発明の装置の他の実施例を示す縦断面図、第5図は第4
図のM−M線断面図、第6図は本発明の装置の効果を示
すグラフである。 (図面の主要符号) (1):蓄熱槽 (a:蒸留室 (3):集熱板 (4):海水供給手段 (5)、(6):回収手段 (至):伝熱板 第 図 第3図 第4禦 / 第5図
FIG. 1 is a sectional view showing one embodiment of the device of the present invention, FIG. 2 is a sectional view showing another embodiment of the device of the present invention, and FIG. 3 is a sectional view showing another embodiment of the device of the present invention. 4 is a longitudinal sectional view showing another embodiment of the device of the present invention, and FIG. 5 is a sectional view of main parts.
6 is a graph showing the effects of the device of the present invention. (Main symbols in the drawing) (1): Heat storage tank (a: Distillation chamber (3): Heat collection plate (4): Seawater supply means (5), (6): Recovery means (to): Heat transfer plate Figure Figure 3 Figure 4/ Figure 5

Claims (1)

【特許請求の範囲】 1 蓄熱槽と、 該蓄熱槽の外表面との間に実質的に密閉の蒸留室を形成
すべく空間を介して設けられる集熱板と、 蓄熱槽の外表面および集熱板の内表面のそれぞれの頂部
付近に設けられる海水供給手段と、蓄熱槽の外表面およ
び集熱板の内表面に沿って流下する流体を別々に回収す
るための回収手段 とからなる蓄熱槽を内蔵したソーラースチル。 2 前記蓄熱槽と集熱板との間を区画するように少なく
とも1枚の伝熱板が設けられており、該伝熱板の内表面
および外表面のそれぞれの頂部付近にさらに他の海水供
給手段が設けられ、かつ底部付近に他の回収手段が設け
られてなる請求項1記載の装置。 3 前記蓄熱槽の外表面および集熱板の内表面にそれぞ
れ親水性ウイック層が形成されてなる請求項1記載の装
置。 4 前記蓄熱槽の外表面、伝熱板の内表面および外表面
、ならびに集熱板の内表面にそれぞれ親水性ウイック層
が形成されてなる請求項2記載の装置。 5 たがいに対向する親水性ウイック層の間に撥水性の
透気膜とスペーサとが介在されてなる請求項3または4
記載の装置。
[Scope of Claims] 1. A heat storage tank, a heat collecting plate provided with a space between the outer surface of the heat storage tank and the outer surface of the heat storage tank to form a substantially closed distillation chamber; A heat storage tank consisting of a seawater supply means provided near the top of each of the inner surfaces of the heat plates, and a recovery means for separately collecting the fluid flowing down along the outer surface of the heat storage tank and the inner surface of the heat collection plate. Solar still with built-in. 2. At least one heat transfer plate is provided to partition the space between the heat storage tank and the heat collection plate, and another seawater supply is provided near the top of each of the inner and outer surfaces of the heat transfer plate. 2. Apparatus according to claim 1, further comprising means and further retrieval means near the bottom. 3. The device according to claim 1, wherein a hydrophilic wick layer is formed on the outer surface of the heat storage tank and the inner surface of the heat collecting plate, respectively. 4. The apparatus according to claim 2, wherein a hydrophilic wick layer is formed on the outer surface of the heat storage tank, the inner and outer surfaces of the heat transfer plate, and the inner surface of the heat collecting plate. 5. Claim 3 or 4, wherein a water-repellent air-permeable membrane and a spacer are interposed between the hydrophilic wick layers facing each other.
The device described.
JP63224907A 1988-09-08 1988-09-08 Solar still containing heat storage tank Pending JPH0271891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63224907A JPH0271891A (en) 1988-09-08 1988-09-08 Solar still containing heat storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63224907A JPH0271891A (en) 1988-09-08 1988-09-08 Solar still containing heat storage tank

Publications (1)

Publication Number Publication Date
JPH0271891A true JPH0271891A (en) 1990-03-12

Family

ID=16821027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63224907A Pending JPH0271891A (en) 1988-09-08 1988-09-08 Solar still containing heat storage tank

Country Status (1)

Country Link
JP (1) JPH0271891A (en)

Similar Documents

Publication Publication Date Title
Srithar et al. Recent fresh water augmentation techniques in solar still and HDH desalination–A review
Bouchekima et al. Performance study of the capillary film solar distiller
TW431890B (en) Borage seed oil as an anti-irritant in compositions containing hydroxy acids or retinoids
US4487659A (en) Solar distillation apparatus
Balan et al. Review on passive solar distillation
SE515688C2 (en) Chemical heat pump and process for cooling and / or heating
CN108793299A (en) A kind of small-sized solar energy sea water desalination apparatus and method
CN1396120A (en) Membrane distillation type water treating apparatus using solar energy or afterheat
US20210380437A1 (en) Solar ocean thermal energy seawater distillation system
Moustafa et al. Performance of a self-regulating solar multistage flash desalination system
Zala et al. Present status of solar still: a critical review
US4110174A (en) Power generation and potable water recovery from salinous water
GB1590843A (en) Solar energy distillation apparatus
Mohamed et al. A comprehensive review of the vacuum solar still systems
Dev et al. Solar distillation
US4233153A (en) Continuous method and apparatus for separating solvent from solute
US4121977A (en) Power generation and potable water recovery from salinous water
Phadatare et al. Effect of cover materials on heat and mass transfer coefficients in a plastic solar still
JPH0271891A (en) Solar still containing heat storage tank
US20120267231A1 (en) System and method of passive liquid purification
CN208916849U (en) A kind of small-sized solar energy sea water desalination apparatus
Sharon et al. Multi-effect Tubular Solar Thermal Desalination Systems
Ali et al. Exploring the enhancement of solar still performance through the utilization of solar water collectors, rotating hollow cylinders
CN107651720A (en) A kind of multistage humidification dehumidification type sea water desalinating unit with loop type gravity assisted heat pipe structure
JPH0447570Y2 (en)