JPH0271727A - Nuclear magnetic resonance imaging device - Google Patents

Nuclear magnetic resonance imaging device

Info

Publication number
JPH0271727A
JPH0271727A JP63221297A JP22129788A JPH0271727A JP H0271727 A JPH0271727 A JP H0271727A JP 63221297 A JP63221297 A JP 63221297A JP 22129788 A JP22129788 A JP 22129788A JP H0271727 A JPH0271727 A JP H0271727A
Authority
JP
Japan
Prior art keywords
data
magnetic resonance
nuclear magnetic
noise
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63221297A
Other languages
Japanese (ja)
Other versions
JPH0376138B2 (en
Inventor
Koichi Nitta
浩一 新田
Makoto Yamamoto
信 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP63221297A priority Critical patent/JPH0271727A/en
Publication of JPH0271727A publication Critical patent/JPH0271727A/en
Publication of JPH0376138B2 publication Critical patent/JPH0376138B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To simply prevent generation of an artifact by extracting and removing, from data, external noise which is mixed into a measurement signal during measurement of a nuclear magnetic resonance signal and which is discrete and impulsive. CONSTITUTION:Measured data in an MRI device is given by the formula (1), where S(u,v) is measured data, u is phase encode value, v is data sampling time, M(X,Y) is macro-magnetized distribution in the X-Y coordinates, X is a value on abscissa, and Y is value on coordinate. Further, the macro- magnetized distribution M(X,Y) on the X-Y coordinates which is an image obtained by the MRI device, is obtained by a two-dimensional Fourier transfor mation of the measured data S(u,v). Accordingly, if external noise which is discrete and impulsive is mixed into the measured data S(u,v), an arch fact on a slope, depending upon the strength and point of the mixing appears on the image. Accordingly, the component of the noise is extracted from the mea sured data S(u,v), and after the removal of the noise, the two-dimensional Fou rier conversion is carried so as to obtain an image having no artifact.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、核磁気共鳴(NMR)現象を利用して被検体
の断層画像を得る核磁気共鳴イメージング装置(以下、
MHI装置という)に係り、特に装置の設置環境上発生
する、不連続で衝撃性の外来雑音が計測信号に混入した
場合、その雑音によるアーチファクト発生を防止したM
RI装置に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a nuclear magnetic resonance imaging apparatus (hereinafter referred to as
When discontinuous and impulsive external noise, which occurs in the installation environment of the device (referred to as MHI device), mixes into the measurement signal, the MHI device prevents artifacts from occurring due to that noise.
This relates to an RI device.

〔従来の技術〕[Conventional technology]

従来のMRI装置は、外来雑音が計測信号に混入しない
ように、装置の設置環境に応じて適宜のシールド手段(
フィルタ、電波シールドルームなと)をもっていた。
Conventional MRI equipment uses appropriate shielding means (depending on the installation environment of the equipment) to prevent external noise from entering measurement signals
It had a filter, a radio wave shield room, etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来装置では、放送局などの高周波利用設備からの連続
的で周期性をもつ雑音についてはその測定が可能であり
、シールドできる。しかし、装置周辺に設置された他の
医用診断装置や照明用蛍光灯の電源開閉などで発生する
。不連続で衝撃性の外来雑音に対しては、前記の周期性
をもつ雑音に比べ、設置環境における雑音強度の測定が
困難であり、シールド性能を決定することが困難である
Conventional devices can measure and shield continuous and periodic noise from high-frequency facilities such as broadcasting stations. However, it can occur when other medical diagnostic equipment or fluorescent lamps installed around the equipment are turned on and off. For discontinuous and impulsive external noise, it is difficult to measure the noise intensity in the installation environment, and it is difficult to determine shielding performance, compared to the periodic noise described above.

したがって、このような衝撃性の外来雑音に対してはシ
ールドが不可能となり、画像にアーチファクトが発生す
るという問題点があった。
Therefore, there is a problem in that it is impossible to shield against such impulsive external noise, and artifacts occur in images.

本発明の目的は、不連続で衝撃性の外来雑音に対するシ
ールド手段を要することなく、シたがって困難なシール
ド性能の決定をも必要とせず、上記外来雑音に起因する
アーチファクトの発生を簡単に防止することのできるM
HI装置を提供することにある。
An object of the present invention is to easily prevent the generation of artifacts caused by the above-mentioned external noise without requiring a means for shielding against discontinuous and impulsive external noise, and therefore without requiring difficult determination of shielding performance. M who can
Our objective is to provide HI equipment.

〔課題を解決するための手段〕[Means to solve the problem]

静磁場及び傾斜磁場が与えられた被検体に送信系から高
周波パルスを照射することにより生じる核磁気共鳴信号
を受信系で受信し、受信された核磁気共鳴信号に基づい
て再生画像を得るMHI装置において、前記核磁気共鳴
信号計測中に計測信号に混入した不連続で衝撃性の外来
雑音を、前記計測によって得られたデータより抽出・除
去することにより達成される。
An MHI device in which a receiving system receives a nuclear magnetic resonance signal generated by irradiating a high-frequency pulse from a transmitting system to a subject to which a static magnetic field and a gradient magnetic field are applied, and obtains a reconstructed image based on the received nuclear magnetic resonance signal. This is achieved by extracting and removing discontinuous and impulsive external noise mixed into the measurement signal during the nuclear magnetic resonance signal measurement from the data obtained by the measurement.

〔作用〕[Effect]

一般的に、MRI装置における計測データは下式(1)
で表され、二次元のデータである。
Generally, the measurement data in an MRI device is expressed by the following formula (1)
It is two-dimensional data.

S(u、v)=f7M(X、Y)exp(i(uX+v
Y)) dXdY−=(1)ここで、 S (u、v):計測データ U:位相エンコード量 V;データサンプリング時間 M (X、Y): X−Y座標面の巨視的磁化分布x:
x座標 Y:Y座標 このとき、X−Y座標面の巨視的磁化分布M(X、Y)
は、MRI装置で得られる画像であり、前記計測データ
S (u、v)を二次元フーリエ変換することにより得
られる。したがって、計測データS (u、v)に不連
続で衝撃性の外来雑音が混入した場合、混入位置と強度
に依存した斜線上のアーチファクトが画像に発生する。
S(u,v)=f7M(X,Y)exp(i(uX+v
Y)) dXdY-=(1) Here, S (u, v): Measurement data U: Phase encode amount V; Data sampling time M (X, Y): Macroscopic magnetization distribution x on the X-Y coordinate plane:
x coordinate Y: Y coordinate At this time, macroscopic magnetization distribution M (X, Y) on the X-Y coordinate plane
is an image obtained by an MRI apparatus, and is obtained by performing two-dimensional Fourier transform on the measurement data S (u, v). Therefore, when discontinuous and impulsive external noise is mixed into the measurement data S (u, v), a diagonally lined artifact depending on the mixing position and intensity occurs in the image.

そこで、計測データS (u、v)上で、雑音成分を抽
出し、除去した後、二次元フーリエ変換を行えば、アー
チファクトのない画像を得ることができる。
Therefore, by extracting and removing noise components from the measurement data S (u, v) and then performing two-dimensional Fourier transformation, an image without artifacts can be obtained.

本発明は、このように計測データS (ut V)上で
、雑音成分を抽出し、除去してアーチファクトのない画
像を得るものであるので、シールド手段を要することな
く、したがって困難なシールド性能の決定をも必要とせ
ず、上記外来雑音に起因するアーチファクトの発生を簡
単に防止することができる。
In this way, the present invention extracts and removes noise components from the measurement data S (ut V) to obtain an image free of artifacts. Therefore, it does not require a shielding means, and therefore it is possible to solve the difficult problem of shielding performance. No determination is required, and the generation of artifacts caused by the above-mentioned external noise can be easily prevented.

〔実施例〕〔Example〕

以下、図面を参照して本発明の詳細な説明する。第1図
は、本発明によるMRI装置の一実施例の要部を示すブ
ロック図で、図中1は受信コイル、2は直交位相検波器
、3,4はA/D変換器である。5は計算機で、計測デ
ータsR用メモリ5a、計測データS1用メモリ5b及
び画像データメモリ5cを備えている。6はモニタ、7
は不連続で衝撃性の外来雑音である。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing essential parts of an embodiment of an MRI apparatus according to the present invention, in which 1 is a receiving coil, 2 is a quadrature phase detector, and 3 and 4 are A/D converters. Reference numeral 5 denotes a computer, which includes a memory 5a for measurement data sR, a memory 5b for measurement data S1, and an image data memory 5c. 6 is the monitor, 7
is a discontinuous and impulsive extraneous noise.

第1図において、受信コイル1で受信された被検体(図
示せず)からの核磁気共鳴信号は、直交位相検波器2に
より位相の90度異なる2つの低周波成分に分解され、
それぞれA/D変換器3,4によりディジタルデータに
変換されて計算機5内のメモリ5a、5bに格納される
In FIG. 1, a nuclear magnetic resonance signal from a subject (not shown) received by a receiving coil 1 is decomposed by a quadrature phase detector 2 into two low frequency components with a phase difference of 90 degrees.
The data are converted into digital data by A/D converters 3 and 4, respectively, and stored in memories 5a and 5b within the computer 5.

ここで、前述計測データS (u、v)は複素数で表現
されていたが、位相の90度異なる2つの信号成分はそ
れぞれ実部、虚部に対応しており、それらをA/D変換
してなる計測データをそれぞれSR(u + V) +
 8 +−(u + V)と呼ぶ。これらの計測データ
SR+Slはそれぞれ計算機5により高速二次元フーリ
エ変換され、さらに次式(2)により絶対値が求められ
る。
Here, the measurement data S (u, v) mentioned above was expressed as a complex number, but the two signal components whose phases differ by 90 degrees correspond to the real part and the imaginary part, respectively, and they are A/D converted. SR(u + V) +
It is called 8 + - (u + V). These measurement data SR+Sl are each subjected to high-speed two-dimensional Fourier transform by the computer 5, and further, the absolute value is determined by the following equation (2).

・・・・・・・・・(2) (Fはフーリエ変換) これにより求められたデータMA (X、Y)が画像デ
ータであり、モニタ6に再構成画像として表示され、診
断などに供せられる。
・・・・・・・・・(2) (F is Fourier transform) The data MA (X, Y) obtained by this is image data, which is displayed as a reconstructed image on the monitor 6 and used for diagnosis etc. be given

いま、受信コイル1が外来雑音7を核磁気共鳴信号と同
時に受信した場合には、計測データsR及びSIに雑音
成分が混入したことになり、画像にアーチファクトが発
生する。そこで本発明装置では、次に述べる手段により
雑音成分を抽出し、除去する。
If the receiving coil 1 receives the external noise 7 at the same time as the nuclear magnetic resonance signal, the noise component will be mixed into the measurement data sR and SI, and artifacts will occur in the image. Therefore, in the apparatus of the present invention, the noise component is extracted and removed by the means described below.

第2図は、上述本発明装置における二次元の計測データ
マトリックスの概略を示したものである。
FIG. 2 schematically shows a two-dimensional measurement data matrix in the above-mentioned apparatus of the present invention.

まず1位相検波され、A/D変換されて得られた計測デ
ータSR及びSlは正、負のデータとなっており、雑音
成分も分解されていることから、計測データsR及びS
、の絶対値sAを次式(3)により求め、信号強度を判
別しやすいデータ形式とする。
First, the measurement data SR and Sl obtained by one-phase detection and A/D conversion are positive and negative data, and the noise components have also been resolved, so the measurement data sR and S
The absolute value sA of , is determined by the following equation (3), and the data format is set to make it easy to determine the signal strength.

5A(u、v)= m口S+(u−v))’ −−−(
3)ここで、計測データS^(U、V)の位相エンコー
ド量Uの1つ異なる前後の計測データS^(U−1,v
)及びSA (un1.v)は、一般に計測データ8人
(U、V)に近い値である。したがって、これらの計測
データ8人(u−1,v)及びSA(un1.v)から
閾値を算出し、計測データ5A(usV)のデータ値に
混入している雑音成分を抽出すればよい。
5A (u, v) = m mouth S + (u-v))' ---(
3) Here, the measurement data S^(U-1, v) before and after the phase encoding amount U of the measurement data S^(U, V) differs by
) and SA (un1.v) are generally values close to the measured data of 8 people (U, V). Therefore, a threshold value may be calculated from these measurement data of 8 people (u-1, v) and SA (un1.v), and the noise component mixed in the data value of the measurement data 5A (usV) may be extracted.

この場合、第3図に示すように、計測データSA (u
 + V)は画像データMA (X、Y)の二次元逆フ
ーリエ変換されたものであることから、計測データマト
リックスの中心付近、すなわち周波数の低い部分はど信
号強度が強く、周辺は弱くなっている。このため、雑音
成分を計測データマトリックスの全点において信号成分
と一定の比率で判別するために、各データサンプリング
時間Vに応じて異なる閾値とする必要がある。そごで、
計測データマトリックスの左右の端点より逐次閾値を変
化させ、中心に近いほど大きくなる閾値を設定する。
In this case, as shown in FIG. 3, the measurement data SA (u
+V) is a two-dimensional inverse Fourier transform of the image data MA (X, Y), so the signal strength is strong near the center of the measurement data matrix, that is, the low frequency part, and weak at the periphery. There is. Therefore, in order to distinguish the noise component from the signal component at a constant ratio at all points in the measurement data matrix, it is necessary to set a different threshold value depending on each data sampling time V. There,
The threshold value is successively changed from the left and right end points of the measurement data matrix, and the threshold value is set so that it becomes larger closer to the center.

本実施例では、このような閾値を用いて、衝撃性の外来
雑音を、画像再構成手段としての計算機5により、計測
データ5A(uv v)より抽出、除去するもので、以
下、本発明装置の動作を第4図のフローチャートを参照
して説明する。ここでは1位相エンコード斌u番目の左
半分、すなわちデータサンプリング時間■の1番目から
中心部までのデータを処理する場合を例にとる。まずデ
ータサンプリング時間■に1をセットし、閾値はあらか
じめ与えられた初期値とする(ステップ100゜101
)。次にエンコード量Uの1つ異なる前後の計測データ
S^(u−1,v)及び8A(un1゜■)の平均値を
求め、これにあらかじめ与えられた雑音と信号の判別比
率Kを掛ける(ステップ102)。次にこの計算値と閾
値を比較しくステップ103) 、計算値が大きい場合
は計算値を閾値とする(ステップ104)。次に計測デ
ータ5A(usV)と閾値を比較しくステップ105)
 、計測データ5A(ulV)が閾値より大きい場合は
、その計測データ5A(un V)を衝撃性の外来雑音
を含んだデータとみなし、絶対値S^、実部sR及び虚
部S!のデータを0に書き替える(ステップ106)。
In this embodiment, using such a threshold value, impulsive external noise is extracted and removed from the measurement data 5A (uv v) by the computer 5 serving as an image reconstruction means. The operation will be explained with reference to the flowchart of FIG. Here, we will take as an example a case where data from the left half of the u-th one-phase encoding interval, that is, the data from the first to the center of the data sampling time ■, is processed. First, the data sampling time ■ is set to 1, and the threshold value is set to the initial value given in advance (steps 100 and 101).
). Next, find the average value of the measurement data S^(u-1,v) and 8A(un1゜■) before and after the encoded amount U differs by one, and multiply this by the noise-to-signal discrimination ratio K given in advance. (Step 102). Next, this calculated value is compared with a threshold value (step 103), and if the calculated value is large, the calculated value is used as the threshold value (step 104). Next, compare the measurement data 5A (usV) and the threshold value (Step 105)
, when the measured data 5A (ulV) is larger than the threshold, the measured data 5A (un V) is regarded as data containing impulsive external noise, and the absolute value S^, the real part sR, and the imaginary part S! data is rewritten to 0 (step 106).

以上の動作をデータサンプリング時間Vの1番目から中
心部までのデータ分(第3図中の左半分のデータ分)繰
り返す(ステップ107,108) 。
The above operation is repeated for the data from the first to the center of the data sampling time V (for the left half of the data in FIG. 3) (steps 107, 108).

その後、データサンプリング時間Vの最終番目から中心
部までのデータ分(第3図中の右半分のデータ分)につ
いて上述と同様に処理する。なお。
Thereafter, the data from the last to the center of the data sampling time V (the right half of the data in FIG. 3) is processed in the same manner as described above. In addition.

ステップ103において、閾値が計算値より大きい場合
はステップ105に、またステップ105において。
In step 103, if the threshold value is greater than the calculated value, then in step 105;

計測データS^(u、v)が閾値より小さい場合はステ
ップ107に、それぞれ移行する。
If the measured data S^(u,v) is smaller than the threshold value, the process moves to step 107, respectively.

以下、これらの動作を位相エンコード回数分繰り返すこ
とにより、全計測データに対して衝撃性の外来雑音を抽
出、除去処理するもので、処理後のデータに基づいて計
算機5で再構成演算し、断層画像を得る。
Hereinafter, by repeating these operations for the number of times of phase encoding, impulsive extraneous noise is extracted and removed from all measurement data.Based on the processed data, the computer 5 performs reconstruction calculations, and Get the image.

以上の説明では、計測データから雑音成分を除去するの
に、雑音を含んだ計測データをデータ値Oに書き替える
方法を採ったが、その他に、位相エンコードituの1
つ異なる前後のデータ5A(u−1,v)及びSA (
un1.v)の平均値に書き替える方法もある。また、
電子情報通信学会論文誌D  Vol、 J71−D 
 NO,11988年1月 第182〜187頁の「位
相マツプを用いた半数計測データからのMRI画像再構
成アルゴリズム」に記載のアルゴリズムにより、雑音を
含んだデータを推定データと置き換える方法もある。
In the above explanation, in order to remove the noise component from the measurement data, we adopted a method of rewriting the measurement data containing noise to the data value O.
Data 5A (u-1, v) and SA (
un1. There is also a method of rewriting it to the average value of v). Also,
IEICE Journal D Vol, J71-D
There is also a method of replacing noise-containing data with estimated data using the algorithm described in "MRI image reconstruction algorithm from half-measured data using phase map" on pages 182 to 187, January 11988.

上述実施例によれば、雑音成分を、計測データマトリッ
クスのどの点においても計測データと一定の比率で抽出
でき、高速に雑音成分を除去できるという効果がある。
According to the above embodiment, the noise component can be extracted at a constant ratio to the measurement data at any point in the measurement data matrix, and the noise component can be removed at high speed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、核磁気共鳴信号計測中に計測信号に混
入した不連続で衝撃性の外来雑音を、計測データより抽
出、除去するようにしたので、上記外来雑音に対するシ
ールド手段を要することなく、したがって困難なシール
ド性能の決定をも必要とせず、上記外来雑音に起因する
アーチファクトの発生を簡単に防止することができると
いう効果がある。
According to the present invention, discontinuous and impulsive external noise mixed into the measurement signal during nuclear magnetic resonance signal measurement is extracted and removed from the measurement data, so there is no need for shielding means against the external noise. Therefore, it is possible to easily prevent the occurrence of artifacts caused by the above-mentioned external noise without requiring difficult determination of shielding performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施例を示すブロック図、第2
図は同上装置における二次元の計測データマトリックス
の概略を示した図、第3図は外来雑音を含まない計測デ
ータと外来雑音を含む計測データの判別のための閾値と
の関係を示すグラフ、第4図は、第1図に示した本発明
装置の動作を説明するためのフローチャートである。 1・・・受信コイル、2・・・直交位相検波器、3,4
・・・A/D変換器、5・・・計算機(画像再構成手段
)。 5a・・・計測データSR用メモリ、5b・・・計測デ
ータSI用メモリ、5C・・・画像データメモリ、6・
・・モニタ、7・・・不連続で衝撃性の外来雑音。 75訂を数
FIG. 1 is a block diagram showing one embodiment of the device of the present invention, and FIG.
The figure is a diagram showing an outline of a two-dimensional measurement data matrix in the same device as above; FIG. 4 is a flowchart for explaining the operation of the apparatus of the present invention shown in FIG. 1... Receiving coil, 2... Quadrature phase detector, 3, 4
... A/D converter, 5... Computer (image reconstruction means). 5a...memory for measurement data SR, 5b...memory for measurement data SI, 5C...image data memory, 6.
...Monitor, 7...Discontinuous and impulsive external noise. 75th edition number

Claims (1)

【特許請求の範囲】[Claims] 1、静磁場及び傾斜磁場が与えられた被検体に送信系か
ら高周波パルスを照射することにより生じる核磁気共鳴
信号を受信系で受信し、受信された核磁気共鳴信号に基
づいて再生画像を得る核磁気共鳴イメージング装置にお
いて、前記核磁気共鳴信号計測中に計測信号に混入した
不連続で衝撃性の外来雑音を、前記計測によって得られ
たデータより抽出、除去する画像再構成手段を具備する
ことを特徴とする核磁気共鳴イメージング装置。
1. A receiving system receives a nuclear magnetic resonance signal generated by irradiating a high-frequency pulse from a transmitting system to a subject to which a static magnetic field and a gradient magnetic field are applied, and obtains a reconstructed image based on the received nuclear magnetic resonance signal. The nuclear magnetic resonance imaging apparatus includes image reconstruction means for extracting and removing discontinuous and impulsive extraneous noise mixed into the measurement signal during the measurement of the nuclear magnetic resonance signal from the data obtained by the measurement. A nuclear magnetic resonance imaging device featuring:
JP63221297A 1988-09-06 1988-09-06 Nuclear magnetic resonance imaging device Granted JPH0271727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63221297A JPH0271727A (en) 1988-09-06 1988-09-06 Nuclear magnetic resonance imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63221297A JPH0271727A (en) 1988-09-06 1988-09-06 Nuclear magnetic resonance imaging device

Publications (2)

Publication Number Publication Date
JPH0271727A true JPH0271727A (en) 1990-03-12
JPH0376138B2 JPH0376138B2 (en) 1991-12-04

Family

ID=16764580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63221297A Granted JPH0271727A (en) 1988-09-06 1988-09-06 Nuclear magnetic resonance imaging device

Country Status (1)

Country Link
JP (1) JPH0271727A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021120001A (en) * 2014-09-05 2021-08-19 ハイパーファイン リサーチ,インコーポレイテッド Noise suppression methods and apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938637A (en) * 1982-08-28 1984-03-02 Toshiba Corp Nuclear magnetic resonance apparatus
JPH01160544A (en) * 1987-12-17 1989-06-23 Fuji Electric Co Ltd Magnetic resonance imaging apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938637A (en) * 1982-08-28 1984-03-02 Toshiba Corp Nuclear magnetic resonance apparatus
JPH01160544A (en) * 1987-12-17 1989-06-23 Fuji Electric Co Ltd Magnetic resonance imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021120001A (en) * 2014-09-05 2021-08-19 ハイパーファイン リサーチ,インコーポレイテッド Noise suppression methods and apparatus

Also Published As

Publication number Publication date
JPH0376138B2 (en) 1991-12-04

Similar Documents

Publication Publication Date Title
Rasche et al. Resampling of data between arbitrary grids using convolution interpolation
JP4920478B2 (en) MRI equipment
US20060084869A1 (en) Method and apparatus for enhancing image quality of a two-dimensional ultrasound image
JPH0380497B2 (en)
Rouyer A new simple method for decoding penumbra image: The filtered autocorrelation
JPH0271727A (en) Nuclear magnetic resonance imaging device
JP2002526781A (en) Imaging method and apparatus using spatial frequency filtering and masking
JP2015104668A (en) Method and apparatus for removing artifact from image
Twieg Acquistion and accuracy in rapid NMR imaging methods
JPH11113882A (en) Diffusion spectrum mri
CN109765513B (en) Method, device and computer equipment for generating magnetic resonance field map
US5652518A (en) Digital filter pre-charging
JP3111419B2 (en) Nuclear magnetic resonance inspection system
JPH11345331A (en) Picture processing method and picture processor
Ciulla et al. Sampling technique for Fourier convolution theorem based k‐space filtering
JPH01256944A (en) Magnetic resonance induction device
JPH01218439A (en) Magnetic resonance imaging device
JP2650973B2 (en) Tomographic imaging device
JPH01250235A (en) Apparatus for detecting dc component of signal of mri apparatus
JPH0698874A (en) Nuclear magnetic resonance inspector
JPH0475638A (en) Magnetic resonance imaging device
JPS6058539A (en) Nmr tomography apparatus
JPH0380013B2 (en)
CN118396854A (en) Medical image super-resolution reconstruction method for low-dose CT
JPH03103243A (en) Image processing method for reducing pseudo image such as metallic pseudo image in x-ray ct or the like

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081204

Year of fee payment: 17