JPH0271300A - Sound absorbing body and sound absorbing duct using this body - Google Patents

Sound absorbing body and sound absorbing duct using this body

Info

Publication number
JPH0271300A
JPH0271300A JP63329283A JP32928388A JPH0271300A JP H0271300 A JPH0271300 A JP H0271300A JP 63329283 A JP63329283 A JP 63329283A JP 32928388 A JP32928388 A JP 32928388A JP H0271300 A JPH0271300 A JP H0271300A
Authority
JP
Japan
Prior art keywords
resonance
sound
flow
sound absorbing
chambers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63329283A
Other languages
Japanese (ja)
Other versions
JPH0578040B2 (en
Inventor
Takeshi Okada
健 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOUSHIYOU ENG KK
Original Assignee
TOUSHIYOU ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOUSHIYOU ENG KK filed Critical TOUSHIYOU ENG KK
Priority to JP63329283A priority Critical patent/JPH0271300A/en
Publication of JPH0271300A publication Critical patent/JPH0271300A/en
Publication of JPH0578040B2 publication Critical patent/JPH0578040B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a compact sound absorbing body whose damping effect is great for sounds in a wide band including a high frequency band by connecting not only resonance chambers but also the resonance chamber on the sound source side and the sound source space by resonance cylinders to form a multistage resonance type sound absorbing structure body different in resonance frequency. CONSTITUTION:With respect to a sound absorbing body 1, two stages of resonance chambers 2 and 3 are vertically provided, and respective resonance chambers 2a and 3 and a flow passage 4 of a fluid accompanied with noise are connected by resonance cylinders 5 and 6. That is, a two-stage resonance type Helmhortz resonator having two degrees of freedom is constituted, and the resonance frequency of this resonator is determined by capacities of resonance chambers 2 and 3, diameters D of resonance cylinders 5 and 6, and a length L of neck parts (the length from entrances to exists of resonance cylinders). Consequently, these elements are properly designed to damp the noise of arbitrary frequency. Thus, this resonator displays the damping effect throughout a wide band regardless of the compact structure.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はダクト騒音、建築物内駐音及びその他の一般騒
音の減衰に用いられる消音・吸音要素にに関する。更に
詳述すると、本発明は、リアクティブ型の吸音体及びこ
れを利用した吸音ダクトに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to sound-deadening and sound-absorbing elements used to attenuate duct noise, building noise, and other general noise. More specifically, the present invention relates to a reactive sound absorber and a sound absorbing duct using the same.

(従来力技術) 一般に消音器は■吸音型消音器と、■リアクティブ型消
音器の2種に分類される。吸音型消音器は、カラスウー
ル等の繊維状吸音材や多孔質板等の吸音効果を利用した
ものであり、中−高音域の音の減衰に対し特に有効であ
り、減衰効果か周波数に対しほぼ単調に増減するという
特性がある。
(Conventional technology) Silencers are generally classified into two types: ■Sound absorbing type mufflers and ■Reactive type mufflers. Sound-absorbing mufflers utilize the sound-absorbing effects of fibrous sound-absorbing materials such as glass wool and porous plates, and are particularly effective at attenuating mid- to high-frequency sounds. It has the characteristic that it increases and decreases almost monotonically.

一方、リアクティブ型消音器は音波の干渉や共鳴現象を
利用して減衰するものであり、低−中音域の音の減衰に
対し特に有効であり、構造等から決定される特定の周波
数に対しスポット的に減衰効果があるという特性がある
On the other hand, reactive silencers use sound wave interference and resonance phenomena to attenuate sound, and are particularly effective at attenuating low to mid-range sounds, and are effective at reducing sound at specific frequencies determined by the structure, etc. It has the characteristic of having a spot-wise damping effect.

そこで、従来は、騒音のピーク周波数帯域及びその帯域
広さに応じてリアクティブ型消音器と吸音型消音器が使
い分けられたり、あるいは組合せて使われている。
Therefore, conventionally, reactive mufflers and sound absorbing mufflers have been used depending on the peak frequency band of the noise and its width, or they have been used in combination.

(発明か解決しようとする課題) しかしながら、近年、消音器の適用条件は年々厳しくな
り、高温湯、極低濡場や高速ガス流湯での使用が多くな
ってきている。これらの条件下では従来の繊維吸音材の
適用は難しい。またそれに代るものとしてセラミックス
等の多孔質材等も使用され始めているが、吸音率か低い
上に大重量で、しかも高価である等の欠点を有する。
(Problem to be Solved by the Invention) However, in recent years, the application conditions for silencers have become stricter year by year, and their use in high-temperature hot water, extremely low wet areas, and high-speed gas flow hot water has increased. Under these conditions, it is difficult to apply conventional fiber sound absorbing materials. In addition, porous materials such as ceramics have begun to be used as an alternative, but they have drawbacks such as low sound absorption, large weight, and high cost.

また、リアクティブ型消音器の場合、第2図(A)に示
すように、その減音特性が消音器の容積並びに入口径や
言下長さ等の条件によって決まる特定周波数をピークと
する峻瞼なカーブを描く減衰特性を呈するなめ、共鳴周
波数より少しずれると減音効果は大巾に減少する欠点が
ある。このため、従来のりアクティブ型消音器ては、広
帯域化に対応させるには特性の異なる消音器を多数組合
せなければならす、場所をとり嵩張る欠点かある。
In addition, in the case of a reactive silencer, as shown in Figure 2 (A), its sound reduction characteristics have a steep slope with a peak at a specific frequency determined by conditions such as the volume of the silencer, the inlet diameter, and the length of the silencer. Since it exhibits a damping characteristic that draws an eyelid curve, it has the disadvantage that the sound reduction effect is greatly reduced if the frequency deviates slightly from the resonant frequency. For this reason, the conventional glue active type muffler has the drawback that it requires a combination of many mufflers with different characteristics in order to accommodate a wide band, and that it takes up space and is bulky.

また、従来のりアクティブ型消音器には、低周波数帯域
での吸音特性に優れるコンパクトな吸音体も見当らない
Furthermore, in conventional adhesive active silencers, compact sound absorbing bodies with excellent sound absorption characteristics in low frequency bands are not found.

本発明は、高周波域を含む広帯域の音に対し減衰効果が
大きいコンパクトなりアクティブ型の吸音体及びそれを
利用した吸音ダクトを提供することを目的とする。また
、本発明は、従来よりもコンパクトで低周波数帯域にお
いて減音効果の高いリアクティブ型の吸音体及びそれを
利用した吸音ダクトを提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a compact or active type sound absorber that has a large damping effect on wide-band sound including high frequency ranges, and a sound absorbing duct using the same. Another object of the present invention is to provide a reactive sound absorber that is more compact than conventional sound absorbers and has a high sound reduction effect in a low frequency band, and a sound absorbing duct using the same.

(課題を解決するための手段) かかる目的を達成するなめ、本発明の吸音体は、少なく
とも2段以上の共鳴室を流体の流れの方向と直交する方
向に重ねて設けると共にこれら共鳴室同士及び音源側の
共鳴室と音源空間とを共鳴筒で連通させ、共鳴周波数の
異なる共鳴型吸音構造体を多段形成するようにしている
(Means for Solving the Problems) In order to achieve the above object, the sound absorber of the present invention has at least two or more stages of resonance chambers stacked one on top of the other in a direction perpendicular to the direction of fluid flow, and these resonance chambers are stacked on top of each other in a direction perpendicular to the direction of fluid flow. The resonance chamber on the sound source side and the sound source space are communicated with each other through a resonance cylinder, and a multi-stage resonant sound absorbing structure having different resonance frequencies is formed.

また、本発明の吸音体は、少なくとも2段以上の共鳴室
を重ねて設けると共にこれら共鳴室同士及び外部空間と
これに隣接する共鳴室とを流体の流れと直交する方向に
共鳴筒で開口するようにしている。
Further, the sound absorber of the present invention has at least two or more stages of resonance chambers stacked one on top of the other, and the resonance chambers are opened to each other and to the external space and the adjacent resonance chamber in a direction perpendicular to the fluid flow. That's what I do.

また、本発明の吸音体は、騒音を伴う流れに沿って配置
される共鳴室に、前記流体の流れと直交させて共鳴筒を
設け、当該共鳴室を流体の流れと直交する方向に貫通さ
せて開口するようにしている。
Further, in the sound absorbing body of the present invention, a resonance cylinder is provided in a resonance chamber disposed along a noisy flow so as to be perpendicular to the flow of the fluid, and the resonance cylinder is provided to penetrate the resonance chamber in a direction perpendicular to the flow of the fluid. I try to open it by opening it.

また、上述の本発明の吸音体は、平面状に配置すること
によって吸音パネルを構成し、更にこの吸音パネルをダ
クト内に流れに沿って設置し、共鳴室の開口を流れと直
交方向に配置することによって吸音ダクトを構成してい
る。
Further, the above-described sound absorbing body of the present invention constitutes a sound absorbing panel by arranging it in a plane, and furthermore, this sound absorbing panel is installed in a duct along the flow, and the opening of the resonance chamber is arranged in a direction perpendicular to the flow. This creates a sound-absorbing duct.

また、少なくとも2段以上の共鳴室を径方向に重ねたセ
ルを円周方向並びに軸方向に配置して内側に流路を形成
する円筒体とし、各セルの共鳴室同士及び流路とれこに
隣接する共鳴室とを、若しくは一部のセルについて内側
の流路ないし外側の流路と隣接する共鳴室とを、あるい
は内外の流路とそれに隣接する共鳴室とを夫々流れと直
交する方向に共鳴筒で連通させることによって円筒状の
吸音体を構成している。
In addition, cells in which at least two or more resonance chambers are stacked in the radial direction are arranged in the circumferential direction and the axial direction to form a cylindrical body with a flow path formed inside, and the resonance chambers of each cell are connected to each other and the flow path is connected to each other. adjacent resonance chambers, or for some cells, inner flow channels or outer flow channels and adjacent resonance chambers, or inner and outer flow channels and adjacent resonance chambers, respectively, in a direction perpendicular to the flow. A cylindrical sound absorber is constructed by communicating through a resonance cylinder.

そこで、この円筒吸音体をダクト内に俵積みないし直列
状に積み重ねることによって吸音ダクトを構成している
。また、本発明の吸音体は、共鳴筒を流れの方向と平行
なスリットとしたり、共鳴室を構成するセルと別体にし
て着脱可能としている。更に、本発明の吸音体は共鳴室
の入口に薄膜を貼着したことを特徴としている。
Therefore, a sound-absorbing duct is constructed by stacking these cylindrical sound-absorbing bodies in bales or in series inside the duct. Further, in the sound absorbing body of the present invention, the resonance cylinder is made into a slit parallel to the direction of flow, or is made separate from the cells constituting the resonance chamber so that it can be attached and detached. Furthermore, the sound absorber of the present invention is characterized in that a thin film is attached to the entrance of the resonance chamber.

(作用) したがって、重ねられた共鳴室内に音だけが人り、減衰
特性の異なる多自由度系多段共鳴器内において多重共鳴
を起こす。このため、各共鳴器の共鳴周波数から離れた
周波数帯域における減衰量の落ち込みを引上げて緩やか
に低下する減衰特性を得る。即ち、第2図(B)、<C
)に示すようにfolとf 02の共鳴周波数を有する
共鳴型吸音構造体を互いに独立させて形成すると、仮想
線で示すような減衰特性となるか、多重共鳴を起こさせ
ると、実線で示すように2つの共鳴周波数から離れな周
波数帯域特に両共鳴周波数の間において減衰効果か得ら
れ吸音材を使用した消音器の減衰特性に近づいて行く。
(Function) Therefore, only sound is present in the stacked resonance chambers, causing multiple resonances in the multi-stage resonators with different degrees of freedom and different damping characteristics. Therefore, the drop in the amount of attenuation in a frequency band far from the resonant frequency of each resonator is raised to obtain a damping characteristic that gradually decreases. That is, FIG. 2(B), <C
) If resonant sound-absorbing structures having resonance frequencies of fol and f02 are formed independently of each other, as shown in Figure 2, the damping characteristics will be as shown by the imaginary line, or if multiple resonances are caused, the damping characteristics will be as shown by the solid line. A damping effect is obtained in a frequency band far from the two resonant frequencies, especially between the two resonant frequencies, and approaches the damping characteristics of a silencer using a sound absorbing material.

ある程度共鳴周波数を接近させると、前述の峻瞼な周波
数特性か緩和されて広く減衰効果のある消音器が得られ
、はとんど重なってくると減衰量か増大する。
When the resonant frequencies are brought close to each other to a certain extent, the sharp frequency characteristics mentioned above are relaxed and a muffler with a wide damping effect is obtained, and when the resonance frequencies almost overlap, the amount of attenuation increases.

また、共鳴室の音の入口を流体の流れと直交する方向に
開口し、かつ共鳴室の両端から騒音を流入させる場合、
減衰量の増大が見られ、特に1重共鳴時には低周波数帯
域における減衰量の増大が顕著である。
In addition, when the sound inlet of the resonance chamber is opened in a direction perpendicular to the flow of fluid and the noise is allowed to flow in from both ends of the resonance chamber,
An increase in the amount of attenuation is observed, and the increase in the amount of attenuation in the low frequency band is particularly noticeable during single resonance.

(実施例) 以下、本発明の構成を図面に示す実施例に基づいて詳細
に説明する。
(Example) Hereinafter, the configuration of the present invention will be described in detail based on an example shown in the drawings.

第1図に本発明の吸音体の原理を示す。この吸音体1は
共鳴室2,3を2段重ねて設け、各共鳴室2,3及び騒
音を伴う流体の流路4とを共[1%筒5.6で連通させ
るようにして成る。即ち、2自由度系2段共鳴型へルム
ホルツ共鳴器を構成している。ヘルムホルツ共鳴器の共
鳴周波数は共鳴室2.3の容積、共鳴筒5,6の穴径(
D)、首部長さ(共鳴筒の入口から出口までの長さ:I
−)によって決まる。したがって、これら要素を適宜設
計することによって任意周波数の騒音を減衰させること
ができる。しかも、この多段共鳴型吸音構造体は多重共
鳴を惹き起こし、ヘルムホルツ共鳴器特有の共鳴周波数
から離れた周波数帯域における減衰率の急激な落ち込み
を防いで減衰効果のある帯域を広げる減衰特性を得る。
FIG. 1 shows the principle of the sound absorber of the present invention. This sound absorber 1 has resonance chambers 2 and 3 stacked in two stages, and each resonance chamber 2 and 3 and a flow path 4 for a noisy fluid are communicated through a 1% cylinder 5.6. That is, it constitutes a two-degree-of-freedom two-stage resonant Helmholtz resonator. The resonance frequency of the Helmholtz resonator is determined by the volume of the resonance chamber 2.3 and the hole diameter of the resonance tubes 5 and 6 (
D), Neck length (length from inlet to outlet of resonance tube: I
−) is determined by Therefore, by appropriately designing these elements, it is possible to attenuate noise at any frequency. Moreover, this multi-stage resonant sound absorbing structure causes multiple resonances, prevents a sudden drop in the attenuation rate in a frequency band far from the resonant frequency peculiar to a Helmholtz resonator, and obtains a damping characteristic that widens the band in which the damping effect is achieved.

そこで、各段の共鳴器の共鳴周波数を減衰しようとする
騒音等のピーク周波数を中心として多重共鳴効果のある
範囲内で適宜設定すれば、ある一定周波数帯域において
吸音材とほぼ同様に周波数に対しほぼ単調に増減する減
衰特性を得ることができる。
Therefore, if the resonance frequency of each stage resonator is set appropriately within the range where the multiple resonance effect exists, centered around the peak frequency of the noise that is intended to attenuate, the resonance frequency of the resonator at each stage can be set appropriately within a range that has a multiple resonance effect. Attenuation characteristics that increase and decrease almost monotonically can be obtained.

また、本吸音体1において、共鳴穴7と首部8を構成す
る共鳴筒5,6は、本実施例の場合、図示の如く共鳴室
を構成するシェル13とは側構造に形成されて着脱可能
とされ、内径りや首下長さの異なる他の共鳴筒と交換す
ることによって容易に共鳴周波数を変えられるように設
けられている。
In addition, in this sound absorbing body 1, in the case of this embodiment, the resonance cylinders 5 and 6 that constitute the resonance hole 7 and the neck portion 8 are formed in a side structure and are detachable from the shell 13 that constitutes the resonance chamber as shown in the figure. It is designed so that the resonant frequency can be easily changed by replacing it with another resonant cylinder with a different inner diameter or neck length.

勿論、共鳴周波数の変更が必要とされない場合にには、
共鳴筒5,6は共鳴室2.3を構成するセル13と一体
的に成形しても良い。また、この共鳴筒5,6は設定共
鳴周波数によっては取付けられない場合がある。この場
合、シェル13の入口側の壁に穿孔される穴が実質的に
共鳴筒の働きを為す。即ち、この穴はシェル13と一体
化された共鳴筒である。また、流体の流れを伴う場合、
音源ないし流路4側の共鳴室2の音の入口例えば共重筒
5の共鳴穴7等には、第7図に示すように薄膜9が貼着
されて流れが筒内に流入しないように設けられている。
Of course, if there is no need to change the resonant frequency,
The resonance cylinders 5 and 6 may be integrally molded with the cell 13 constituting the resonance chamber 2.3. Moreover, the resonance tubes 5 and 6 may not be attached depending on the set resonance frequency. In this case, the hole drilled in the wall of the shell 13 on the inlet side substantially functions as a resonator cylinder. That is, this hole is a resonance cylinder integrated with the shell 13. In addition, when fluid flow is involved,
As shown in FIG. 7, a thin film 9 is attached to the sound inlet of the resonance chamber 2 on the side of the sound source or flow path 4, such as the resonance hole 7 of the co-polymer cylinder 5, to prevent the flow from flowing into the cylinder. It is provided.

共鳴室に流れが入ると、入口部分に定在渦が発生して音
響共鳴を阻害して一般に減衰特性が落ちる。そこで、共
鳴筒5の入口に貼着される薄膜9は、流れの流入を阻止
しかつ音の流入を妨げない程度の厚さ、材質等から成る
ものであることが必要てあり、通常テ1〜ラフロオロエ
チレン(商品名、テフロン)等のプラスデックフィルム
、和紙、フェルト、金属箔これらのラミホー1〜紙等の
使用が好ましい。
When a flow enters the resonance chamber, a standing vortex is generated at the inlet, inhibiting acoustic resonance and generally reducing damping characteristics. Therefore, the thin film 9 attached to the entrance of the resonator cylinder 5 needs to be made of a thickness and material that prevents the inflow of the flow and does not impede the inflow of the sound. It is preferable to use Lamiho 1-paper such as - Plus Deck film such as Lafluoroethylene (trade name, Teflon), Japanese paper, felt, metal foil.

また、共鳴室2,3は本実施例の場合、セルの製作を容
易にするため軸直角断面積は同じにして奥行き深さを変
えることによって共鳴室容積を異ならせている。勿論、
双方の共鳴室2,3の容積を同じとすることも可能であ
る6尚、本実施例の場合、共鳴室の容積は一定であるか
、ベローズや型筒等を使用して可変容積とすることも可
能である。以上のように構成された吸音体1は、構築物
等の壁面に直接埋設して吸音壁を構成したり、多数集合
させて枠体に固定しパネル状としたり、円筒状に多数配
置して吸音体1自体でダクトを形成しなり、あるいは円
筒形状の吸音体を形成し、更にこのパネルを組合せて複
合吸音パネルを形成したり、ダクトに配置して吸音ダク
トを構成することも可能である。
Further, in the case of this embodiment, the resonance chambers 2 and 3 have the same cross-sectional area perpendicular to the axis, but have different volumes by varying the depth. Of course,
It is also possible to make the volumes of both resonance chambers 2 and 3 the same6.In addition, in the case of this embodiment, the volume of the resonance chambers is either constant or variable using bellows, a mold, etc. It is also possible. The sound absorbing body 1 configured as described above can be directly buried in the wall surface of a structure to form a sound absorbing wall, assembled in large numbers and fixed to a frame to form a panel, or arranged in large numbers in a cylindrical shape to absorb sound. It is also possible to form a duct by itself, or to form a cylindrical sound absorbing body, and further to combine these panels to form a composite sound absorbing panel, or to configure a sound absorbing duct by placing them in a duct.

第3図(A)に上述の吸音体を利用した吸音パネルの実
施例を示す。この吸音パネル10は枠体11内に共鳴室
2,3を2段以上重ねた多数の吸音体1を基盤の目状に
配置して成る。1枚のパネル内に形成される吸音体1は
同じ減衰特性を有するものであっても良いか、減衰特性
の異なる幾つかの群あるいは全て減衰特性の異なるもの
を組合せても良い。この吸音パネル10は、例えば、第
4図(A)、(、B)に示すように、ます目のように交
差させて嵌込み可能な枠板11A、11Bを組合せるこ
とによって共鳴室を形成することによって製作される。
FIG. 3(A) shows an example of a sound absorbing panel using the above sound absorbing body. This sound-absorbing panel 10 is constructed by arranging a large number of sound-absorbing bodies 1 in which resonance chambers 2 and 3 are stacked in two or more stages in a grid pattern on a base within a frame 11. The sound absorbers 1 formed in one panel may have the same attenuation characteristics, or may be a combination of several groups with different attenuation characteristics, or all sound absorbers with different attenuation characteristics. This sound-absorbing panel 10 forms a resonance chamber by combining frame plates 11A and 11B that can be fitted in a grid-like manner, for example, as shown in FIGS. 4(A) and 4(B). It is produced by

即ち、パネル10の一辺の長さに等しい枠板11A、I
IBに一定間隔あるいは所定間隔てスリット12を設け
、これらをスリブト12部分を嵌め合せるようにして組
合せることによって枡目状に区画された同じ共鳴容積の
多数のセル13あるいは異なる共鳴容積の多数のセル1
3を構成する。次いで、このセル13の上に共鳴筒5を
挿入する穴14を各セルに対応する位置に穿孔して成る
パネル15を載置して枠板11A。
That is, the frame plates 11A and I are equal to the length of one side of the panel 10.
By providing slits 12 at regular or predetermined intervals in the IB and combining them by fitting the slits 12, a large number of cells 13 with the same resonance volume or a large number of cells with different resonance volumes partitioned into a square pattern can be formed. cell 1
3. Next, a panel 15 formed by drilling holes 14 into which the resonance tubes 5 are inserted at positions corresponding to each cell is placed on top of the cells 13 to form the frame plate 11A.

11Bと接合し、2段目の共鳴室3を形成する。11B to form the second stage resonance chamber 3.

そして、各人14に所定の共鳴筒5を嵌め込む。Then, a predetermined resonance tube 5 is fitted into each person 14.

次に、パネル15の上に再び櫛歯状枠板11A11Bを
組合せて成るシェル13を載置し、更にパネル16を接
合して1段目の共鳴室3を構成する。そして、各人14
に所定の共鳴筒4を嵌め込む。
Next, the shell 13 formed by combining the comb-tooth frame plates 11A11B is again placed on the panel 15, and the panel 16 is further joined to form the first stage resonance chamber 3. And each person 14
A predetermined resonator cylinder 4 is fitted into the resonator tube 4.

また、第5図(A)、(B)に示すように共鳴筒5.6
を挿入する穴18を有する小さな円筒17を枠11内に
多数並べて共鳴室2.3を形成することも可能である。
In addition, as shown in FIGS. 5(A) and 5(B), the resonance cylinder 5.6
It is also possible to form the resonance chamber 2.3 by arranging a large number of small cylinders 17 in the frame 11, each having a hole 18 for inserting the cylinder.

この場合、円筒17の径を変えることによって一つのパ
ネル内に共鳴容積の異なる多数共鳴室を容易に形成する
ことが可能となる。
In this case, by changing the diameter of the cylinder 17, it is possible to easily form multiple resonance chambers with different resonance volumes within one panel.

第3図(B)に複合吸音パネルの一実施例を示ず。この
複合吸音パネルは、減衰特性の異なる第3図(A)の吸
音パネルを選択的に組合せ、枠体18内に組込んだもの
である。該パネルは、音源に対して遮蔽物として使用す
ることも可能であるし、道路等の道幅の両端に対向設置
して走行車両の騒音を吸音する遮音板として使うことも
可能である。
An example of a composite sound absorbing panel is not shown in FIG. 3(B). This composite sound-absorbing panel is constructed by selectively combining the sound-absorbing panels shown in FIG. The panel can be used as a shield against a sound source, or can be used as a sound insulating board that absorbs the noise of a traveling vehicle by being installed oppositely on both ends of a road or the like.

第6図に本発明の吸音体を利用した吸音ダクトの実施例
を示す。この吸音ダクトは、上述のように構成した吸音
パネル10をダクト19内に流体の流れに沿って設置し
て成る。この場合、吸音パネル10は、対向設置し、そ
の間に流体が流れるように設けることが好ましい。この
吸音パネル10の設置間隔は狭いほど音の減衰に効果的
であり、特に騒音の1/2波長の間隔をとるときに最も
高い減衰効果が得られる。
FIG. 6 shows an embodiment of a sound absorbing duct using the sound absorbing body of the present invention. This sound absorbing duct is constructed by installing the sound absorbing panel 10 configured as described above inside the duct 19 along the flow of fluid. In this case, it is preferable that the sound absorbing panels 10 are installed facing each other so that fluid flows between them. The narrower the installation interval of the sound absorbing panels 10, the more effective it is at attenuating sound. In particular, the highest attenuation effect can be obtained when the interval is equal to 1/2 wavelength of the noise.

第9図(A)、(B)に他の実施例を示す。この実施例
は、第1図に示す吸音体1を環状に配置することによっ
て、ダクト20を形成したものである。例えば、少なく
とも2段以上の共鳴室23を径方向に重ね、各共鳴室2
,3を共鳴筒56て連結して成る吸音体1を円周方向に
多数配置して筒状体に形成し、その内部に騒音を伴う流
体の流路4を形成するようにしている。ダクトを構成す
る吸音体セル13は、円周方向及び軸方向に互いに音響
的に独立しており、ダクトの内周面に相当する側が開口
され、内側の流路4を流れる流体に対して直交する方向
に共鳴室2.3か重ねて配置され、音だけが共鳴室2.
3内に入るように設けられている。この場合、ダクト2
0内に流体が流れるので、第7図に示すように、定在渦
の発生を防ぐため流路4側の共鳴筒5の入口に薄膜9を
貼着しておくことが好ましい。
Other embodiments are shown in FIGS. 9(A) and 9(B). In this embodiment, a duct 20 is formed by arranging the sound absorbers 1 shown in FIG. 1 in a ring shape. For example, at least two or more stages of resonance chambers 23 may be overlapped in the radial direction, and each resonance chamber 2
, 3 connected by a resonant cylinder 56 are arranged circumferentially in large numbers to form a cylindrical body, and a flow path 4 for a noisy fluid is formed inside the cylindrical body. The sound absorbing cells 13 constituting the duct are acoustically independent from each other in the circumferential direction and the axial direction, and are open on the side corresponding to the inner circumferential surface of the duct, and are perpendicular to the fluid flowing in the inner flow path 4. The resonance chambers 2.3 and 2.3 are placed one on top of the other in the direction of the sound, and only the sound is transmitted through the resonance chambers 2.3 and 2.3.
It is designed to fit inside 3. In this case, duct 2
Since the fluid flows in the resonator cylinder 5, it is preferable to attach a thin film 9 to the inlet of the resonator tube 5 on the flow path 4 side, as shown in FIG. 7, in order to prevent the generation of standing vortices.

また、第10図(A)、(B)に他の実施例を示す。こ
の実施例は第1図の吸音体1を環状に配置し、かつ一部
の吸音体の音の入口を内側の流路に、残りの一部の吸音
体の音の入口を外側の空間22に向けて開口し、円筒状
の吸音体21を構成したものである。
Further, other embodiments are shown in FIGS. 10(A) and 10(B). In this embodiment, the sound absorbers 1 shown in FIG. 1 are arranged in an annular manner, and the sound inlets of some of the sound absorbers are in the inner flow path, and the sound inlets of the remaining part of the sound absorbers are in the outer space 22. The sound absorber 21 has a cylindrical shape and is open toward the sound absorber 21 .

第11図に本発明の他の実施例を示す。この吸音体は、
第1図の吸音体が半密閉タイプで音の入口が一方に限ら
れているのに対し、外部空間と隣接る共鳴室の全てに音
の入口を開口した完全な開放タイプであり、いずれの面
からも音が入るようにしたものである。
FIG. 11 shows another embodiment of the present invention. This sound absorber is
The sound absorber shown in Figure 1 is a semi-closed type, with the sound entrance limited to one side, whereas it is a completely open type with sound entrances opening to both the external space and the adjacent resonance chamber; This allows sound to enter from the sides as well.

即ち、少なくとも2段以上の共鳴室2,3を重ねて設け
、これら共鳴室2,3同士を共鳴筒6で連通させると共
に外部空間4.22と隣接する共鳴室2,3を共鳴筒5
あるいは六32によって連通させ、積層された共鳴室2
,3の両端に音の入口を設けて成る。尚、この吸音体の
共鳴周波数が共鳴fi5.6の共鳴穴7の径りや、首部
8の首下長さ及び共鳴室2.3の寸法等によって決定さ
れることは、第1図の吸音体と同様で・あり、また共鳴
筒5あるいは6をセル33と別体に成形して交換可能と
することも同様である。
That is, at least two or more stages of resonance chambers 2 and 3 are provided one on top of the other, and these resonance chambers 2 and 3 are communicated with each other through a resonance tube 6, and the resonance chambers 2 and 3 adjacent to the external space 4.22 are connected to each other through a resonance tube 5.
Alternatively, the resonance chambers 2 are stacked and communicated by 632.
, 3 with sound inlets at both ends. The resonance frequency of this sound absorber is determined by the diameter of the resonance hole 7 with a resonance fi of 5.6, the length of the neck part 8 below the neck, the dimensions of the resonance chamber 2.3, etc. It is also similar to molding the resonance tube 5 or 6 separately from the cell 33 so that it can be replaced.

第12図に他の実施例を示す。この実施例は第11図の
吸音体31を使用して大型ダクト内に消音器として充填
するのに好適な筒状吸音体36を構成したものである。
FIG. 12 shows another embodiment. In this embodiment, the sound absorber 31 shown in FIG. 11 is used to construct a cylindrical sound absorber 36 suitable for filling as a muffler in a large duct.

この吸音体は音響的に互いに独立した共鳴セル33が円
周方向及び軸方向に多数配置されて円筒体を形成し、全
体として1つの吸音体を構成している。共鳴セル33は
径方向に少なくとも2段以上共鳴室2.3が重ねて配置
され、共鳴筒5,6及び穴32によって径方向に貫通状
態に設けられている。したがって、多段共鳴室を構成す
るセル33の集合によって形成される筒状吸音体35の
内側の流v@4を流れる流体及び外側の空間22を筒状
吸音体35に沿って流れる流体に対して直交する方向に
共鳴室2,3及び音の入ロア、32が重ねて配置される
こととなる。
This sound absorber forms a cylindrical body in which a large number of acoustically independent resonance cells 33 are arranged in the circumferential direction and the axial direction, and constitutes one sound absorber as a whole. In the resonance cell 33, at least two or more stages of resonance chambers 2.3 are arranged one on top of the other in the radial direction, and the resonance cylinders 5, 6 and the hole 32 extend through the resonance cell 33 in the radial direction. Therefore, for the fluid flowing in the flow v@4 inside the cylindrical sound absorber 35 formed by the set of cells 33 constituting the multistage resonance chamber and the fluid flowing along the cylindrical sound absorber 35 in the outer space 22, The resonance chambers 2 and 3 and the sound input lower 32 are arranged one on top of the other in orthogonal directions.

そこで、騒音が円筒吸音体35の内外から共鳴室2.3
内へ入り、多重共鳴を引き起こして減音される。共鳴筒
5,6は好ましくは共鳴室2.3を構成するセル部材3
3とは別体に形成され、共鳴室2,3に対し着脱自在に
設けられている。このことによって、共鳴筒5,6の共
鳴穴7の径D、首部8の首下長さなどを適宜変更し、共
鳴周波数を変更可能としている。勿論、共鳴室2,3を
構成する部材33と一体的に形成することも可能である
Therefore, noise is transmitted from the inside and outside of the cylindrical sound absorber 35 to the resonance chamber 2.3.
The sound goes inside, causes multiple resonances, and is attenuated. Resonance cylinders 5, 6 are preferably cell members 3 constituting a resonance chamber 2.3.
It is formed separately from the resonance chambers 2 and 3, and is provided in a detachable manner with respect to the resonance chambers 2 and 3. This makes it possible to change the resonance frequency by appropriately changing the diameter D of the resonance hole 7 of the resonance cylinders 5, 6, the length of the neck portion 8 below the neck, etc. Of course, it is also possible to form it integrally with the member 33 that constitutes the resonance chambers 2 and 3.

第15図に他の実施例を示す。この実施例は完全開放型
の一段の共鳴室によって低周波数帯域における減音効果
を高めたものである。この吸音体41は流体の流れに対
して直角な方向に筒抜けとなっている一段の共鳴室2を
設け、該共鳴室2の音の入口42の少なくとも一方に共
鳴筒5を設けて成る。共鳴筒5は前述した実施例と同じ
く、共鳴室2を構成するセル43と別体に形成して着脱
可能とするか、あるいはセル43と一体に形成している
。また、共鳴室2は流れに直角な方向に音の入ロア、4
2を設けて開口し、流体の流れと直交する方向において
音か共鳴室2内に入るように設けられている。音の入口
の穴7即ち共鳴穴及び穴42の径は、前述の通り設定共
鳴周波数との関係において決定される。
FIG. 15 shows another embodiment. This embodiment uses a completely open single-stage resonance chamber to enhance the sound reduction effect in the low frequency band. This sound absorber 41 is provided with a single-stage resonance chamber 2 which is hollow in a direction perpendicular to the flow of fluid, and a resonance tube 5 is provided at at least one of the sound inlets 42 of the resonance chamber 2. As in the embodiments described above, the resonance tube 5 is formed separately from the cell 43 constituting the resonance chamber 2 and is detachable, or is formed integrally with the cell 43. In addition, the resonance chamber 2 has a lower part where the sound enters in the direction perpendicular to the flow,
2 is provided and opened so that sound can enter the resonance chamber 2 in a direction perpendicular to the flow of fluid. The diameters of the sound entrance hole 7, that is, the resonance hole and the hole 42 are determined in relation to the set resonance frequency as described above.

また、第16図に他の実施例を示す。この実施例は第1
5図の吸音体を使って低周波数帯域における減衰に効果
的な円筒吸音体45を構成したら1つ のである。この吸音体45は、互いに音響的に独立した
共鳴室2を円周方向並びに軸方向に配列して、全体とし
て円筒体に形成したものである。各共鳴室2は径方向に
貫通するように共鳴筒5及び穴42を設け、円筒吸音体
45の内側の空間422を流れる流体に対し直交する方
向に音を取入れるように設けられている。
Further, FIG. 16 shows another embodiment. This example is the first
A cylindrical sound absorber 45 that is effective in attenuating low frequency bands is constructed using the sound absorber shown in FIG. 5. The sound absorbing body 45 has resonance chambers 2 that are acoustically independent from each other arranged in the circumferential direction and the axial direction, and is formed into a cylindrical body as a whole. Each resonance chamber 2 is provided with a resonance cylinder 5 and a hole 42 so as to penetrate in the radial direction, and is provided so as to take in sound in a direction perpendicular to the fluid flowing in the space 422 inside the cylindrical sound absorber 45.

第11図及び第15図示す吸音体は第1図の吸音体と同
様に平面状に多数配置することによって、例えば第14
図及び第17図に示すように吸音パネル36.46や吸
音壁等を構成することもできる。
The sound absorbers shown in FIGS. 11 and 15 can be arranged in large numbers in a plane like the sound absorbers shown in FIG.
As shown in the figures and FIG. 17, sound absorbing panels 36, 46, sound absorbing walls, etc. can also be constructed.

また、第11図又は第15図に示ず吸音体3141を利
用して形成された円筒吸音体35.45をブロア排気ダ
クト51やその他の騒音を伴う流れの中に流れの方向に
筒体の長手方向か一致するように設置することによって
吸音ダクト50を構成することかできる。このとき、円
筒吸音体35あるいは45はダクト51内に千鳥配列で
積み重ねたり[第13図(A)]、直列配列によって積
み重ねられる[第13図(B)]。この場合、各円筒吸
音体35.45の中の流路4の他、吸音体35.45と
吸音体35.45との間にも略三角形ないしひし形の流
路22か形成される。
Also, a cylindrical sound absorber 35.45 formed using the sound absorber 3141 not shown in FIG. 11 or FIG. The sound absorbing duct 50 can be constructed by installing them so that their longitudinal directions coincide. At this time, the cylindrical sound absorbers 35 or 45 are stacked in the duct 51 in a staggered arrangement [FIG. 13(A)] or in a series arrangement [FIG. 13(B)]. In this case, in addition to the flow path 4 in each cylindrical sound absorber 35.45, a substantially triangular or rhombic flow path 22 is formed between the sound absorbers 35.45.

尚、上述の実施例は好適な実施例の一つではあるかこれ
に限定されるものではなく、本発明の要旨を逸脱しない
範囲において種々変形実施可能である。例えは、共鳴筒
5,6としては、フランジを有する円筒形について説明
しているが、スリットとすることもある。この場合、ス
リットを流れの方向に対して平行にあるいは直交させて
配置すると、細かな共鳴室を多数段けなくとも同様の減
衰特性を得ることができ、吸音パネルの製作か容易かつ
低コス1〜にできる。また、共鳴室2.3を区画するシ
ェル13をベローズ等で形成して可動式とし共鳴容積を
可変とすれば、及び/又は共鳴筒5,6の首部長さしや
内径りを可変式とすれば、使用中に共鳴周波数を変更し
得るので、アクティブコントロール型消音器を構成でき
る。また、共鳴室2.3は本実施例の場合、2段として
いるがこれに限定されるものでなく、3段あるいはそれ
以上形成しても良い。
It should be noted that the above-described embodiment is one of the preferred embodiments, but is not limited thereto, and various modifications can be made without departing from the gist of the present invention. For example, although the resonance cylinders 5 and 6 are described as having a cylindrical shape with flanges, they may also have slits. In this case, by arranging the slits parallel to or perpendicular to the flow direction, similar damping characteristics can be obtained without the need for multiple stages of fine resonance chambers, making it possible to produce sound-absorbing panels easily and at low cost. can be done. Furthermore, if the shell 13 that partitions the resonance chamber 2.3 is made of a bellows or the like and made movable to make the resonance volume variable, and/or the neck length and inner diameter of the resonance tubes 5 and 6 can be made variable. Then, since the resonant frequency can be changed during use, an active control type muffler can be constructed. Furthermore, although the resonance chambers 2.3 are formed in two stages in this embodiment, they are not limited to this, and may be formed in three or more stages.

以上のように本発明の吸音体は構成したのでリアクティ
ブ型であり、かつコンパクトな構造でありながら、広い
帯域に亘って減衰効果を発揮できる。例えば、第8図に
第6図の吸音ダクトについて行った実験例を示す。
Since the sound absorber of the present invention is configured as described above, it is a reactive type sound absorber and has a compact structure, yet can exhibit a damping effect over a wide band. For example, FIG. 8 shows an example of an experiment conducted on the sound absorbing duct shown in FIG. 6.

(発明の効果) 以上の説明より明らかなように、本発明の吸音体は、少
なくとも2段以上の共鳴室を流体の流れの方向と直交す
る方向に重ねて設けると共にこれらを共鳴筒で連通し、
共鳴周波数の異なる共鳴型吸音構造体を多段形成してい
るので、多重共鳴を起こし、各共鳴器の共鳴周波数から
ずれた周波数帯域においても減衰量の落ち込みを緩やか
にして広帯域において減衰効果のある減衰特性をリアク
ティブ型で実現できる。このような特性は従来の1段共
鳴器による組合せでも実現できるか、同じ特性を得る場
合、本発明の方かよりコンパクトにできる。また、本発
明の吸音体において、共鳴筒をシェルとは側構造にして
着脱可能にすると、異なる寸法の共鳴筒と交換すること
によって減衰特性を容易に変更できるし、吸音体を容易
かつ安価に製作てきる。また、本発明の吸音体において
流路側の共鳴筒の入口に薄膜を貼着ずれは、流れを伴う
場合には流れの共鳴室への流入を防いで定在渦の発生を
抑制し、減衰特性の劣化を防き得る。
(Effects of the Invention) As is clear from the above description, the sound absorber of the present invention has at least two or more stages of resonance chambers stacked in a direction perpendicular to the direction of fluid flow, and these are communicated through a resonance cylinder. ,
Since the resonant sound absorbing structures with different resonant frequencies are formed in multiple stages, multiple resonances occur, and even in frequency bands that deviate from the resonant frequency of each resonator, the drop in attenuation is gradual, resulting in attenuation that is effective over a wide range. Characteristics can be realized with a reactive type. Such characteristics can be achieved by a combination of conventional single-stage resonators, or if the same characteristics are obtained, the present invention can be made more compact. In addition, in the sound absorbing body of the present invention, if the resonance tube is made to be detachable from the shell, the damping characteristics can be easily changed by replacing the resonance tube with a different size, and the sound absorbing body can be easily and inexpensively changed. I can produce it. In addition, in the sound absorber of the present invention, the misalignment of the thin film at the entrance of the resonance cylinder on the flow path side can prevent the flow from flowing into the resonance chamber when accompanied by a flow, suppress the generation of standing vortices, and improve the damping properties. can prevent deterioration.

更に、減衰特性の異なる吸音体を組合せれば、コンバク
1〜な構造にもかかわらず広い帯域において減衰可能で
かつ目的の性能をもった吸音パネルを容易に作ることか
できる。更に、吸音パネルをダクト内に流れに沿って配
置することによって吸音ダクトを構成する場合、カラス
ウール等の繊維質吸音材を使用した吸音ダクトと同等の
減衰効果、即ち特定の周波数の騒音だけでなく高音域を
含む広帯域の音に対し減衰効果をあげ得ることができる
。しかも、この吸音ダクトはそれ自体が繊維吸音材に比
べて経年変化や水分等の影響を受は難いので使用条件に
制約を受けず、高温湯、極低濡場高速流れ場等において
も使用可能である。更に、セラミックス等の吸音材に比
べて軽量かつ安価であると共に減衰効果も高い。
Furthermore, by combining sound absorbers with different attenuation characteristics, it is possible to easily create a sound absorbing panel that can attenuate in a wide band and has the desired performance despite its compact structure. Furthermore, when a sound-absorbing duct is constructed by arranging sound-absorbing panels along the flow inside the duct, it has the same damping effect as a sound-absorbing duct using a fibrous sound-absorbing material such as crow wool, in other words, it can reduce noise only at a specific frequency. It is possible to achieve a damping effect on a wide range of sounds including high frequencies. Furthermore, this sound-absorbing duct itself is less affected by aging and moisture than fiber sound-absorbing materials, so it is not restricted by usage conditions and can be used in high-temperature hot water, extremely low wet areas, high-speed flow fields, etc. It is. Furthermore, it is lighter and cheaper than sound absorbing materials such as ceramics, and has a high damping effect.

また、本発明の吸音体は、共鳴室の音の出入口を流れに
対し直交する方向に貫通させて設け、両方から騒音が入
り多重共鳴を起こすようにしているので、共鳴周波数は
変わらないが一面にたけ開口部を有する場合に比べて減
音量が相当大きくなる。このなめ減音量を同じにする場
合には、円筒吸音体を短くコンパクトにできる。例えは
、この円筒吸音体をダクト例えばフロアの排気ダクト内
に千鳥状ないし直列状に積み重ねて充填する場合、円筒
吸音体内の流路を流れる騒音たけでなく、隣接する吸音
体同士の隙間に形成される流路を通る流れの騒音も同時
に共鳴室内に入り多重共鳴を起こすため、共鳴周波数は
変らないが減音量が大幅に増大する。
In addition, in the sound absorbing body of the present invention, the sound entrance and exit port of the resonance chamber is provided so as to penetrate in a direction perpendicular to the flow, so that noise enters from both sides and causes multiple resonance, so the resonance frequency remains the same. The volume reduction is considerably greater than that in the case where there is a large opening. If the volume reduction is kept the same, the cylindrical sound absorber can be made shorter and more compact. For example, when these cylindrical sound absorbers are stacked in a staggered or series manner in a duct, such as a floor exhaust duct, the noise not only flows through the flow path inside the cylindrical sound absorbers, but also forms in the gaps between adjacent sound absorbers. Since the noise of the flow passing through the flow path simultaneously enters the resonance chamber and causes multiple resonances, the resonance frequency does not change, but the volume reduction increases significantly.

また、本発明の消音器を環状に配置して円筒体を形成し
ダクトを構成する場合、圧力損失を大きくぜずに騒音の
発生を抑えることができる。
Further, when the silencer of the present invention is arranged in an annular shape to form a cylindrical body to form a duct, it is possible to suppress the generation of noise without causing a large pressure loss.

また、−段の共鳴室に流れと直交する方向の開0を設け
て音が入るようにする場合、高周波数帯域における減衰
は期待でないか低周波数帯域に共鳴周波数が得られ、し
かも減音量か大幅に増大するので筒長さを短くコンパク
トにできる。
In addition, if an opening in the direction perpendicular to the flow is provided in the -stage resonance chamber to allow sound to enter, either attenuation in the high frequency band is not expected, or resonance frequency is obtained in the low frequency band, and the volume is reduced. Since it increases significantly, the length of the cylinder can be shortened and made compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は吸音体の原理を示す中央縦断面図、第1
図(B)は共鳴筒の斜視図、第2図(A)は従来のりア
クティブ型消音器の減音特性を示すグラフ、第2図(B
)、(C)は本発明の減音特性を示すグラフ、第3図(
A)は吸音体パネルの外観を示す斜視図、第3図(B)
は同パネルを更に組合せた複合吸音パネルの一例を示す
斜視図、第4図(A)は吸音パネルの平面図、第4図(
B)はその■−IV線概略断面図、第5図(A>は吸音
パネルの他の実施例を示す平面図、第5図(B)はその
v−V線概略断面図、第6図は吸音ダクトの一例を示す
斜視図、第7図は吸音体の他の実施例の原理を示す中央
縦断面図、第8図は吸音ダクトの減衰効果を示すグラフ
である。第9図(A)(B)は円筒吸音体の一実施例を
示し、(A)は横断面図、(B)は中央半裁縦断面図で
ある。第10図(A)、(B)は円筒吸音体の他の実施
例を示し、(A)は横断面図、(B)は中央半裁縦断面
図である。第11図は本発明の他の吸音体の原理を示す
中央縦断面図、第12図(A)、(B)は第11図の吸
音体を利用した円筒吸音体の一実施例を示し、(A)は
横断面図、(B)は中央半裁縦断面図、第13図(A)
、(B)は円筒吸音体をダクト内に配置した実施例の説
明図、第14図は第11図の吸音体を利用した吸音パネ
ルの一例を示し、(A)は横断面図、(B)は正面図で
ある。第15図は他の吸音体の原理を示す中央縦断面図
、第16図(A)、(B)は第15図の吸音体を利用し
た円筒吸音体の一例を示し、(A)は横断面図、(B)
は中央半裁縦断面図である。 第17図(A)、(B)は第15図の吸音体を利用した
吸音パネルの一例を示すもので、(A)は横断面図、(
B)は正面図である。 1.31.41・・・吸音体、2.3・・・共鳴室、5
.6共鳴筒、7・・・共鳴穴、8・・・首部、9・・・
薄膜、0.36.46・・・吸音パネル、11・・・枠
体、3 17 33 43・・・セル、 8・・・複合吸音パネル用枠体、1つ・・・ダクト、0
・・・ダクト、35.45・・・円筒吸音体、0・・・
吸音ダクト。
Figure 1 (A) is a central vertical cross-sectional view showing the principle of sound absorbing material.
Figure (B) is a perspective view of the resonator cylinder, Figure 2 (A) is a graph showing the sound reduction characteristics of the conventional glue active type silencer, Figure 2 (B)
), (C) are graphs showing the sound reduction characteristics of the present invention, and Figure 3 (
A) is a perspective view showing the appearance of the sound absorbing panel, FIG. 3(B)
is a perspective view showing an example of a composite sound-absorbing panel made by further combining the same panels, FIG. 4(A) is a plan view of the sound-absorbing panel, and FIG.
B) is a schematic sectional view taken along the line ■-IV, FIG. 9 is a perspective view showing an example of a sound absorbing duct, FIG. 7 is a central vertical sectional view showing the principle of another embodiment of the sound absorbing body, and FIG. 8 is a graph showing the damping effect of the sound absorbing duct. ) (B) shows an example of the cylindrical sound absorber, (A) is a cross-sectional view, and (B) is a longitudinal cross-sectional view of the central half. Another embodiment is shown, in which (A) is a cross-sectional view, and (B) is a central half longitudinal cross-sectional view. Fig. 11 is a central longitudinal cross-sectional view showing the principle of another sound absorber of the present invention, and Fig. 12 is a vertical cross-sectional view. (A) and (B) show an example of a cylindrical sound absorber using the sound absorber shown in FIG. )
, (B) is an explanatory diagram of an embodiment in which a cylindrical sound absorber is arranged in a duct, FIG. 14 shows an example of a sound absorbing panel using the sound absorber of FIG. 11, (A) is a cross-sectional view, and (B) ) is a front view. Fig. 15 is a central vertical sectional view showing the principle of another sound absorber, Figs. 16 (A) and (B) show an example of a cylindrical sound absorber using the sound absorber of Fig. 15, and (A) is a cross-sectional view. Front view, (B)
is a vertical cross-sectional view taken in half. FIGS. 17(A) and (B) show an example of a sound absorbing panel using the sound absorbing body shown in FIG. 15, where (A) is a cross-sectional view;
B) is a front view. 1.31.41...Sound absorber, 2.3...Resonance chamber, 5
.. 6 Resonance cylinder, 7... Resonance hole, 8... Neck, 9...
Thin film, 0.36.46... Sound absorbing panel, 11... Frame, 3 17 33 43... Cell, 8... Frame for composite sound absorbing panel, 1... Duct, 0
...Duct, 35.45...Cylindrical sound absorber, 0...
Sound absorbing duct.

Claims (1)

【特許請求の範囲】 (1)少なくとも2段以上の共鳴室を流体の流れの方向
と直交する方向に重ねて設けると共にこれら共鳴室同士
及び音源側の共鳴室と音源空間とを共鳴筒で連通させ、
共鳴周波数の異なる共鳴型吸音構造体を多段形成して成
ることを特徴とする吸音体。 (2)少なくとも2段以上の共鳴室を径方向に重ねたセ
ルを円周方向並びに軸方向に配置して内側に流路を形成
する円筒体とし、各セルの共鳴室同士及び前記流路とこ
れに隣接する共鳴室とを流体の流れと直交する方向に共
鳴筒で連通させたことを特徴とする吸音体。(3)少な
くとも2段以上の共鳴室を径方向に重ねたセルを円周方
向並びに軸方向に配置して内側に流路を形成する円筒体
とし、前記セルの一部は共鳴室同士及び内側の流路とこ
れに隣接する共鳴室とを、一部のセルは共鳴室同士及び
外側の空間とを、夫々流体の流れと直交する方向に共鳴
筒で連通させることを特徴とする吸音体。 (4)少なくとも2段以上の共鳴室を重ねて設けると共
にこれら共鳴室同士及び外部空間とこれに隣接する共鳴
室とを流体の流れと直交する方向に共鳴筒で開口するこ
とを特徴とする吸音体。 (5)少なくとも2段以上の共鳴室を径方向に重ねたセ
ルを円周方向並びに軸方向に配置して内側に流路を形成
する円筒体し、各セルの共鳴室同士及び前記円筒体の内
方及び外方の空間とこれに隣接する共鳴室とを流体の流
れと直交する方向に共鳴筒で開口することを特徴とする
吸音体。 (6)騒音を伴う流れに沿って配置される共鳴室に、前
記流体の流れと直交させて共鳴筒を設け、当該共鳴室を
流体の流れと直交する方向に貫通させて開口することを
特徴とする吸音体。 (7)音響的に互いに独立した多数の共鳴室を円周方向
並びに軸方向に配置して内側に流路を形成する円筒体と
し、該円筒体の円周面と外周面に相当する各共鳴室の面
に流体の流れと直交する径方向に共鳴筒を設けて開口す
ることを特徴とする吸音体。 (8)請求項1又は4若しくは6記載の吸音体を一平面
上に多数配置してパネル状としたことを特徴とする吸音
体。 (9)前記共鳴筒は流体の流れの方向に平行なスリット
であることを特徴とする請求項1ないし8のいずれかに
記載の吸音体。 (10)前記共鳴筒は共鳴室を構成するシェルと別体と
し、着脱可能であることを特徴とする請求項1ないし9
のいずれかに記載の吸音体。 (11)流体流路側に配置された共鳴室の音の入口に薄
膜を貼着したことを特徴とする請求項1ないし10のい
ずれかに記載の吸音体。 (12)前記パネル状吸音体をダクト内に流体の流れに
沿つて設置し、流れと直交する方向に共鳴室の開口が配
置されたことを特徴とする請求項8、9、10若しくは
11のいずれかに記載の吸音ダクト。 (13)前記パネル状吸音体は少なくとも2枚1組を流
れを挾んで対向設置していることを特徴とする請求項1
2記載の吸音ダクト。 (14)請求項3、5、7、9、10若しくは11のい
ずれかに記載の吸音体をダクト内に流れの方向と平行に
配置して俵積みし、ダクト内を充填したことを特徴とす
る吸音ダクト。 (15)請求項3、5、7、9、10若しくは11のい
ずれかに記載の吸音体をダクト内に流れの方向と平行に
配置し、直列状に積み重ねて充填したことを特徴とする
吸音ダクト。
[Scope of Claims] (1) At least two or more stages of resonance chambers are provided one on top of the other in a direction perpendicular to the direction of fluid flow, and these resonance chambers and the resonance chamber on the sound source side and the sound source space are communicated by a resonance cylinder. let me,
A sound absorbing body characterized by forming a multi-stage resonant sound absorbing structure having different resonance frequencies. (2) A cylindrical body in which cells in which at least two or more resonance chambers are stacked in the radial direction are arranged in the circumferential direction and the axial direction to form a flow path inside, and the resonance chambers of each cell are connected to each other and the flow path is connected to each other. A sound absorbing body characterized in that an adjacent resonance chamber is communicated with a resonance cylinder in a direction perpendicular to the flow of fluid. (3) A cylindrical body in which cells in which at least two or more resonance chambers are stacked in the radial direction are arranged in the circumferential direction and the axial direction to form a flow path inside, and some of the cells are arranged between the resonance chambers and inside. A sound absorbing body characterized in that the flow path and the adjacent resonant chamber are communicated with each other in some cells and with the outer space through a resonant tube in a direction perpendicular to the flow of the fluid. (4) Sound absorption characterized by providing at least two or more stages of resonance chambers stacked one on top of the other, and opening the resonance chambers with each other, the external space, and the adjacent resonance chamber with a resonance cylinder in a direction orthogonal to the flow of fluid. body. (5) A cylindrical body in which cells in which at least two or more stages of resonance chambers are stacked in the radial direction are arranged in the circumferential direction and axial direction to form a flow path inside, and the resonance chambers of each cell are mutually connected and the cells of the cylindrical body are A sound absorbing body characterized in that inner and outer spaces and adjacent resonance chambers are opened by a resonance cylinder in a direction perpendicular to the flow of fluid. (6) A resonance chamber arranged along the noisy flow is provided with a resonance cylinder perpendicular to the flow of the fluid, and the resonance chamber is opened by penetrating the resonance chamber in a direction perpendicular to the flow of the fluid. Sound absorber. (7) A cylindrical body in which a large number of acoustically independent resonance chambers are arranged circumferentially and axially to form a flow path inside, and each resonance corresponds to the circumferential surface and outer circumferential surface of the cylindrical body. A sound absorber characterized by having a resonant tube opened in a radial direction perpendicular to the flow of fluid on the surface of a chamber. (8) A sound absorbing body characterized in that a large number of the sound absorbing bodies according to claim 1, 4, or 6 are arranged on one plane to form a panel shape. (9) The sound absorber according to any one of claims 1 to 8, wherein the resonance cylinder is a slit parallel to the direction of fluid flow. (10) Claims 1 to 9, wherein the resonance tube is separate from the shell constituting the resonance chamber and is detachable.
The sound absorber according to any of the above. (11) The sound absorber according to any one of claims 1 to 10, characterized in that a thin film is attached to the sound inlet of the resonance chamber disposed on the side of the fluid flow path. (12) The panel-shaped sound absorber is installed in a duct along the flow of fluid, and the opening of the resonance chamber is arranged in a direction perpendicular to the flow. The sound absorbing duct described in any of the above. (13) Claim 1 characterized in that the panel-shaped sound absorbers include at least two panel-shaped sound absorbers, each set being installed facing each other across the flow.
The sound absorbing duct described in 2. (14) The sound absorbing body according to any one of claims 3, 5, 7, 9, 10, or 11 is arranged in a duct parallel to the flow direction and stacked in bales to fill the inside of the duct. Sound absorbing duct. (15) A sound absorber characterized in that the sound absorber according to any one of claims 3, 5, 7, 9, 10, or 11 is arranged in a duct parallel to the flow direction and stacked and packed in series. duct.
JP63329283A 1988-05-06 1988-12-28 Sound absorbing body and sound absorbing duct using this body Granted JPH0271300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63329283A JPH0271300A (en) 1988-05-06 1988-12-28 Sound absorbing body and sound absorbing duct using this body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-109098 1988-05-06
JP10909888 1988-05-06
JP63329283A JPH0271300A (en) 1988-05-06 1988-12-28 Sound absorbing body and sound absorbing duct using this body

Publications (2)

Publication Number Publication Date
JPH0271300A true JPH0271300A (en) 1990-03-09
JPH0578040B2 JPH0578040B2 (en) 1993-10-27

Family

ID=14501531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63329283A Granted JPH0271300A (en) 1988-05-06 1988-12-28 Sound absorbing body and sound absorbing duct using this body

Country Status (1)

Country Link
JP (1) JPH0271300A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1039443A2 (en) * 1999-03-10 2000-09-27 Volkswagen Aktiengesellschaft Air-conducted sound absorbing element with double resonant chambers
WO2004083799A1 (en) * 2003-03-17 2004-09-30 Mitsubishi Denki Kabushiki Kaisha Noise reducing device
JP2007252938A (en) * 2007-05-07 2007-10-04 Mitsubishi Electric Corp Noise reducer
US7337875B2 (en) * 2004-06-28 2008-03-04 United Technologies Corporation High admittance acoustic liner
JP2010097145A (en) * 2008-10-20 2010-04-30 Yamaha Corp Sound absorbing structure, sound absorbing structure group and acoustic room
JP2011094893A (en) * 2009-10-30 2011-05-12 Panasonic Corp Ventilating device
JP2011202385A (en) * 2010-03-25 2011-10-13 Lixil Corp Sash
JP2012087797A (en) * 2010-10-19 2012-05-10 Jaguar Cars Ltd Air duct attenuator
JP2013125186A (en) * 2011-12-15 2013-06-24 Yamaha Corp Acoustic structure
JP2014074328A (en) * 2012-09-13 2014-04-24 Taisei Corp Assembly of box-shaped helmholtz resonator and reduction method of tunnel blasting sound
JP2015168331A (en) * 2014-03-06 2015-09-28 三菱重工業株式会社 propeller
JP2015169864A (en) * 2014-03-10 2015-09-28 株式会社リコー Sound absorption device, electronic apparatus, and image forming apparatus
JP2016194682A (en) * 2015-04-01 2016-11-17 清水建設株式会社 Noise reduction device
JP2017015972A (en) * 2015-07-02 2017-01-19 大成建設株式会社 Adapter for resonance frequency adjustment
JP2018136080A (en) * 2017-02-22 2018-08-30 三菱重工サーマルシステムズ株式会社 refrigerator
JP2018136086A (en) * 2017-02-22 2018-08-30 三菱重工サーマルシステムズ株式会社 refrigerator
WO2018181143A1 (en) * 2017-03-28 2018-10-04 富士フイルム株式会社 Soundproofing structure
JP2019158942A (en) * 2018-03-08 2019-09-19 三菱重工業株式会社 Noise reduction device
CN111145709A (en) * 2018-11-05 2020-05-12 雅马哈株式会社 Sound-absorbing unit and sound-absorbing structure
US11521589B2 (en) 2018-11-05 2022-12-06 Yamaha Corporation Sound absorption structure
US11536411B2 (en) 2017-10-03 2022-12-27 Fujifilm Corporation Silencing tubular structure body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5741455B2 (en) * 2012-01-13 2015-07-01 トヨタ自動車株式会社 Ventilator for vehicle

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1039443A2 (en) * 1999-03-10 2000-09-27 Volkswagen Aktiengesellschaft Air-conducted sound absorbing element with double resonant chambers
EP1039443A3 (en) * 1999-03-10 2000-10-04 Volkswagen Aktiengesellschaft Air-conducted sound absorbing element with double resonant chambers
WO2004083799A1 (en) * 2003-03-17 2004-09-30 Mitsubishi Denki Kabushiki Kaisha Noise reducing device
CN100397483C (en) * 2003-03-17 2008-06-25 三菱电机株式会社 Noise reducing device
US7337875B2 (en) * 2004-06-28 2008-03-04 United Technologies Corporation High admittance acoustic liner
JP2007252938A (en) * 2007-05-07 2007-10-04 Mitsubishi Electric Corp Noise reducer
JP2010097145A (en) * 2008-10-20 2010-04-30 Yamaha Corp Sound absorbing structure, sound absorbing structure group and acoustic room
JP2011094893A (en) * 2009-10-30 2011-05-12 Panasonic Corp Ventilating device
JP2011202385A (en) * 2010-03-25 2011-10-13 Lixil Corp Sash
JP2012087797A (en) * 2010-10-19 2012-05-10 Jaguar Cars Ltd Air duct attenuator
JP2013125186A (en) * 2011-12-15 2013-06-24 Yamaha Corp Acoustic structure
JP2014074328A (en) * 2012-09-13 2014-04-24 Taisei Corp Assembly of box-shaped helmholtz resonator and reduction method of tunnel blasting sound
JP2015168331A (en) * 2014-03-06 2015-09-28 三菱重工業株式会社 propeller
JP2015169864A (en) * 2014-03-10 2015-09-28 株式会社リコー Sound absorption device, electronic apparatus, and image forming apparatus
JP2016194682A (en) * 2015-04-01 2016-11-17 清水建設株式会社 Noise reduction device
JP2017015972A (en) * 2015-07-02 2017-01-19 大成建設株式会社 Adapter for resonance frequency adjustment
JP2018136080A (en) * 2017-02-22 2018-08-30 三菱重工サーマルシステムズ株式会社 refrigerator
JP2018136086A (en) * 2017-02-22 2018-08-30 三菱重工サーマルシステムズ株式会社 refrigerator
WO2018181143A1 (en) * 2017-03-28 2018-10-04 富士フイルム株式会社 Soundproofing structure
JPWO2018181143A1 (en) * 2017-03-28 2019-11-14 富士フイルム株式会社 Soundproof structure
US11536411B2 (en) 2017-10-03 2022-12-27 Fujifilm Corporation Silencing tubular structure body
JP2019158942A (en) * 2018-03-08 2019-09-19 三菱重工業株式会社 Noise reduction device
JP2020076797A (en) * 2018-11-05 2020-05-21 ヤマハ株式会社 Sound absorption unit and sound absorption structure
US11514879B2 (en) 2018-11-05 2022-11-29 Yamaha Corporation Sound absorbing apparatus and sound absorption structure
US11521589B2 (en) 2018-11-05 2022-12-06 Yamaha Corporation Sound absorption structure
CN111145709A (en) * 2018-11-05 2020-05-12 雅马哈株式会社 Sound-absorbing unit and sound-absorbing structure
CN111145709B (en) * 2018-11-05 2023-12-08 雅马哈株式会社 Sound absorbing unit and sound absorbing structure

Also Published As

Publication number Publication date
JPH0578040B2 (en) 1993-10-27

Similar Documents

Publication Publication Date Title
JPH0271300A (en) Sound absorbing body and sound absorbing duct using this body
ES2300357T5 (en) NOISE SHOCK ABSORBER.
US5783782A (en) Multi-chamber muffler with selective sound absorbent material placement
US4135603A (en) Sound suppressor liners
JPH073170B2 (en) Exhaust gas muffler
US6415887B1 (en) Refractive wave muffler
EP1356193B1 (en) Apparatus for improved noise attenuation in a dissipative internal combustion engine exhaust muffler
US7942239B2 (en) Exhaust muffler
US7798286B2 (en) Exhaust muffler having a horizontally extending sound attenuation chamber
US4381832A (en) Exhaust silencer having an incorporated resonator for an internal combustion engine
ES2214547T3 (en) MUFFLER.
KR101339421B1 (en) Silencer for ship
JP3653763B2 (en) Silencer
GB2045860A (en) Silencers for internal combustion engines
CN105587374A (en) Resonant silencer
CN106401700A (en) Spiral passive interference type muffler
US4359135A (en) Muffler assembly
US2990907A (en) Acoustic filter
CN207993473U (en) A kind of micropunch complex muffler
KR200340730Y1 (en) Car muffler
CN109555586A (en) Exhaust silencer
CN109488416A (en) A kind of frequency-adjustable single-stage multi-frequency resonance exhaust silencer
JPH0240243Y2 (en)
CN113124256B (en) Method for improving noise reduction effect of low-frequency noise reduction liner of pipeline and sound liner
CN106894925A (en) A kind of multi-cavity combination perforation silencer for eliminating vehicle Charge air inlet broadband noise

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees