JPH0269706A - Coated optical fiber - Google Patents

Coated optical fiber

Info

Publication number
JPH0269706A
JPH0269706A JP63221469A JP22146988A JPH0269706A JP H0269706 A JPH0269706 A JP H0269706A JP 63221469 A JP63221469 A JP 63221469A JP 22146988 A JP22146988 A JP 22146988A JP H0269706 A JPH0269706 A JP H0269706A
Authority
JP
Japan
Prior art keywords
resin
optical fiber
coating
outer layer
silica powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63221469A
Other languages
Japanese (ja)
Inventor
Toshifumi Hosoya
俊史 細谷
Hiroaki Sano
裕昭 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63221469A priority Critical patent/JPH0269706A/en
Publication of JPH0269706A publication Critical patent/JPH0269706A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To reduce the coefficient of linear expansion of a jacket layer by incorporating silica powder whose particle size is <=1/10 as large as the film thickness of an external layer or silica powder and a silane coupling agent. CONSTITUTION:The silica powder whose particle size is <=1/10 as large as the film thickness of the external layer jacket and the silane coupling agent 4 are added and the UV resin jacket external layer 3 and a UV internal layer which is softer than the external layer 3 are provided. Consequently, the coefficient of linear expansion is reduced, various problems due to the addition of resin to a conventional coated optical fiber are solved, and the fiber is manufactured without decreases in curing performance for coating strength and a coating defect.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は外周に被覆を有する被覆光ファイバの改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a coated optical fiber having a coating on its outer periphery.

[従来の技術] 光通信に用いる光ファイバにおいては、光学ガラスファ
イバ、石英系ガラスファイバに限らず、いずれもファイ
バ化した後直ちにその外周にプラスチック?m Nを施
すことが好ましいとされている。
[Prior Art] In optical fibers used for optical communications, whether they are optical glass fibers or quartz-based glass fibers, plastic is added to the outer periphery of the optical fibers immediately after they are made into fibers. It is said that it is preferable to apply mN.

これは、ファイバ化されることにより発生するファイバ
表面の傷や、裸ファイバの状態で空気に曝されることに
よるクラックの成長で、ファイtXIの強度が劣化する
のを防ぐためである。このようなプラスチック層として
は、一般に熱硬化型のシリコーン4Z→脂や紫外線硬化
型樹脂(以下UV樹脂と略す)が用いられており、近年
はこのU■樹脂被覆ファイバの需要が増大している。
This is to prevent the strength of Phi-tXI from deteriorating due to scratches on the fiber surface that occur when the fiber is made into a fiber, or cracks that grow when the bare fiber is exposed to air. For such plastic layers, thermosetting silicone 4Z resin or ultraviolet curable resin (hereinafter referred to as UV resin) is generally used, and in recent years the demand for this U resin-coated fiber has increased. .

このUV樹脂被覆は、光ファイバの伝送特性を高く保持
する理由から、一般にヤング率0 、5 kg/m+*
’以下程度の低ヤング率の内層とヤング率5kg/mm
”以上程度の高ヤング率の外層からなる二層被覆にして
光ファイバを保護する(例えば特開昭60−25115
3号公報参照)。
This UV resin coating generally has a Young's modulus of 0.5 kg/m+* in order to maintain high transmission characteristics of the optical fiber.
'Inner layer with low Young's modulus of less than 5 kg/mm
``An optical fiber is protected by a two-layer coating consisting of an outer layer with a high Young's modulus of about
(See Publication No. 3).

第2図にこのような構造の光ファイバの断面図を示す。FIG. 2 shows a cross-sectional view of an optical fiber having such a structure.

1はガラスファイバ(光ファイバ)、2は低ヤング率の
IJV樹脂内層被覆、5はjS:Jヤング率のUV樹脂
外層被覆である。
1 is a glass fiber (optical fiber), 2 is an IJV resin inner layer coating with a low Young's modulus, and 5 is a UV resin outer layer coating with a jS:J Young's modulus.

[発明が解決しようとする課題] ところが、従来第2図のような構造の光ファイバにおい
ては、低温域においてUv樹脂被覆外層が収縮するため
光ファイバに曲がりが生じ、伝送損失が増加するという
問題があった。このような、光ファイバに歪みをもたら
す被覆の収縮力は、彼)■の線膨張係数が高く、被覆の
ヤング率が大きい稈大きくなる。被覆のヤング率は、ガ
ラスを保護する意味からも、ある程度以上の大きさが必
要で、小さくすることには限度がある。
[Problems to be Solved by the Invention] However, in the conventional optical fiber having the structure shown in Fig. 2, the outer layer of the UV resin coating contracts in a low temperature range, causing the optical fiber to bend, resulting in an increase in transmission loss. was there. The shrinkage force of the coating that causes distortion in the optical fiber increases as the linear expansion coefficient of the optical fiber is high and the Young's modulus of the coating is large. The Young's modulus of the coating needs to be greater than a certain level in order to protect the glass, and there is a limit to how small it can be.

そこで、外層としてUV樹脂に替、えて用いて光ファイ
バの温度安定性を向上できるものとして、高配向性樹脂
やL CI)等のように線膨張係数の低い樹脂が開発さ
れつつある。しかし、これらの樹脂には、コストが高い
、UV樹脂のようにダイスとU■クランプ使用した高速
塗布ができない等の聞届があり、未だ特殊用途の域をで
ていない。
Therefore, resins with low coefficients of linear expansion, such as highly oriented resins and LCI), are being developed as materials that can be used in place of UV resins as outer layers to improve the temperature stability of optical fibers. However, these resins have been reported to be expensive and cannot be coated at high speed using dies and U-clamps like UV resins, so they have not yet reached the level of special use.

ところで、一般に樹脂に充てん剤を添加することにより
、線膨張係数を低減することは広く行われている。例え
ば、垣内弘編著、「新エポキシ樹脂」、昭晃堂、249
 LTには、jj1機質充てん剤の1線膨張係数の低減
」は寸法安定性と表現されている。
Incidentally, it is generally widely practiced to reduce the coefficient of linear expansion by adding a filler to a resin. For example, Hiroshi Kakiuchi (ed.), “New Epoxy Resin”, Shokodo, 249
In LT, "reduction of linear expansion coefficient of jj1 structural filler" is expressed as dimensional stability.

一方、光ファイバの被覆において、熱硬化性の被覆に充
てん剤を添加して強度を上げることは、例えば特開昭6
1−217011号公報に既に提案されている。また着
色や低水素化、或は耐放射線性向上のために、外層UV
樹脂に対して添加剤を添加することも公知である。
On the other hand, in the coating of optical fibers, adding fillers to thermosetting coatings to increase the strength has been proposed, for example, in Japanese Patent Laid-Open No. 6
This method has already been proposed in Publication No. 1-217011. In addition, for coloring, low hydrogenation, or improving radiation resistance, the outer layer UV
It is also known to add additives to resins.

しかしながら、従来、UV樹脂からなる被覆への添加剤
の添加には、次ぎの■〜■の大きな問題があった。即ち
、■外層のUV樹脂被覆に添加剤を分散させると、添加
剤による紫外線の吸収が生じるため、UV樹脂被覆の硬
化性が悪化し、特に被覆の膜厚が厚くなると内部が硬化
しなくなる、■U V樹脂外層表面に分布した添加剤が
被覆の欠陥となり、この部分の被覆強度が低下する、■
添加剤の添加により、UV樹脂のチクソトロピーが変化
し、特にダイを使用した高速線引で樹脂を塗布する場合
、グイと光ファイバとのスキマを液状の樹脂が流動する
ときの抵抗が大きくなり、塗布性不良を引き起こすこと
、である。
However, conventionally, the addition of additives to coatings made of UV resins has had the following major problems. That is, (1) When additives are dispersed in the outer UV resin coating, the additive absorbs ultraviolet rays, which deteriorates the curing properties of the UV resin coating, and in particular, when the thickness of the coating becomes thick, the interior becomes hard to cure. ■The additive distributed on the surface of the UV resin outer layer causes defects in the coating, reducing the coating strength in this area.■
The addition of additives changes the thixotropy of the UV resin, which increases the resistance when the liquid resin flows through the gap between the goo and the optical fiber, especially when applying the resin by high-speed drawing using a die. This causes poor coating properties.

そして、これらの問題のために、UV樹脂被覆層に充て
ん剤を添加する手段によっては該被覆層の線膨張係数が
低減して、しかも硬化性、強度、塗布性の良い被覆を形
成できて、低温域での伝送損失の発生を抑えた光ファイ
バを得ることはできなかった。
Due to these problems, it is possible to reduce the linear expansion coefficient of the UV resin coating layer by adding a filler to the UV resin coating layer, and to form a coating with good curability, strength, and applicability. It has not been possible to obtain an optical fiber that suppresses transmission loss in the low temperature range.

本発明はこのような従来の問題点を解決し、被覆層に添
加剤を添加する手段により低コストで、かつ簡単に被覆
層の線膨張係数を低減できた光ファイバを提供すること
を目的とするものである。
The purpose of the present invention is to solve these conventional problems and provide an optical fiber in which the linear expansion coefficient of the coating layer can be easily reduced at low cost by adding additives to the coating layer. It is something to do.

[課題を解決するための手段] 本発明者等は研究努力の結果、充てん剤添加に伴う上記
■〜■の問題点を解決し、かつ線膨張係数の低減に効果
を示すような樹脂被覆を見出し、本発明に到達できた。
[Means for Solving the Problems] As a result of research efforts, the present inventors have developed a resin coating that solves the above-mentioned problems (■ to ■) associated with the addition of fillers and is effective in reducing the coefficient of linear expansion. With this heading, we have arrived at the present invention.

本発明はガラスファイバ外周に紫外線硬化ハ11樹脂か
らなる柔らかい内層と紫外線硬化ヤ!樹脂からなる硬い
外層を有してなる被覆光ファイバにおいて、課外層中に
そのf1γ子径が該外層膜厚の1710以下であるシリ
ノJ粉末を含有することを特徴とする被覆光ファイバ及
びガラスファイバ外周に紫外線硬化型樹脂からなる柔ら
かい内層と紫外線硬化型樹脂からなる硬い外層をイfし
てなる被覆光ファイバにおいて、該外層中にその粒子径
が該外層膜厚の1710以下であるシリカ粉末及びシラ
ンカップリング剤を含有することを特徴とする被覆光フ
ァイバに関する。
The present invention has a soft inner layer made of ultraviolet curing resin on the outer periphery of the glass fiber and a soft inner layer made of ultraviolet curing resin. A coated optical fiber and a glass fiber having a hard outer layer made of resin, characterized in that the extracurricular layer contains Silino J powder whose f1γ diameter is 1710 or less than the thickness of the outer layer. In a coated optical fiber having a soft inner layer made of an ultraviolet curable resin and a hard outer layer made of an ultraviolet curable resin on the outer periphery, the outer layer contains silica powder whose particle size is 1710 or less than the thickness of the outer layer. The present invention relates to a coated optical fiber characterized by containing a silane coupling agent.

以下に図面を参照して本発明を具体的に説明する。The present invention will be specifically described below with reference to the drawings.

第1図は本発明の被覆光ファイバの1例の断面図であっ
て、1はガラスファイバ(光ファイバ)、2は低ヤング
率のUV樹脂からなる内層被覆、3は高ヤング率のtJ
VUV樹脂リカ粉末を添加してなる外層被覆、4はシリ
カ粉末である。外層にはシリカ粉末に加えてシランカッ
プリング剤を添加し°Cもよい。
FIG. 1 is a cross-sectional view of one example of a coated optical fiber of the present invention, in which 1 is a glass fiber (optical fiber), 2 is an inner coating made of a UV resin with a low Young's modulus, and 3 is a tJ with a high Young's modulus.
The outer layer coating is made by adding VUV resin silica powder, and 4 is silica powder. In addition to silica powder, a silane coupling agent may be added to the outer layer at °C.

本発明のガラスファイバ1と内層被覆については、従来
公知の材料を用いればよい。ガラスファイバとして通信
用ガラスファイバであればいずれであっても、本発明の
目的とする効果を得られるが、特に中、長距離通信用と
して一般に用いられている石英ガラスを主成分としたS
M型ファイバC; I ’t’!ファイバ等に適用した
場合には大きな効果が得られる。また、内層用UV樹脂
としては、例えばポリウレタンアクリレート系、ポリブ
タジェンアクリレート系、シリコンアクリレ−+−系、
u■硬化型シリコン系、ポリカーボネート系等の樹脂が
使用できる。内層被覆のヤング率は−・船釣には0.0
5〜0 、5 kg/■”程度であるが、これに限定さ
れるものではない。
Conventionally known materials may be used for the glass fiber 1 and the inner coating of the present invention. The desired effect of the present invention can be obtained by using any communication glass fiber as the glass fiber, but in particular, S containing quartz glass as the main component, which is generally used for medium to long distance communication, can be used as the glass fiber.
M-type fiber C; I 't'! Great effects can be obtained when applied to fibers and the like. In addition, examples of the UV resin for the inner layer include polyurethane acrylate, polybutadiene acrylate, silicone acrylate +-,
u■ Curing silicone resin, polycarbonate resin, etc. can be used. The Young's modulus of the inner layer coating is -0.0 for boat fishing.
5 to 0.5 kg/■'', but is not limited to this.

本発明の特徴である外層被覆に用いるUV樹脂としては
、例えばポリウレタンアクリレート系、ポリブタジェン
アクリレート系、エポキシアクリレート系、シリコンア
クリレート系、U■硬化型シリコン系、ポリカーボネー
ト系等の樹脂を用いることができる。ヤング率は一般的
には5〜100kg/1Tlff1″程度であるが、こ
れに限定されるところはない。
As the UV resin used for the outer layer coating, which is a feature of the present invention, resins such as polyurethane acrylate, polybutadiene acrylate, epoxy acrylate, silicone acrylate, U-curing silicone, and polycarbonate can be used. can. Young's modulus is generally about 5 to 100 kg/1Tlff1'', but is not limited to this.

これらの外層用U■樹脂に添加するシリカ粉末は、その
粒子径が外層膜厚の1/lO以下であることが必須であ
る。また、[11体的にはその粒子径が0゜01〜2μ
mの範囲内のものが好ましく、特に好ましくは 0.1
〜2μmである。0.01μm未満では余りに粒子径が
小さすぎて線膨張係数低減の効果が低くなってしまう。
It is essential that the particle size of the silica powder added to these U-resins for the outer layer is 1/1O or less of the outer layer thickness. In addition, the particle size of [11] is 0°01~2μ
m is preferably within the range, particularly preferably 0.1
~2 μm. If it is less than 0.01 μm, the particle diameter is too small and the effect of reducing the linear expansion coefficient becomes low.

また、通常の長距離通信用光ファイバにおいては外層膜
厚は20〜60μmの範囲内にあることが多いので、汎
用性を考慮すると添加シリカ粉末の粒子径の」−限値は
2μm程度である。添加量については、次ぎの作用の項
で説明する。
In addition, in ordinary optical fibers for long-distance communication, the outer layer thickness is often in the range of 20 to 60 μm, so in consideration of versatility, the particle size limit of the added silica powder is about 2 μm. . The amount added will be explained in the next section on effects.

また、シランカップリング剤としては、例えばビニルト
リエトキシシラン、3−アミノプロピルトリエトキシシ
ラン、3−メルカプトプロピルトリメトキシシラン、3
−グリシドキシプロビルメチルジメトキシシラン、3−
メタクリロキシプロピルメチルジメトキシシラン等が挙
げられ、好ましくは0゜1〜IOj[tu%、特に好ま
しくは1〜5市量%の範囲内で添加する。
In addition, examples of the silane coupling agent include vinyltriethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane,
-Glycidoxypropylmethyldimethoxysilane, 3-
Examples include methacryloxypropylmethyldimethoxysilane, and it is preferably added in an amount of 0.1 to IOj[tu%, particularly preferably 1 to 5% by weight.

本発明の被覆光ファイバの装造方法は、従来公知のUV
樹脂2層被覆形成法によればよい。例えば第5図に示す
ように、線引装置9の母材送り装置7により母材6を線
引炉8に送り込んで、加熱・線引してガラスファイバI
Oとし、つぎに塗布装置11により内層用UV樹脂を塗
布して紫外線源QJ装買12で硬化させ内層被覆を形成
し、続いて塗布装置13により外層膜)V用のシリカ粉
末(及びシランカップリング剤)添加UV樹脂を塗布し
、紫外線照射装置14で硬化させ2層被覆光ファイバj
5とし、キャプスタン16により引き取りながら巻取り
装置17で巻取る方法等が挙げられる。
The method for installing a coated optical fiber according to the present invention is a method using conventionally known UV rays.
A two-layer resin coating method may be used. For example, as shown in FIG. 5, the base material 6 is fed into the drawing furnace 8 by the base material feeding device 7 of the wire drawing device 9, heated and drawn to form the glass fiber I.
Next, the UV resin for the inner layer is applied using the coating device 11 and cured using the ultraviolet light source QJ equipment 12 to form an inner layer coating, and then the silica powder (and silane cup) for the outer layer (V) is coated using the coating device 13. Ring agent) Added UV resin is applied and cured with ultraviolet irradiation device 14 to form a two-layer coated optical fiber.
5, and a method of taking it up with a capstan 16 and winding it up with a winding device 17, etc.

[作用コ 本発明のように外層のUV樹脂中にシリカ粉末を充てん
剤として添加することで、線膨張係数を低減できること
は、すでに説明した通りであり、これにより低温域での
被覆の収縮による光ファイバの曲がりを防1ヒできて、
伝送損失の増加を抑制できる。
[Function] As already explained, by adding silica powder as a filler to the UV resin of the outer layer as in the present invention, the coefficient of linear expansion can be reduced. It can prevent the optical fiber from bending,
Increase in transmission loss can be suppressed.

線膨張係数の低減効果は、一般にシリカ粉末の添加濃度
が高いほど大きく現れるが、あまり多量になると樹脂の
粘度が塗布不可能な程度にまで増大してしまうため、そ
の添加!itには自ずから上限がある。通常ダイを使用
して塗布する場合の適正枯IXは常温で1000〜10
000  cpsが望ましい。この値を満足させるよう
なシリカ粉末の添加量はシリカ粉末の粒径や添加される
前のUV樹脂の粘度によっても異なるため、それぞれの
場合に応じて、実験的に添加量と粘度の関係を求めて決
定することが好ましい。また、シリカ粉末の添加による
線膨張係数低減効果は、微1itの添加でも得られるこ
とが確認できたが、本発明における適正な添加11先は
粒子径1μmの場合、1重量%以上lO市:律%以下で
あった。粒子径が1μmより大きい場合は添加f11は
これより」−下限値の小さい範囲となり、1μmより小
さい場合はこれより上下限値の大きい範囲となる。
Generally speaking, the effect of reducing the coefficient of linear expansion becomes greater as the concentration of silica powder added increases, but if the amount is too large, the viscosity of the resin will increase to the point where it cannot be coated, so add it! IT naturally has an upper limit. The appropriate drying IX when applying using a normal die is 1000 to 10 at room temperature.
000 cps is desirable. The amount of silica powder added that satisfies this value varies depending on the particle size of the silica powder and the viscosity of the UV resin before it is added, so the relationship between the amount added and viscosity must be determined experimentally depending on each case. It is preferable to ask and determine. In addition, it was confirmed that the effect of reducing the coefficient of linear expansion by adding silica powder can be obtained even with the addition of a minute amount of silica powder, but the appropriate addition point in the present invention is 1% by weight or more when the particle size is 1 μm: It was less than 1%. When the particle diameter is larger than 1 μm, the addition f11 is in a range where the lower limit is smaller than this, and when the particle size is smaller than 1 μm, it is in a range where the upper and lower limits are larger than this.

また、従来のこのような外層樹脂への添加手段に伴って
いた諸問題も、充てん剤としてシリカ粉末を用いること
で十分な硬化性が獲得できること、該シリカ粉末の粒子
径を被覆膜厚の1/10以下とすることで塗布不良は回
避できること、シランカップリング剤の併用により被覆
強度が保証できること、を以下に詳細に説明する。
In addition, the problems associated with conventional methods of adding resin to the outer layer resin can be resolved by using silica powder as a filler, which provides sufficient curability, and by adjusting the particle size of the silica powder to the thickness of the coating film. It will be explained in detail below that coating defects can be avoided by setting the ratio to 1/10 or less, and that coating strength can be guaranteed by using a silane coupling agent in combination.

■の添加剤による紫外線吸収の問題については、本発明
者等は各種無機材料の粉末を樹脂中に混入して、その硬
化性を比較した結果、S + Ozを組成とするシリカ
粉末が最適であるという結論に達した。例として第3図
に、シリカ粉末と酸化チタン(TiO=)粉末をt+V
樹脂に添加混入したときの添加i?t (重量%、横軸
に示す)と硬化膜厚(mm、縦軸に示す)との関係を示
す。白丸印がシリカ粉末、黒丸印が酸化チタンである。
Regarding the problem of ultraviolet absorption caused by additives, the present inventors mixed powders of various inorganic materials into resin and compared their curing properties. As a result, silica powder with a composition of S + Oz was found to be optimal. I came to the conclusion that there is. As an example, Fig. 3 shows silica powder and titanium oxide (TiO=) powder at t+V
Addition i when mixed into resin? The relationship between t (weight %, shown on the horizontal axis) and cured film thickness (mm, shown on the vertical axis) is shown. The white circle indicates silica powder, and the black circle indicates titanium oxide.

ここで、硬化膜厚とは、未硬化UV樹脂の上部から高圧
水銀ランプによってIJ/cl′の紫外光を照射し、硬
化した膜の厚みを測定した値であり、硬化膜厚の値が小
さいほど、添加剤による紫外光の吸収が大きく硬化性が
悪いことになる。第3図より明らかなように、シリカ粉
末は添加)itの増加による硬化膜厚の減少が少なく、
添加による硬化性の悪化を起こしにくい材料であること
が解る。
Here, the cured film thickness is the value obtained by irradiating ultraviolet light of IJ/cl' from the top of the uncured UV resin with a high-pressure mercury lamp and measuring the thickness of the cured film, and the value of the cured film thickness is small. The more the additive absorbs ultraviolet light, the worse the curability becomes. As is clear from Fig. 3, silica powder causes less decrease in cured film thickness due to increase in the amount of addition).
It can be seen that this is a material that is unlikely to cause deterioration in hardenability due to addition.

次に、■の外層表面に分布した添加物が被覆欠陥となり
、被覆強度が低下する問題であるが、シリカ粉末を使用
したときは、この問題はシランカップリング剤を添加す
ることにより、容易に解決できる。シランカップリング
剤は、被覆とシリカ粉末との両方に化学結合を形成して
両者の間の接着性を増強させる作用があるため、シリカ
粉末の粒子径があまり大きくない範囲(通常50μm以
下)では複合効果により、むしろ破断効果を増大させる
ことが知られている(前出、垣内弘編著、(“新エポキ
シ樹脂」296J″r)。本発明において使用できるシ
ランカップリング剤は、UV樹脂の構造」−1樹脂側と
結合する反応基がビニル基、メタクリル基、アクリロイ
ル基、アミ7ノ、(のいずれかであることが好ましいが
、その他の基、例えばメルカプト基、エポキシ基等であ
っても効果が認められた。また、シリカ側と結合する反
応基としては、通常用いられている殆どのもので効果が
認められ、例えばメトキシ基、エトキシ基、シラノール
基等が代表例として挙げられる。
Next, there is the problem of additives distributed on the outer layer surface causing coating defects and reducing coating strength, but when silica powder is used, this problem can be easily solved by adding a silane coupling agent. Solvable. The silane coupling agent has the effect of forming a chemical bond with both the coating and the silica powder and enhancing the adhesion between them, so if the particle size of the silica powder is not very large (usually 50 μm or less), It is known that the combined effect actually increases the rupture effect (Ibid., edited by Hiroshi Kakiuchi, ("New Epoxy Resins"296J"r). The silane coupling agent that can be used in the present invention is based on the structure of UV resin. ``-1 It is preferable that the reactive group bonded to the resin side is a vinyl group, a methacrylic group, an acryloyl group, an amino group, or (, but other groups such as a mercapto group or an epoxy group may also be used. The effect was observed.Also, the effect was observed with most of the commonly used reactive groups that bond to the silica side, and typical examples include methoxy group, ethoxy group, and silanol group.

シランカップリング剤の添加量1;!、Q、I〜104
T′Iglt%程度の範囲内であるが、この範囲より少
なすぎると十分な効果かえられず、多すぎると樹脂の硬
化性に悪影響を与える。特に好ましくは1〜5市111
%の範囲内である。
Addition amount of silane coupling agent 1;! ,Q,I~104
The amount is within the range of about T'Iglt%, but if it is too small than this range, sufficient effects cannot be obtained, and if it is too large, it will adversely affect the curability of the resin. Particularly preferably 1 to 5 cities 111
Within the range of %.

■の塗布性に与える影響については、本発明者笠は、添
加するシリカ粉末の粒子径と添加した樹脂の塗布性の関
係を調べ、シリカ粒子径が塗布性に大きく影響すること
を発見した。即ち、粒子径が塗布する外層の膜厚の1/
10以下ならば均一な膜厚での塗布が可能であり、樹脂
塗布性の添加量への依a性は少な(、上記した本発明に
おいて通常使用する範囲の添加量で、被覆径の変動を、
実使用上差し支えのない 0.5  %以内におさえら
れることが判った。
Regarding the influence on the coating properties ((2)), the present inventor, Kasa, investigated the relationship between the particle size of the silica powder added and the coating properties of the added resin, and discovered that the silica particle size greatly influenced the coating properties. In other words, the particle size is 1/1 of the thickness of the outer layer to be applied.
If it is less than 10, it is possible to coat with a uniform film thickness, and the dependence of the resin coating property on the amount of addition is small. ,
It was found that it could be kept within 0.5%, which is acceptable for practical use.

第4図に、被覆径400μm、外層膜厚50μmの条件
でダイを使用し”Cガラスファイバにシリカ粉末添加U
V樹脂を塗布して、被覆光ファイバを作製したときの、
シリカ粉末の粒子径と被覆径変動の大きさとの関係を示
す。同図において、横軸は(シリカ粉末j1″7.子径
/外層膜厚)、縦軸は被覆径変動(%)、白丸印は添加
月tlo重量%の場合、黒丸印は同5−in 量%の場
合を示す。第4図から、シリカ粉末の添加量にかかわら
ず粒子径が膜厚の1710以下ならば、径変動を0.5
 %以内に押さえられることが判る。また、この関係は
膜厚15μm以1−80 a m以下の範囲内で確認で
きており、広範な膜厚の範囲で成立するものである。
Figure 4 shows that silica powder is added to a "C" glass fiber using a die with a coating diameter of 400 μm and an outer layer thickness of 50 μm.
When a coated optical fiber is made by applying V-resin,
The relationship between the particle size of silica powder and the magnitude of variation in coating diameter is shown. In the figure, the horizontal axis is (silica powder j1''7. particle diameter/outer layer thickness), the vertical axis is coating diameter variation (%), the white circle is the addition month tlo weight %, and the black circle is the addition month tlo weight %. Figure 4 shows that regardless of the amount of silica powder added, if the particle diameter is 1710 or less of the film thickness, the diameter variation is reduced to 0.5.
It can be seen that it can be kept within %. Further, this relationship has been confirmed within the range of film thickness from 15 μm to 1-80 μm, and is valid over a wide range of film thicknesses.

[実施例] 比較例1 ガラス径125μn1のシングルモー1j 2(“2光
フアイバの外周にダイを用いて、内層としてヤング率0
 、2 kg/am”の紫外線硬化型ウレタンアクリレ
ート樹脂を、外層としてヤング率40 kg/IIm”
の紫外線硬化型ウレタンアクリレート樹脂を、内層径2
00μm、外層径250μm(外層膜厚25μm)とな
るように塗布して被覆光ファイバを作製した。得られた
被覆光ファイバの波長1.3μmにおける伝送特性を調
べたところ、23℃で0゜23 dB/に慣、−60’
CでI 、 7 dB/kmと低温域での損失が大きか
った。
[Example] Comparative Example 1 Single modulus 1j2 ("2" with a glass diameter of 125 μn1 using a die on the outer periphery of the optical fiber and a Young's modulus of 0 as the inner layer)
, 2 kg/am" ultraviolet curable urethane acrylate resin with a Young's modulus of 40 kg/IIm" as the outer layer.
UV-curable urethane acrylate resin with an inner layer diameter of 2
A coated optical fiber was prepared by coating the coated optical fiber so as to have an outer layer diameter of 00 μm and an outer layer diameter of 250 μm (outer layer thickness of 25 μm). When the transmission characteristics of the obtained coated optical fiber at a wavelength of 1.3 μm were investigated, it was found that the transmission characteristic at 23°C was 0°23 dB/, -60'
The loss in the low temperature range was large, with an I of 7 dB/km.

実施例1 比較例1の外層に用いたと同じ樹脂に粒子径1μmのシ
リカ粉末を5重量%と、メタクリレート系シランカップ
リング剤の3−メタクリロキシプロピルトリメトキシシ
ランを2重量%とを添加したものを外層樹脂として用い
た以外は、比較例1と同様にして本発明の光ファイバを
作製した。(粒子径/外層膜厚−1/25)この外層樹
脂の粘度は23℃で 8000 cpsであった。得ら
れた被覆光ファイバの波長1.3 μmにおける伝送特
性を調べたところ、23℃で0 、23 dll/に@
、−60℃で0゜2/1dll八−と低温域でも非常に
良好であった。
Example 1 5% by weight of silica powder with a particle size of 1 μm and 2% by weight of 3-methacryloxypropyltrimethoxysilane, a methacrylate-based silane coupling agent, were added to the same resin used for the outer layer of Comparative Example 1. An optical fiber of the present invention was produced in the same manner as in Comparative Example 1, except that the following was used as the outer layer resin. (Particle size/outer layer thickness - 1/25) The viscosity of this outer layer resin was 8000 cps at 23°C. When the transmission characteristics of the obtained coated optical fiber at a wavelength of 1.3 μm were investigated, it was found that the transmission characteristics at 23°C were 0 and 23 dll/@
, 0°2/1 dll8 at -60°C, which was very good even in the low temperature range.

実施例2 比較例1の外層に用いたものと同じ樹脂に粒子径1μT
nのシリカ粉末を5重41%添加したものを外層樹脂と
して用いた以外は、比較例1と同様にして本発明の光フ
ァイバを作製した。得られた被覆光ファイバの波長1.
3 μmにおける伝送特性を調べたところ、23°Cで
0.23dB/に+、 −60℃で0 、24 dB/
kmと低温域でも非常に良好であった。
Example 2 The same resin used for the outer layer of Comparative Example 1 had a particle size of 1 μT.
An optical fiber of the present invention was produced in the same manner as in Comparative Example 1, except that an outer layer resin containing silica powder of 5 weight and 41% was used. Wavelength 1 of the obtained coated optical fiber.
When we investigated the transmission characteristics at 3 μm, we found that it was +0.23 dB/+ at 23°C and 0.24 dB/+ at -60°C.
The performance was very good even in the low temperature range of km.

比較例2 シリカ粉末とし°C粒子径5μmのものを用いた(f1
γイ径/外層膜厚−1l5)以外は実施例1と同様にし
て’?11覆光ファイバを作製した。このときは、製造
時の被覆径の変動が1%以」;あり、塗布不良と判断さ
れた。また、得られた被覆光ファイバの伝送特性は23
℃で0.42 dB/km、−60°Cでは伝送損失が
太き(測定不能であった。
Comparative Example 2 A silica powder with a particle size of 5 μm at °C was used (f1
The same procedure as in Example 1 was carried out except for γ diameter/outer layer thickness - 1l5). A No. 11-covered optical fiber was fabricated. In this case, the coating diameter varied by 1% or more during manufacturing, and it was determined that the coating was defective. In addition, the transmission characteristics of the obtained coated optical fiber were 23
The transmission loss was 0.42 dB/km at -60°C (unmeasurable).

比較例3 シリカ粉末のかわりに粒子径1μmの酸化チタンの粉末
を用いた以外は実施例1と同様にして被覆光ファイバの
作製を試みたが、外層の硬化性が悪く、良好な被覆光フ
ァイバを作製することができなかった。
Comparative Example 3 An attempt was made to produce a coated optical fiber in the same manner as in Example 1 except that titanium oxide powder with a particle size of 1 μm was used instead of silica powder, but the outer layer had poor hardenability and a good coated optical fiber could not be obtained. could not be created.

実施例3 シリカ粉末の添加fltを0.5 重量%とじた以外は
実施例1と同様にして本発明の被覆光ファイノイを作製
した。本実施例でのシリカ粉末添加外層樹脂の粘度は2
3℃で3000cps、得られた被覆光ファイバの伝送
損失は23°Cで0 、23 dll/ks。
Example 3 A coated optical fiber of the present invention was produced in the same manner as in Example 1 except that the amount of silica powder added was 0.5% by weight. In this example, the viscosity of the silica powder-added outer layer resin was 2
3000 cps at 3°C, and the transmission loss of the obtained coated optical fiber is 0.23 dll/ks at 23°C.

−60°Cで0 、7 d13/kmと低温域でも良好
であった。
It was good even in the low temperature range with 0.7 d13/km at -60°C.

比較例4 内層径を300μm、外層径を400μmとした以外は
比較例1と同様にして被覆光ファイバを作製したところ
、該被覆光ファイバの伝送損失は23℃で0.23dB
/に翔、−60℃で3 、2 dB/kmと低湿域での
損失が非常に大きかった。
Comparative Example 4 A coated optical fiber was produced in the same manner as Comparative Example 1 except that the inner layer diameter was 300 μm and the outer layer diameter was 400 μm. The transmission loss of the coated optical fiber was 0.23 dB at 23°C.
The loss in the low humidity region was extremely large, 3.2 dB/km at -60°C.

実施例4 内層径を300μm1外層径を400μmとした以外は
実施例1と同様にして本発明の被覆光ファイバを作製し
た(粒子径/外層膜厚= 115G)。得られた′N1
.覆光ファイバの伝送損失は23℃で0゜23 dB/
に繭、−60℃で0.6dB/kl+と低温域でも良好
であった。
Example 4 A coated optical fiber of the present invention was produced in the same manner as in Example 1 except that the inner layer diameter was 300 μm and the outer layer diameter was 400 μm (particle diameter/outer layer thickness = 115G). Obtained 'N1
.. The transmission loss of the covered fiber is 0°23 dB/ at 23°C.
The cocoon was 0.6 dB/kl+ at -60°C, which was good even in the low temperature range.

実施例5 シリカ粉末のf、+、子径を5μmとした以外は実施例
4と同様にして本発明の被覆光ファイバを作製した(粒
子径/外層膜厚=115)ところ、得られた被覆光ファ
イバの伝送損失は23℃で0.23dIs / k r
n、−60℃で0 、25 dB/kmと非常に良好で
あった。
Example 5 A coated optical fiber of the present invention was produced in the same manner as in Example 4 except that the f, + and particle diameters of the silica powder were 5 μm (particle diameter/outer layer thickness = 115). The transmission loss of optical fiber is 0.23dIs/kr at 23℃
n, 0.25 dB/km at -60°C, which was very good.

[発明の効果] 以上説明したように、本発明は粒子径が外層膜m II
A厚の1/10以下であるシリカ粉末とシランカップリ
ング剤を添加した硬いUV樹脂樹脂外層と該外層より柔
らかいUv樹脂内層を設けるという構成により、従来の
被覆光ファイバにおける樹脂への添加によりもたらされ
た諸問題を解決できて、硬化性や被覆強度の低下、塗布
不良なく製造できる、温度安定性に優れた被覆光ファイ
バを実現できたものである。
[Effects of the Invention] As explained above, the present invention has a particle size of outer layer m II
By providing a hard UV resin outer layer containing silica powder and a silane coupling agent that are 1/10 or less of A thickness, and a UV resin inner layer that is softer than the outer layer, it is more effective than adding to the resin in conventional coated optical fibers. By solving the various problems that had arisen, we were able to realize a coated optical fiber with excellent temperature stability that can be manufactured without deterioration in curability or coating strength or coating defects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の被覆光ファイバを説明する断面図、第
2図は一般的なUV樹脂被覆光ファイバの断面図、第3
図はシリカ粉末添加fitと硬化膜厚の関係を示す図表
、第4図は被覆径変動と粒子径との関係を示す図表、第
5図は本発明の被覆光ファイバの装状の1例を示す概略
図である。 1ニガラスフアイバ(光ファイバ)、2:低ヤング率U
V樹脂被覆内層、3:高ヤング率UV樹脂被覆外層、4
:被覆外層3に添加されたシリカ微粉末、s:UVP4
脂被覆内被覆内層I:)材、7:母材送り装置、g:t
Q引炉、9:線引装置、】Oニガラスファイバ、11.
13 :塗布装置、12.14 :紫外線照射装置、1
5:2層被覆光ファイバ、16:引取りキャプスタン、
17:巻取り装置。
FIG. 1 is a cross-sectional view explaining the coated optical fiber of the present invention, FIG. 2 is a cross-sectional view of a general UV resin-coated optical fiber, and FIG.
The figure is a graph showing the relationship between silica powder addition fit and cured film thickness, Figure 4 is a graph showing the relationship between coating diameter variation and particle size, and Figure 5 is an example of the wrapping of the coated optical fiber of the present invention. FIG. 1 Ni glass fiber (optical fiber), 2: Low Young's modulus U
V resin coating inner layer, 3: high Young's modulus UV resin coating outer layer, 4
: Fine silica powder added to outer coating layer 3, s: UVP4
Grease coating inner coating layer I:) Material, 7: Base material feeding device, g: t
Q drawing furnace, 9: drawing device, ] O glass fiber, 11.
13: Coating device, 12.14: Ultraviolet irradiation device, 1
5: double-layer coated optical fiber, 16: take-off capstan,
17: Winding device.

Claims (2)

【特許請求の範囲】[Claims] (1)ガラスファイバ外周に紫外線硬化型樹脂からなる
柔らかい内層と紫外線硬化型樹脂からなる硬い外層を有
してなる被覆光ファイバにおいて、該外層中にその粒子
径が該外層膜厚の1/10以下であるシリカ粉末を含有
することを特徴とする被覆光ファイバ。
(1) In a coated optical fiber having a soft inner layer made of an ultraviolet curable resin and a hard outer layer made of an ultraviolet curable resin around the outer periphery of the glass fiber, the particle diameter in the outer layer is 1/10 of the thickness of the outer layer. A coated optical fiber characterized by containing silica powder as follows.
(2)ガラスファイバ外周に紫外線硬化型樹脂からなる
柔らかい内層と紫外線硬化型樹脂からなる硬い外層を有
してなる被覆光ファイバにおいて、該外層中にその粒子
径が該外層膜厚の1/10以下であるシリカ粉末及びシ
ランカップリング剤を含有することを特徴とする被覆光
ファイバ。
(2) In a coated optical fiber having a soft inner layer made of an ultraviolet curable resin and a hard outer layer made of an ultraviolet curable resin around the outer periphery of the glass fiber, the particle diameter in the outer layer is 1/10 of the thickness of the outer layer. A coated optical fiber characterized by containing the following silica powder and silane coupling agent.
JP63221469A 1988-09-06 1988-09-06 Coated optical fiber Pending JPH0269706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63221469A JPH0269706A (en) 1988-09-06 1988-09-06 Coated optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63221469A JPH0269706A (en) 1988-09-06 1988-09-06 Coated optical fiber

Publications (1)

Publication Number Publication Date
JPH0269706A true JPH0269706A (en) 1990-03-08

Family

ID=16767203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63221469A Pending JPH0269706A (en) 1988-09-06 1988-09-06 Coated optical fiber

Country Status (1)

Country Link
JP (1) JPH0269706A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010511770A (en) * 2006-12-05 2010-04-15 ディーエスエム アイピー アセッツ ビー.ブイ. Radiation curable coating composition
WO2020040223A1 (en) * 2018-08-22 2020-02-27 住友電気工業株式会社 Optical fiber
WO2020071544A1 (en) * 2018-10-04 2020-04-09 住友電気工業株式会社 Resin composition and optical fiber
WO2020171083A1 (en) * 2019-02-18 2020-08-27 住友電気工業株式会社 Resin composition for covering optical fiber
WO2020171082A1 (en) * 2019-02-18 2020-08-27 住友電気工業株式会社 Optical fiber
JP2020197655A (en) * 2019-06-04 2020-12-10 住友電気工業株式会社 Optical fiber cable
WO2020250838A1 (en) * 2019-06-11 2020-12-17 住友電気工業株式会社 Resin composition, optical fiber, and method for producing optical fiber
JPWO2020255569A1 (en) * 2019-06-18 2020-12-24
JPWO2020255570A1 (en) * 2019-06-18 2020-12-24
JP2020204752A (en) * 2019-06-19 2020-12-24 住友電気工業株式会社 Optical fiber cable
WO2020256019A1 (en) * 2019-06-19 2020-12-24 住友電気工業株式会社 Optical fiber cable
JP2022097553A (en) * 2017-12-11 2022-06-30 住友電気工業株式会社 Resin composition for secondary resin layer of optical fiber
US11629269B2 (en) 2018-04-02 2023-04-18 Sumitomo Electric Industries, Ltd. Resin composition, secondary coating material for optical fiber, and optical fiber
US11914186B2 (en) 2018-04-16 2024-02-27 Sumitomo Electric Industries, Ltd. Optical fiber

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010511770A (en) * 2006-12-05 2010-04-15 ディーエスエム アイピー アセッツ ビー.ブイ. Radiation curable coating composition
KR101334427B1 (en) * 2006-12-05 2013-12-02 디에스엠 아이피 어셋츠 비.브이. Radiation-curable coating composition
JP2022097553A (en) * 2017-12-11 2022-06-30 住友電気工業株式会社 Resin composition for secondary resin layer of optical fiber
US11629269B2 (en) 2018-04-02 2023-04-18 Sumitomo Electric Industries, Ltd. Resin composition, secondary coating material for optical fiber, and optical fiber
US11914186B2 (en) 2018-04-16 2024-02-27 Sumitomo Electric Industries, Ltd. Optical fiber
US11603331B2 (en) 2018-08-22 2023-03-14 Sumitomo Electric Industries, Ltd. Optical fiber
JPWO2020040223A1 (en) * 2018-08-22 2021-08-26 住友電気工業株式会社 Optical fiber
WO2020040223A1 (en) * 2018-08-22 2020-02-27 住友電気工業株式会社 Optical fiber
WO2020071544A1 (en) * 2018-10-04 2020-04-09 住友電気工業株式会社 Resin composition and optical fiber
JPWO2020071544A1 (en) * 2018-10-04 2021-09-02 住友電気工業株式会社 Resin composition and optical fiber
WO2020171082A1 (en) * 2019-02-18 2020-08-27 住友電気工業株式会社 Optical fiber
WO2020171083A1 (en) * 2019-02-18 2020-08-27 住友電気工業株式会社 Resin composition for covering optical fiber
JPWO2020171082A1 (en) * 2019-02-18 2021-12-16 住友電気工業株式会社 Optical fiber
JPWO2020171083A1 (en) * 2019-02-18 2021-12-16 住友電気工業株式会社 Resin composition for optical fiber coating
JP2020197655A (en) * 2019-06-04 2020-12-10 住友電気工業株式会社 Optical fiber cable
WO2020250838A1 (en) * 2019-06-11 2020-12-17 住友電気工業株式会社 Resin composition, optical fiber, and method for producing optical fiber
WO2020255570A1 (en) * 2019-06-18 2020-12-24 住友電気工業株式会社 Optical fiber
JPWO2020255570A1 (en) * 2019-06-18 2020-12-24
US11472735B2 (en) 2019-06-18 2022-10-18 Sumitomo Electric Industries, Ltd. Optical fiber
WO2020255569A1 (en) * 2019-06-18 2020-12-24 住友電気工業株式会社 Optical fiber
JPWO2020255569A1 (en) * 2019-06-18 2020-12-24
US11960115B2 (en) 2019-06-18 2024-04-16 Sumitomo Electric Industries, Ltd. Optical fiber
WO2020256019A1 (en) * 2019-06-19 2020-12-24 住友電気工業株式会社 Optical fiber cable
JP2020204752A (en) * 2019-06-19 2020-12-24 住友電気工業株式会社 Optical fiber cable
US11762161B2 (en) 2019-06-19 2023-09-19 Sumitomo Electric Industries, Ltd. Optical fiber cable

Similar Documents

Publication Publication Date Title
JPH0269706A (en) Coated optical fiber
JP5340937B2 (en) Manufacturing method of plastic lens
JPH01133011A (en) Optical fiber with synthetic resin coating and manufacture thereof
AU671517B2 (en) Coated optical fiber unit
WO2008029488A1 (en) Optical fiber core and optical fiber tape core
JP2836285B2 (en) Coated optical fiber
KR101066713B1 (en) Fine particle dispersion composition, optical component, optical film laminate, polarization splitting device, and method for manufacturing the optical component
JP2008224744A (en) Optical fiber
KR101051518B1 (en) Optical fiber having high hardenable primary coating layer and manufacturing method thereof
CA1276845C (en) Method of manufacturing an optical fibre
JP6858216B2 (en) Optical fiber and its manufacturing method
JPH0329907A (en) Coated optical fiber
US6859600B2 (en) Coated optical fiber and optical fiber ribbon and method for the fabrication thereof
US5246768A (en) Multilayer coating for polycarbonate substrate and process for preparing same
JPS63151648A (en) Production of coated optical fiber
JPH02118608A (en) Coated optical fiber tape
US6834147B2 (en) Thin conductor ribbon
JPH01196009A (en) Optical fiber
CN218115338U (en) Wear-resisting high printing opacity lens protection film and lens protection architecture
KR102211801B1 (en) Organic-inorganic adhesive composition and gas barrier film including the same
JPS5917507A (en) Fiber for optical transmission
CN104950380B (en) A kind of optical fiber
JPH02238411A (en) Fiber for light transmission
JPH09138330A (en) High-strength optical fiber cord
JPH1010379A (en) High-strength optical fiber cord