JPH0269192A - Production of glycoside using enzyme - Google Patents

Production of glycoside using enzyme

Info

Publication number
JPH0269192A
JPH0269192A JP21978588A JP21978588A JPH0269192A JP H0269192 A JPH0269192 A JP H0269192A JP 21978588 A JP21978588 A JP 21978588A JP 21978588 A JP21978588 A JP 21978588A JP H0269192 A JPH0269192 A JP H0269192A
Authority
JP
Japan
Prior art keywords
sugar
organic solvent
galactose
galactosidase
glycoside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21978588A
Other languages
Japanese (ja)
Inventor
Toru Watari
渡 徹
Hidesue Yokomichi
秀季 横道
Kazuhiro Nakamura
和広 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP21978588A priority Critical patent/JPH0269192A/en
Publication of JPH0269192A publication Critical patent/JPH0269192A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To obtain a glycoside having surface activity and physiological activity by reacting a specific sugar donor and a sugar acceptor composed of a straight- chain aliphatic alcohol, etc., with beta-galactosidase in an aqueous system and/or an aqueous solution of an organic solvent. CONSTITUTION:A sugar donor (A) is selected from disaccharides or polysaccharides having galactose at the non-reducing terminal (e.g., galactose, lactose, etc.). A sugar acceptor (B) is selected from straight-chain, branched-chain or aliphatic alcohols such as methanol. A beta-galactosidase (C) originated from Aspergillus oryzae is selected to obtain a component C having high sugar transition activity and resistant to inactivation in organic solvent. The components A and B are dissolved at a molar ratio of 1:(5-50) in an aqueous system having a water-content of 10-70wt.% or in an aqueous solution of an organic solvent such as acetone to obtain a solution D. The component C is added to the component D and made to react at about pH5 and 5-70 deg.C for 3-500min to produce the objective glucoside.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酵素による有用な界面活性能および生理活性能
を有するグリコシドの製造に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to the production of glycosides having useful surfactant and bioactive abilities using enzymes.

(従来の技術およびその問題点) 配糖体系界面活性剤としてアルキルサツカライド類が知
られているが、このアルキルサツカライドの機能として
高気泡性、高洗浄性、高泡安定性、低刺激性、高生分解
性などが上げられ注目されている。
(Prior art and its problems) Alkyl saccharides are known as glycoside surfactants, but the functions of these alkyl saccharides include high foaming properties, high detergency, high foam stability, and low irritation. It is attracting attention due to its high biodegradability.

しかし、これらアルキルサツカライド類の化学合成法に
よる製造においては、反応選択性が低いこと、反応が多
段階であること、副生物を与える場合が多いことなどの
問題点があり、得られた生成物を製品に配合する場合そ
の製品の品質に大きな影響を及ぼす可能性がある。
However, the production of these alkyl saccharides by chemical synthesis methods has problems such as low reaction selectivity, multi-step reactions, and often by-products. When a substance is added to a product, it may have a significant impact on the quality of the product.

一方酵素合成法では、反応が選択的に行われること、反
応が1段階であること、副生成物が少ないことなどの利
点がある。このような酵素合成法は種々検討されており
、例えば、糖供与体としてアリールグリコシドを用い、
有機溶媒水溶液中でグリコシターゼのトランスグリコシ
デーシランを利用する方法が提案されている(特公昭5
9−28400)、 Lかし、アリールグリコシドを糖
供与体として用いた場合子り−ルグリコシドが工業的生
産レベルでのコストが非常に高くなること、及びアリー
ルグリコシドが物性的に不安定で分解し易いことなどの
難点がある。
On the other hand, the enzymatic synthesis method has advantages such as selective reaction, one-step reaction, and fewer by-products. Various such enzymatic synthesis methods have been studied, for example, using aryl glycosides as sugar donors,
A method using transglycoside silane of glycosidase in an aqueous solution of an organic solvent has been proposed (Japanese Patent Publication No. 5
9-28400), when aryl glycosides are used as sugar donors, the cost at an industrial production level is extremely high, and aryl glycosides are physically unstable and decompose. There are some drawbacks, such as being easy.

(問題点を解決するための手段) したがって、本発明は有用な界面活性能および生理活性
能を有するグリコシドを水系および/または有機溶媒水
溶液系で酵素により製造する方法を提供することを目的
とする。
(Means for Solving the Problems) Therefore, an object of the present invention is to provide a method for producing a glycoside having useful surfactant and bioactive abilities using an enzyme in an aqueous system and/or an aqueous organic solvent system. .

本発明者らは、上述した状況に鑑み酵素を利用したグリ
コシドの合成を鋭意研究した結果、酵素を用い糖供与体
として単糖および/または2糖以上のIJ!類を用いる
ことにより本発明を完成するに至った。
In view of the above-mentioned situation, the present inventors have conducted extensive research into the synthesis of glycosides using enzymes, and have found that monosaccharide and/or disaccharide or more IJ! The present invention was completed by using the following.

即ち本発明はガラクトース又は2糖以上の糖類で非還元
性末端にガラクトースを含む糖類を糖供与体とし、直鎖
、分岐または脂肪族のアルコール類を糖受容体として、
水系および/または有機溶媒水溶液系においてβ−ガラ
クトシダーゼを用いて反応させてグリコシドを得ること
を特徴とするグリコシドの製造方法を提供するものであ
る。
That is, the present invention uses galactose or a disaccharide or more saccharide containing galactose at its non-reducing end as a sugar donor, and uses a linear, branched or aliphatic alcohol as a sugar acceptor.
The present invention provides a method for producing glycosides, which is characterized in that the glycosides are obtained by reaction using β-galactosidase in an aqueous system and/or an aqueous organic solvent system.

本発明において非還元性末端とは多wi分子において、
その構成単糖の還元基が遊離していない方の末端をいう
In the present invention, a non-reducing end refers to a multi-wi molecule,
It refers to the end of the constituent monosaccharide whose reducing group is not free.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明では水系および/または有機溶媒水溶液系におい
て酵素を使用することによりグリコシドを製造すること
ができる。本発明に於て糖供与体として用いられる非還
元末端にガラクトースを含む糖類としては次の様なもの
がある。
In the present invention, glycosides can be produced by using enzymes in an aqueous system and/or an aqueous organic solvent system. Examples of sugars containing galactose at the non-reducing end that can be used as sugar donors in the present invention include the following.

単糖・・・ガラクトース 2糖・・・ラクトース、カラビオース、ラクトサミンな
ど 3t!以上・・・ノイラミンラクトース、ラクト−Nテ
トラオース、アガロース、ガラ クタン、カラーギーナン また、糖受容体として用いるアルコール類は第1級、第
2級、第3級アルコールおよび2価以上のアルコール類
である。例えば、メタノール、エタノール、n−プロパ
ツール、イソプロパツール、オクタツール、n−デカノ
ール、シクロヘキサノール、グリセロール、ベンジルア
ルコールなどが挙げられる。
Monosaccharides: Galactose Disaccharides: 3 tons of lactose, carabiose, lactosamine, etc.! Above...neuramin lactose, lacto-N-tetraose, agarose, galactan, carrageenan, and alcohols used as sugar acceptors include primary, secondary, tertiary alcohols, and dihydric or higher alcohols. Examples include methanol, ethanol, n-propanol, isopropanol, octatool, n-decanol, cyclohexanol, glycerol, benzyl alcohol, and the like.

本発明に用いる酵素であるβ−ガラクトシダーゼは、有
機溶媒中で完全に失活しない物であれば如何なる起源の
ものでもよいが糖転移活性の高いものが好ましくアスペ
ルギルスオリザエ(Aspergillus oryz
ae)、タルイベロマイセスラクチス(Kluyver
omyces 1actis)などを起源とするβ−ガ
ラクトシダーゼなどが挙げられる。
The enzyme β-galactosidase used in the present invention may be of any origin as long as it is not completely inactivated in an organic solvent, but those with high transglycosylation activity are preferred.
ae), Thaluberomyces lactis (Kluyver)
Examples include β-galactosidase originating from S. omyces 1actis).

本発明において、糖供与体、すなわち単糖以上のII類
が非還元末端にガラクトースを含む糖類と、糖受容体で
あるアルコール類との反応割合は1illl molに
対しアルコール[1mo1以上、望ましくは、1:5−
1:50である。
In the present invention, the reaction ratio of the sugar donor, i.e., a monosaccharide or higher Class II saccharide containing galactose at the non-reducing end, and the sugar acceptor, alcohol, is 1 mol to 1 mol of alcohol [1 mol or more, preferably, 1:5-
It was 1:50.

本発明の反応に於て有機溶媒水溶液系に使用できる有機
溶媒としては、アセトニトリル、アセトン、ジオキサン
、ジメチルスルホキシド、ジメチルホルムアミド、酢酸
エチル、四塩化炭素、ベンゼン、クロロホルム、ヘキサ
ンなどがある。
Examples of organic solvents that can be used in the organic solvent aqueous solution system in the reaction of the present invention include acetonitrile, acetone, dioxane, dimethyl sulfoxide, dimethyl formamide, ethyl acetate, carbon tetrachloride, benzene, chloroform, and hexane.

反応は反応系に糖が溶解するのに必要な水分の存在下で
行なうのが望ましい。水分は全反応系に対して10〜7
0%、好ましくは20〜55%程度がよい。
The reaction is preferably carried out in the presence of water necessary for dissolving the sugar in the reaction system. Water content is 10 to 7 for the entire reaction system.
0%, preferably about 20 to 55%.

また、反応pHは通常3−9の間で選択すれば良いが、
アスペルギルスオリザエのβ−ガラクトシダーゼを使用
する場合は、pus、o付近で反応させるのが望ましい
。反応時間は、通常3−500分であり、反応温度は5
−70″Cである。
In addition, the reaction pH can usually be selected between 3-9,
When Aspergillus oryzae β-galactosidase is used, it is desirable to carry out the reaction near pus and o. The reaction time is usually 3-500 minutes, and the reaction temperature is 5
-70″C.

(実施例) 以下、本発明を実施例により具体的に説明する。(Example) Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 〔ラクトースとシクロヘキサノールよりシクロへキシル
−β−D−ガラクトシドの合成〕ラクトース1.80 
g (5mmol)を0.Inリン酸カリウム緩衝液(
pH5,0)11−に溶解し、これにシクロヘキサノー
ル15.0 gとアセトニトリル10.0gを加え、上
記リン酸緩衝液1−にアスペルギルスオリザエ由来のβ
−ガラクトシダーゼ(シグマ社製)20■(1060)
を溶解したものを加え、撹拌し、30°Cで3時間反応
させた。これに、メタノールを20m1加え酵素を沈澱
させ遠心分離し液層を凍結乾燥させ、トリメチルシリル
化し、ガスクロマトグラフィーおよびGC−MASによ
りシクロへキシル−β−〇−ガラクトシドの生成を確認
した。
Example 1 [Synthesis of cyclohexyl-β-D-galactoside from lactose and cyclohexanol] Lactose 1.80
g (5 mmol) to 0. In potassium phosphate buffer (
15.0 g of cyclohexanol and 10.0 g of acetonitrile were added to the solution, and β from Aspergillus oryzae was added to the above phosphate buffer solution 1-.
-Galactosidase (manufactured by Sigma) 20■ (1060)
A dissolved solution was added, stirred, and reacted at 30°C for 3 hours. To this, 20 ml of methanol was added to precipitate the enzyme, centrifuged, the liquid layer was freeze-dried, trimethylsilylated, and the production of cyclohexyl-β-〇-galactoside was confirmed by gas chromatography and GC-MAS.

実施例2 〔ラクトースとn−デシルアルコールより n−デシル
−β−D−ガラクトシドの合成〕ラクトース1.80 
g (5ma+ol)を0.1とリン酸カリウム緩衝液
(pH5,0)36ra1に溶解し、これにn−デシル
アルコール23.7gとアセトニトリル10.0 gを
加え、上記リン酸緩衝液0.1 rnlにアスペルギル
スオリザエ由来のβ−ガラクトシダーゼ20■(106
0)を溶解したものを加え激しく撹拌し、30°Cで2
00時間反応せた。これに、酢酸エチル50117と水
40−を加えよく混合し、静置後玉層を分取し、有機溶
媒をトッピングし、得られた固形物をクロロホルム−メ
タノールの8:2の混合溶媒にてシリカゲルカラムにか
け、n−デシル−β−D−ガラクトシド相当分画を得た
。これをロータリーエバポレーターにかけ溶媒を留去し
て得られた固形物をトリメチルシリル化し、ガスクロマ
トグラフィー及びGC−MASにかけn−デシル−β−
D−ガラクトシドの生成を確認した。得られた生成物は
0.1 gであり、モル収率5.6%であった。
Example 2 [Synthesis of n-decyl-β-D-galactoside from lactose and n-decyl alcohol] Lactose 1.80
Dissolve 0.1g (5ma+ol) in 36ra1 of potassium phosphate buffer (pH 5,0), add 23.7g of n-decyl alcohol and 10.0g of acetonitrile, and dissolve 0.1g of the above phosphate buffer. β-galactosidase 20 (106) derived from Aspergillus oryzae in rnl
0) was added, stirred vigorously, and heated at 30°C for 2 hours.
The reaction was carried out for 00 hours. To this, 50117 ethyl acetate and 40% water were added and mixed well. After standing still, the bead layer was collected, topped with an organic solvent, and the obtained solid was dissolved in a mixed solvent of chloroform and methanol at a ratio of 8:2. A silica gel column was applied to obtain a fraction corresponding to n-decyl-β-D-galactoside. This was applied to a rotary evaporator to remove the solvent, and the resulting solid was trimethylsilylated and subjected to gas chromatography and GC-MAS to n-decyl-β-
Production of D-galactoside was confirmed. The product obtained was 0.1 g, with a molar yield of 5.6%.

実施例3 〔ガラクトースとシクロヘキサノールよりシクロへキシ
ル−β−D−ガラクトシドの合成〕ガラクトース0.9
0 g (511mol) を0.IHリン酸カリウム
緩衝液(pH5,0)11−に溶解し、これにシクロヘ
キサノール15.0 gとアセトニトリルIQ、Ogを
加え、上記リン酸緩衝液1@lにアスペルギルスオリザ
エ由来のβ−ガラクトシダーゼ20■(10611)を
溶解したものを加え、撹拌し、30°Cで3時間反応さ
せた。これに、メタノールを20−加え、酵素を沈澱さ
せ、遠心分離し、液層を凍結乾燥させ、トリメチルシリ
ル化しガスクロマトグラフィーおよびGC−MASによ
りシクロへキシル−β−D−ガラクトシドの生成を確認
した。
Example 3 [Synthesis of cyclohexyl-β-D-galactoside from galactose and cyclohexanol] Galactose 0.9
0 g (511 mol) to 0. Dissolve in IH potassium phosphate buffer (pH 5,0) 11-, add 15.0 g of cyclohexanol and acetonitrile IQ, Og, and add β-galactosidase derived from Aspergillus oryzae to the above phosphate buffer 1@l. A solution of 20■ (10611) was added, stirred, and reacted at 30°C for 3 hours. To this, methanol was added for 20 minutes to precipitate the enzyme, centrifugation was performed, the liquid layer was freeze-dried, trimethylsilylated, and the production of cyclohexyl-β-D-galactoside was confirmed by gas chromatography and GC-MAS.

実施例4 〔ガラクトースとれ一デシルアルコールより n−デシ
ル−β−D−ガラクトシドの合成〕ガラクトース0.9
0 g (5n5ol)を0.1Mリン酸カリウム緩衝
液(pH5,0)36mjに溶解し、これにn−デシル
アルコール23.7 gとアセトニトリル10.0 g
を加え、上記リン酸緩衝液0.1 @1にアスペルギル
スオリザエ由来のβ−ガラクトシダーゼ20■(106
11)を溶解したものを加え、30°Cで200時間反
応せた。これに、酢酸エチル50m7と水40@Iを加
えよく混合し、静置後玉層を分取し、有機溶媒をトッピ
ングし得られた固形物をクロロホルム−メタノールの8
:2の混合溶媒にてシリカゲルカラムにかけn−デシル
−β−D−ガラクトシド相当分画をロータリーエバポレ
ーターにかけ、溶媒を留去した。得られた固形物をトリ
メチルシリル化しガスクロマトグラフィーおよびGC−
MASにかけn−デシル−β−D−ガラクトシドの生成
を確認した。
Example 4 [Synthesis of n-decyl-β-D-galactoside from galactose and monodecyl alcohol] Galactose 0.9
0 g (5n5ol) was dissolved in 36mj of 0.1M potassium phosphate buffer (pH 5,0), and to this was added 23.7 g of n-decyl alcohol and 10.0 g of acetonitrile.
was added to the above phosphate buffer solution 0.1@1 and β-galactosidase 20μ (106
11) was added and reacted at 30°C for 200 hours. To this, 50 m7 of ethyl acetate and 40 m7 of water were added and mixed well. After standing, the bead layer was taken out, and the solid material was topped with an organic solvent and dissolved in chloroform-methanol.
: A mixed solvent of 2 was applied to a silica gel column, and the fraction corresponding to n-decyl-β-D-galactoside was applied to a rotary evaporator, and the solvent was distilled off. The obtained solid was trimethylsilylated and subjected to gas chromatography and GC-
The production of n-decyl-β-D-galactoside was confirmed by MAS.

Claims (1)

【特許請求の範囲】[Claims] ガラクトース又は2糖以上の糖類で非還元性末端にガラ
クトースを含む糖類を糖供与体とし、直鎖、分岐または
脂肪族のアルコール類を糖受容体として、水系および/
または有機溶媒水溶液系においてβ−ガラクトシダーゼ
を用いて反応させてグリコシドを得ることを特徴とする
グリコシドの製造方法。
Galactose or a saccharide of two or more sugars containing galactose at the non-reducing end is used as the sugar donor, and a straight chain, branched or aliphatic alcohol is used as the sugar acceptor.
Alternatively, a method for producing a glycoside, which is characterized in that a glycoside is obtained by reaction using β-galactosidase in an organic solvent aqueous solution system.
JP21978588A 1988-09-02 1988-09-02 Production of glycoside using enzyme Pending JPH0269192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21978588A JPH0269192A (en) 1988-09-02 1988-09-02 Production of glycoside using enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21978588A JPH0269192A (en) 1988-09-02 1988-09-02 Production of glycoside using enzyme

Publications (1)

Publication Number Publication Date
JPH0269192A true JPH0269192A (en) 1990-03-08

Family

ID=16740973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21978588A Pending JPH0269192A (en) 1988-09-02 1988-09-02 Production of glycoside using enzyme

Country Status (1)

Country Link
JP (1) JPH0269192A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001014575A1 (en) * 1999-08-19 2001-03-01 Showa Sangyo Co., Ltd. Process for producing glycosides
JP2007176893A (en) * 2005-12-28 2007-07-12 Kao Corp Method for producing alkylgalactoside

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001014575A1 (en) * 1999-08-19 2001-03-01 Showa Sangyo Co., Ltd. Process for producing glycosides
US6797496B1 (en) 1999-08-19 2004-09-28 Showa Sangyo Co., Ltd. Process for producing glycosides
JP4504607B2 (en) * 1999-08-19 2010-07-14 焼津水産化学工業株式会社 Method for producing glycoside
JP2007176893A (en) * 2005-12-28 2007-07-12 Kao Corp Method for producing alkylgalactoside

Similar Documents

Publication Publication Date Title
DE69526182T2 (en) Process for the preparation of trehalose derivatives
EA028927B1 (en) Method of producing a composition containing galacto-oligosaccharides
KR20000045694A (en) Method for producing 20(s)-ginsenoside rh2
JPH0269192A (en) Production of glycoside using enzyme
Apparu et al. Chemoenzymatic synthesis of 6ω-S-α-d-glucopyranosyl-6ω-thiomaltooligosaccharides: their binding to Aspergillus niger glucoamylase G1 and its starch-binding domain
KR100186757B1 (en) Preparation process of 20(s)-ginsenocide rh1 and 20(s)-protopanaxtrlyol
Freimund et al. Enzymatic synthesis of D-glucosone 6-phosphate (D-arabino-hexos-2-ulose 6-(dihydrogen phosphate)) and NMR analysis of its isomeric forms
US5612203A (en) Process for producing saccharides
Filice et al. A chemo-biocatalytic approach in the synthesis of β-O-naphtylmethyl-N-peracetylated lactosamine
JP4504607B2 (en) Method for producing glycoside
JP2750374B2 (en) Novel production method of β-glucooligosaccharide by oxygen method
JP3124356B2 (en) Dextran production method
KR19980027403A (en) Method for preparing 20 (S) -ginsenoside Rg₂
Bonnet et al. Oxidation of galactose and derivatives catalysed by galactose oxidase: structure and complete assignments of the NMR spectra of the main product
JP2832746B2 (en) Method for producing glycosphingolipid
Hosaka et al. Chemoenzymatic synthesis of sucuronic acid using d-glucurono-6, 3-lactone and sucrose as raw materials, and properties of the product
JPH0670789A (en) Production of glyceroglycolipid
JP3045509B2 (en) Method for producing mannose-containing oligosaccharides
JP3200129B2 (en) Method for producing α-glucosyl sugar compound
US5403726A (en) Enzymatic process for producing a galactosylβ1,3glycal disaccaride using β-galactosidase
JP3916682B2 (en) Method for producing glycoside
JP3630378B2 (en) Method for producing galactosylglycerols
de Santiago et al. Enzymatic synthesis of disaccharides by β-galactosidase-catalyzed glycosylation of a glycocluster
Fujita et al. Enzymatic preparation of specifically modified linear maltooligosaccharides through Taka-amylase A-catalyzed hydrolysis of 6-O-arenesulfonyl-. GAMMA.-cyclodextrins.
JP2606854B2 (en) Method for producing isoprimeverose