JPH026888B2 - - Google Patents

Info

Publication number
JPH026888B2
JPH026888B2 JP58236250A JP23625083A JPH026888B2 JP H026888 B2 JPH026888 B2 JP H026888B2 JP 58236250 A JP58236250 A JP 58236250A JP 23625083 A JP23625083 A JP 23625083A JP H026888 B2 JPH026888 B2 JP H026888B2
Authority
JP
Japan
Prior art keywords
concrete
formwork
water
underwater
shutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58236250A
Other languages
Japanese (ja)
Other versions
JPS60129325A (en
Inventor
Haruo Toyooka
Shinkichi Nishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOSHIKAWA KAIJI KOGYO KK
Original Assignee
YOSHIKAWA KAIJI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOSHIKAWA KAIJI KOGYO KK filed Critical YOSHIKAWA KAIJI KOGYO KK
Priority to JP23625083A priority Critical patent/JPS60129325A/en
Publication of JPS60129325A publication Critical patent/JPS60129325A/en
Publication of JPH026888B2 publication Critical patent/JPH026888B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D15/00Handling building or like materials for hydraulic engineering or foundations
    • E02D15/02Handling of bulk concrete specially for foundation or hydraulic engineering purposes
    • E02D15/06Placing concrete under water

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • Underground Or Underwater Handling Of Building Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はコンクリート被覆による水中防食、
補強法に関し、水中鋼管杭、護岸用鋼矢板等、水
上から水中へ伸びる鋼板の飛沫帯、干満帯付近に
多発する腐食を予防又は補修、あわせて補強する
もので、本発明者がさきに公開した水中スタツド
溶接法と、今回開発した水中型枠へのコンクリー
ト打設方法とによる画期的腐食対策である。まず
今回開発した水中型枠へのコンクリート打設方法
について詳細説明した後、鋼管杭、鋼矢板に対す
る、上記打設方法、スタツド溶接法両者によるこ
の発明の実施態様を説明する。 従来の水中コンクリート工法にはトレミー工
法、コンクリートポンプ工法、底開き箱工法(バ
ケツト工法)、袋詰め工法、KDTトレミー工法、
NUCS工法、ハイドロバルブ工法の七種類があ
る。一々説明する必要はないと思うが、現在、多
用されているのはトレミー工法と、これを改良し
たKDTトレミー工法、そしてコンクリートポン
プ法である。 第1図にトレミー工法の原理を示す。このよう
に水底にコンクリートCを堆積させつゝ、投入管
T先端をその中にさし入れてコンクリートを投入
するため、通常のコンクリートでも、上層以外は
水Wに触れないためセメント分流失による劣化が
ないのである。この第1図の投入管Tを水が入込
めない収縮性のものにしたのがKDTトレミー工
法であり、投入管Tを第2図に示すようにコンク
リートポンプPにつながる鉛直管T′にしたのが
コンクリートポンプ工法である。図のMは型枠を
示す。 コンクリートポンプ工法が最も広く使われてお
り、またこの発明もコンクリートポンプを用いる
ので、このコンクリートポンプ工法を従来技術と
して、その問題点を述べる。 第2図は最も適した所にコンクリートポンプ工
法を用いた図で、ポンプ車から出たホースHの先
に鋼製鉛直管T′を接続し、これを水面W下に下
げ、クレーンのフツクFによつて所要位置に保持
している。実際にはホースHを直接、型枠内へ下
げる場合も多いが、第2図の例は型枠Mの上方に
障害物がないから、長い鉛直管T′を吊下げられ
る。型枠Mの背丈が第1図のように高い場合は、
第1図の投入管Tと同様に、打設コンクリートC
が高まるにつれ、鉛直管T′を吊上げてゆかねば
ならない。そうでないと投入管Tの下端が打設コ
ンクリートCの深い所に埋まり、打設終了後、抜
出しにくゝなるほか、送給圧を高めねば出にくゝ
なる。送給圧を高めると、その反力で鉛直管
T′下端が打設コンクリートから抜け出て、この
種水中打設法の最も嫌う結果、つまりコンクリー
トの水中放出を起こし、再び鉛直管端を下げて打
設コンクリートに埋めると、管内に進入した水を
コンクリート中へ押込むといつた不良原因が一挙
に生ずる。 また型枠Mの上方に例えば第6図、第11図の
ように障害物があるため鉛直管T′を垂下できず、
ホースHを屈曲させ、型枠底部へその先端を垂下
させるとか、鉛直管T′を傾斜させて使う場合も
少くない。ポンプのコンクリート圧送につれ、ホ
ースは大きく揺れ動くので、潜水夫がこれを抑え
るとか、傾斜した鉛直管T′を人力で保持する等、
非近代的な作業も行わねばならない。 この発明の水中型枠へのコンクリート打設方法
は水中型枠の底部にコンクリート導入口とシヤツ
ター又は弁を付ける事により、上述の問題点を一
掃した。コンクリート送給管をさし込める大きな
開口部のある型枠でも、そこから送給管を挿入す
る従来の常識を捨て、型枠底部に導入口を付け、
これにコンクリート送給管を接続する。送給管が
ポンプ圧により振動、揺動する不安が一掃され、
送給管がポンプ圧の反力で抜け出たり、鉛直管
T′の引上げ速度を誤つたりする不安も解消する。 次に図面を参照して、この発明の構成、効果を
説明する。 第3図はこの発明の水中型枠へのコンクリート
打設方法の原理的説明図である。それは水中から
水面上に出る杭、壁等、比較的水平断面積の小さ
なコンクリート構造物を構築するに際し、所要形
状の型枠Mの底部に当る枠板に、予めコンクリー
ト送給管又はホースHを接続できるシヤツター又
は弁つき導入口1を設け、この枠板を用いて水中
の所要位置に型枠Mを組立て上記導入口1にコン
クリートポンプにつながる送給管を接続し、上記
シヤツター1a又は弁を開いてコンクリートCを
圧入することにより、型枠M内の水を下から順
次、コンクリートCに置換える形で押上げ、型枠
M上縁からすべて排出して型枠Mをコンクリート
Cで満たし、上記導入口1のシヤツター1a又は
閉じて送給管Hをはずすのである。 第4図は第3図の打設コンクリートCが型枠M
を満たし、型枠M内の水は無論、水でセメント分
が少くなつた上層コンクリートも型枠M上縁から
溢出させている状態を示す。 従来はコンクリートポンプが強力でも、前述の
ように送給管の振動や反力の増大のため充分強い
圧力を使えなかつたが、この方法によれば幾らで
も強い送給圧力を使える。従つて型枠Mの最も深
い所にコンクリート導入口1が設けられていて
も、ポンプの能力一ぱいの送給圧力を使つてコン
クリートCを型枠Mの頂上まで押上げるよう圧入
することが可能になつたのである。 次に、今回の発明の実施例を第5図以下によつ
て説明する。 第5,6図は海底に立てた鋼管杭2が水面W付
近の飛沫帯、干満帯に腐食穴3を生ずるほど腐食
したゝめ、この発明を適用した実施例説明図で、
コンクリートCによる被覆や、スタツド溶接した
ジベル4、鉄筋5は一部分だけ示している。型枠
Mを当てた外観は第6図に示す。この第5,6図
によつて、この発明の概要を述べると、それは水
面W上の上部構造6から水中へ伸びた鋼管杭2等
鋼板の少くとも飛沫帯、干満帯全域に対し、その
健全な部分随所に、水中スタツド溶接法でジベル
群4を溶着し、そのジベル間を結んで上記全域に
鉄筋5を配設し、コンクリート型枠Mにより全体
を囲んで、型枠M上縁と上記上部構造6下面との
間に小間〓を設け、その型枠M底部外面に予め作
り付けた、シヤツター8又は弁つき導入口1に、
コンクリートポンプにつながる送給管Hを接続固
定してコンクリートを圧入することにより、型枠
M内の水を下から順次、コンクリートCに置換え
る形で押上げ、上記小間〓からすべて排出し、コ
ンクリート表層の不良部分も溢出させた後、上記
シヤツター8又は弁を閉じ、送給管Hをはずし、
養生することを特徴とするコンクリート被覆によ
る水中防食、補強法である。 従来の型枠へのコンクリート投入方法の常識に
よれば、型枠Mの上方に上部構造6(コンクリー
ト床版)があるため、コンクリート送給管の出口
を横から型枠M上縁に固定して、コンクリートを
吐出し落下させるほかない。しかし、型枠Mは組
立て時、水が入つているので、水の中へコンクリ
ートを自由落下させることになる。一応水とコン
クリートが入れかわつても、コンクリートのセメ
ント分の流失、減少により、その品質は極めて悪
い。また流失セメントにより付近を汚損させる。
従つて、水中専用コンクリートを使用しなければ
ならないが、これは高価なだけでなく、粘性が強
いためポンプ内部に固着する傾向があり、作業は
極めて難行する。 しかし、この発明を適用することにより、一般
コンクリートを使用でき、上の困難は一掃され
た。第6図に示すように、この発明によれば型枠
Mはホース導入のための上部開口不要のため、型
枠上縁を上部構造6の下面にまで伸ばすことが可
能になつた。上部構造6下面との間に水が溢出す
る細〓又は局部間〓を設けておけば、第4図のよ
うにコンクリートが型枠Mを満たし、上端間〓か
ら水とコンクリート表層の不良部分が溢出するか
ら、その後、間〓を塞いでやればよい。これで腐
食防止兼補強コンクリートを上部構造に結びつけ
る事も可能になつた。 使用コンクリートは通常のコンクリートで、そ
の組成は、
This invention provides underwater corrosion protection using concrete coating.
Regarding the reinforcement method, it is a method to prevent or repair corrosion that frequently occurs near the splash zone and tidal zone of steel plates that extend from above water to underwater, such as underwater steel pipe piles and steel sheet piles for seawalls, as well as to strengthen them. This is an innovative corrosion countermeasure that uses the newly developed underwater stud welding method and the newly developed method of placing concrete into underwater formwork. First, we will explain in detail the newly developed method for placing concrete into underwater formwork, and then we will explain embodiments of the present invention using both the above-mentioned placing method and stud welding method for steel pipe piles and steel sheet piles. Conventional underwater concrete construction methods include the tremie method, concrete pump method, open-bottom box method (bucket method), bagging method, KDT tremie method,
There are seven types: NUCS method and hydrovalve method. I don't think it's necessary to explain them in detail, but currently the most commonly used methods are the tremie method, the improved KDT tremie method, and the concrete pump method. Figure 1 shows the principle of the tremie method. In this way, while concrete C is deposited at the bottom of the water, the tip of the charging tube T is inserted into it to pour the concrete, so even with ordinary concrete, only the upper layer does not come into contact with water W, so it deteriorates due to cement diversion loss. There is no. The KDT tremie construction method made the charging pipe T shown in Figure 1 a shrinkable material that prevents water from entering, and the charging pipe T was made into a vertical pipe T' connected to the concrete pump P as shown in Figure 2. This is the concrete pump method. M in the figure indicates the formwork. Since the concrete pump construction method is the most widely used and this invention also uses a concrete pump, this concrete pump construction method will be considered as a prior art and its problems will be described. Figure 2 is a diagram using the concrete pump construction method in the most suitable location, where a steel vertical pipe T' is connected to the end of the hose H coming out of the pump truck, lowered below the water surface W, and then hooked onto the crane hook F. It is held in place by the In reality, the hose H is often directly lowered into the formwork, but in the example shown in Figure 2, there are no obstacles above the formwork M, so a long vertical pipe T' can be suspended. If the height of formwork M is tall as shown in Figure 1,
Similar to the charging pipe T in Figure 1, the poured concrete C
As the height increases, the vertical pipe T′ must be lifted. Otherwise, the lower end of the charging pipe T will be buried deep in the poured concrete C, making it difficult to pull it out after pouring, and it will also be difficult to pull it out unless the feed pressure is increased. When the feed pressure is increased, the reaction force causes the vertical pipe to
If the lower end of the vertical pipe is lowered again and buried in the poured concrete, the water that has entered the pipe will be removed from the concrete. If you push it inside, the causes of the defect will occur all at once. Also, because there are obstacles above the formwork M, as shown in Figures 6 and 11, the vertical pipe T' cannot be hung down.
There are many cases in which the hose H is bent and its tip hangs down to the bottom of the formwork, or the vertical pipe T' is used at an angle. As the pump pumps concrete, the hose swings around a lot, so divers have to restrain it, and the slanted vertical pipe T′ has to be held in place by hand.
Non-modern work must also be done. The method of placing concrete in an underwater form according to the present invention eliminates the above-mentioned problems by providing a concrete inlet and a shutter or valve at the bottom of the underwater form. Even if the formwork has a large opening into which a concrete feed pipe can be inserted, we abandon the conventional wisdom of inserting the feed pipe from there and add an inlet at the bottom of the form.
Connect the concrete feed pipe to this. Eliminates concerns about the feed pipe vibrating or rocking due to pump pressure.
If the feed pipe comes out due to the reaction force of the pump pressure, or if the vertical pipe
This also eliminates the fear of erroneously determining the pulling speed of T'. Next, the configuration and effects of the present invention will be explained with reference to the drawings. FIG. 3 is a diagram illustrating the principle of the method of placing concrete into underwater formwork according to the present invention. When constructing concrete structures with a relatively small horizontal cross-sectional area, such as piles and walls that protrude from the water above the water surface, concrete feed pipes or hoses H are installed in advance on the frame plate that is the bottom of the formwork M of the desired shape. An inlet 1 with a shutter or valve that can be connected is provided, a formwork M is assembled at a desired position underwater using this frame plate, a feed pipe connected to the concrete pump is connected to the inlet 1, and the shutter 1a or valve is connected. By opening it and press-fitting concrete C, the water in the formwork M is pushed up from the bottom, replacing it with concrete C, and all of it is discharged from the upper edge of the formwork M, filling the formwork M with concrete C. The shutter 1a of the introduction port 1 is closed or the feed pipe H is removed. Figure 4 shows that the poured concrete C in Figure 3 is the formwork M.
is satisfied, and not only the water in the formwork M but also the upper layer concrete whose cement content has been reduced due to water overflows from the upper edge of the formwork M. Conventionally, even if the concrete pump was powerful, it was not possible to use a sufficiently strong pressure due to the vibration of the feed pipe and the increase in reaction force as described above, but with this method, any strong feed pressure can be used. Therefore, even if the concrete inlet port 1 is provided at the deepest point of the formwork M, it is possible to press-fit the concrete C to the top of the formwork M using the full supply pressure of the pump. It was summer. Next, an embodiment of the present invention will be described with reference to FIG. 5 and subsequent figures. Figures 5 and 6 are explanatory diagrams of an embodiment in which the present invention is applied because the steel pipe pile 2 erected on the seabed has corroded to the extent that corrosion holes 3 are formed in the splash zone and tidal zone near the water surface W.
Only a portion of the concrete C covering, stud welded dowel 4, and reinforcing bars 5 are shown. The appearance with formwork M applied is shown in Figure 6. The outline of the present invention will be described with reference to FIGS. 5 and 6. The present invention is designed to protect the integrity of at least the splash zone and the entire tidal zone of the second grade steel plate of the steel pipe pile extending into the water from the superstructure 6 above the water surface W. Groups of dowels 4 are welded by underwater stud welding in various parts, and reinforcing bars 5 are placed in the above area by connecting the dowels, and the whole is surrounded by a concrete formwork M, and the upper edge of the formwork M and the above A booth is provided between the lower surface of the upper structure 6 and a shutter 8 or an inlet 1 with a valve is installed in advance on the outer surface of the bottom of the formwork M.
By connecting and fixing the feed pipe H leading to the concrete pump and press-fitting concrete, the water in the formwork M is pushed up from the bottom, replacing it with concrete C, and all of it is drained from the booth After the defective part of the surface layer is also overflowed, close the shutter 8 or the valve, remove the feed pipe H,
This is an underwater corrosion protection and reinforcement method using a concrete coating that is characterized by curing. According to the conventional method of pouring concrete into formwork, since there is a superstructure 6 (concrete slab) above formwork M, the outlet of the concrete feed pipe should be fixed to the upper edge of formwork M from the side. There is no other choice but to discharge the concrete and let it fall. However, since the formwork M contains water during assembly, the concrete will fall freely into the water. Even if the water and concrete are replaced, the quality of the concrete is extremely poor because the cement content of the concrete is washed away or reduced. In addition, the surrounding area will be contaminated by washed away cement.
Therefore, it is necessary to use submersible concrete, which is not only expensive but also has a tendency to stick inside the pump due to its strong viscosity, making the work extremely difficult. However, by applying this invention, ordinary concrete can be used, and the above difficulties have been eliminated. As shown in FIG. 6, according to the present invention, the upper edge of the mold M does not require an opening for introducing a hose, so that the upper edge of the mold M can be extended to the lower surface of the upper structure 6. If a narrow or local gap is provided between the lower surface of the superstructure 6 and water overflows, the concrete will fill the formwork M as shown in Figure 4, and the water and defective areas of the concrete surface will flow from between the upper ends. It will overflow, so all you have to do is close the gap afterwards. This also made it possible to connect corrosion-preventing and reinforcing concrete to the superstructure. The concrete used is regular concrete, and its composition is as follows:

【表】 使用したコンクリートポンプ車は4トン車で、 最大吐出圧 127Kg/cm2 最大吐出量 40m3/H 送給管径 4インチ 同長さ 6.5m(90゜エルボ二箇所) 使用吐出圧 約14Kg/cm2(一定) 導入口圧力 0.75Kg/cm2(水面下1.5m) 打設時間 5分10秒(従来の1/3〜1/4) 鋼管杭外径 300mm 型枠内径 600mm 型枠高さ 4m コンクリート供試体圧縮強度試験値 σ26=236Kg/cm2 なお型枠MはFRP樹脂板で抱合わせる使い捨
て型枠でも、鋼板製で場所を移して使えるもので
もよい。その組立方法、固定、分解方法はすべて
従来技術によるので説明を略す。 第7図に、この発明で重要な役割をする導入口
1の一例を示す。この例では導入口1を型枠M側
に溶接した短管1aと、コンクリート送給管をは
める筒口1bとの間に一対のフランジ7,7を設
け、その間にシヤツター板8を抜き差しできるよ
うにしている。そのフランジ7を第9図に、シヤ
ツター板8を第10図に示す。フランジ7,7は
上下二本のボルト9で締合わされ、シヤツター板
8の端を潜水夫がハンマー等で叩くだけで、シヤ
ツター板開口部8aをフランジ7をつけた導入口
1に合わせたり、はずして閉じたりできる簡便な
構造にしている。もつとも、シヤツターでなく、
市販の開閉弁を導入口1の外側に付けてもよい事
はいうまでもない。 以上は鋼管杭2にこの発明を適用したものであ
るが、第11,12図に示すように護岸用鋼矢板
10を連らねた壁面の腐食部を海側からコンクリ
ート被覆するにも、この発明は好適である。壁面
が横に長く続く場合は、矢板を背にした囲い型枠
Mの所々に仕切板を入れ、予定時間内にコンクリ
ート打設を終えられるよう、一区間のコンクリー
ト容量とポンプ車能力に合わせて適宜区切ればよ
い。導入口1を何箇所にも設けて、一斉にコンク
リートを圧入してもよい。 その他の点は鋼管杭2のコンクリート被覆の場
合とほとんど変りない。型枠Mの形、組立、固定
法が変るだけで、それらは従来技術であるから説
明を略す。 以上、少数の実施例によつて説明したが、この
発明はその要旨を変えることなく、当業者の公知
技術により多様に変化、応用し得る。腐食部補修
のほか、腐食予防にも有効である。第6図の導入
口1は斜め下向きにするとコンクリートが型枠底
面沿いに広がる利点がある。水平導入口1の場
合、出口に斜下向き案内板をつけてもよい。第7
図の短管1aを略し、直接、フランジ7を型枠M
につけてもよい。 型枠の材質、形状は問わない。その水平断面積
も導入口から圧入したコンクリートが型枠底面に
行渡つた後、ほゞ一斉に上昇することができる程
度であればよく、導入口の数を増し、配置に工夫
を加えれば相当、大きな型枠にも適用できる。コ
ンクリートポンプや送給管は複数セツト同時使用
してもよい。 使用コンクリートは原則として一般用コンクリ
ートであるが、非分離性特殊水中コンクリートを
使えば最上層まで健全なコンクリート品質を得ら
れ、普通コンクリートの場合のように最上層を排
除する必要がない。 水中スタツド溶接法は本発明者がさきに開発し
た溶接ガンを用いるとよいが、それに限定はしな
い。 鉄筋は常に縦横に必要とは限らず、金網で代用
してもよい。 この発明は、従来、橋梁等において単に鋼材表
面とコンクリートを結ぶものであつたスタツド・
ジベルを、はじめて水中鋼板のコンクリートによ
る腐食防止と補強に用いる道を開いた。水面から
上へ出た飛沫帯へのジベル溶着にも、水中スタツ
ド溶接法を用いるから、溶接部が水分を含まず信
頼性が高い。そのジベル群に鉄筋を添え、少くと
も飛沫帯、干満帯全域を覆うから腐食部は強力に
防護され、鉄筋コンクリートの耐食、補強効果を
充分、発揮する。 またコンクリート打設方法において、従来の水
中コンクリート工法のコンクリートポンプを使用
するものにおいて避けがたい難点であつたコンク
リート打設用鉛直管T′の支持、上昇操作、ポン
プによる振動、動揺、そして重要な反力の問題
が、この発明によれば送給管先端を型枠底板の導
入口に接続、固定するため、一気に解消してしま
つた。 この発明によればコンクリートポンプの送給圧
は、従来のように単にコンクリートを配管抵抗に
打勝つて送るためのものでなく、送つたコンクリ
ートを型枠底部から上端まで押上げるためにも使
われる。この場合、管端が固定されているため圧
入反力で移動するおそれがなく、ポンプの最大圧
力まで上げることが可能になり、打設速度は画期
的に向上した。
[Table] The concrete pump truck used was a 4-ton concrete pump.Maximum discharge pressure: 127Kg/ cm2Maximum discharge volume: 40m3 /H Delivery pipe diameter: 4 inches Same length: 6.5m (2 90° elbows) Working discharge pressure: Approx. 14Kg/cm 2 (constant) Inlet pressure 0.75Kg/cm 2 (1.5m below the water surface) Casting time 5 minutes 10 seconds (1/3 to 1/4 of conventional steel pipe pile outer diameter 300mm Formwork inner diameter 600mm Formwork Height: 4m Concrete specimen compressive strength test value σ 26 = 236Kg/cm 2The formwork M may be a disposable formwork held together with FRP resin plates, or a formwork made of steel plates that can be moved to another location. The assembling, fixing, and disassembling methods are all based on conventional techniques, so explanations will be omitted. FIG. 7 shows an example of the inlet 1 that plays an important role in this invention. In this example, a pair of flanges 7, 7 are provided between the short pipe 1a with the inlet 1 welded to the formwork M side and the tube opening 1b into which the concrete feed pipe is fitted, and the shutter plate 8 can be inserted and removed between them. ing. The flange 7 is shown in FIG. 9, and the shutter plate 8 is shown in FIG. The flanges 7, 7 are tightened with two upper and lower bolts 9, and the diver can simply tap the end of the shutter plate 8 with a hammer or the like to align or remove the shutter plate opening 8a with the inlet 1 on which the flange 7 is attached. It has a simple structure that can be folded and closed. However, it is not a shutter,
It goes without saying that a commercially available on-off valve may be attached to the outside of the inlet 1. The above is an application of the present invention to the steel pipe pile 2, but this invention can also be used to cover the corroded part of the wall surface where the steel sheet piles 10 for seawall are connected with concrete from the sea side as shown in Figures 11 and 12. The invention is preferred. If the wall continues horizontally for a long time, partition plates should be placed in places on the enclosure formwork M with the back to the sheet piles, so that concrete placement can be completed within the scheduled time, depending on the concrete capacity of one section and the capacity of the pump truck. Just separate them as appropriate. The introduction ports 1 may be provided at multiple locations and concrete may be press-fitted all at once. Other points are almost the same as in the case of concrete covering of steel pipe pile 2. The only changes are the shape, assembly, and fixing method of the formwork M, and since these are conventional techniques, their explanation will be omitted. Although the present invention has been described above with reference to a small number of embodiments, the present invention can be varied and applied in various ways using techniques known to those skilled in the art without changing the gist thereof. In addition to repairing corroded areas, it is also effective in preventing corrosion. If the inlet 1 in Fig. 6 is oriented diagonally downward, there is an advantage that the concrete will spread along the bottom of the form. In the case of the horizontal inlet 1, a diagonally downward guide plate may be provided at the outlet. 7th
The short pipe 1a in the figure is omitted, and the flange 7 is directly connected to the formwork M.
You can also put it on. The material and shape of the formwork does not matter. The horizontal cross-sectional area only needs to be such that the concrete press-fitted from the inlets can rise all at once after being spread over the bottom of the formwork, but it can be considerably improved by increasing the number of inlets and making improvements to their arrangement. , can also be applied to large formworks. Multiple sets of concrete pumps and feed pipes may be used at the same time. In principle, the concrete used is general purpose concrete, but if non-separable special underwater concrete is used, sound concrete quality can be obtained up to the top layer, and there is no need to remove the top layer as is the case with ordinary concrete. For the underwater stud welding method, it is preferable to use the welding gun previously developed by the present inventor, but the method is not limited thereto. Reinforcement bars are not always required vertically and horizontally; wire mesh may be used instead. This invention improves studs, which were conventionally used to simply connect the steel surface and concrete in bridges, etc.
This paved the way for the first use of dowels for corrosion prevention and reinforcement of underwater steel plates with concrete. Since the underwater stud welding method is also used for dowel welding to the splash zone above the water surface, the welded part does not contain moisture and is highly reliable. By attaching reinforcing bars to the group of dowels and covering at least the entire splash zone and tidal zone, corroded areas are strongly protected and the corrosion-resistant and reinforcing effects of reinforced concrete are fully demonstrated. In addition, in the concrete placing method, there are unavoidable difficulties in the conventional underwater concrete method using a concrete pump, such as supporting the concrete placing vertical pipe T', lifting operation, vibration and oscillation caused by the pump, and important problems. According to the present invention, the problem of reaction force is solved at once because the tip of the feed pipe is connected and fixed to the inlet of the bottom plate of the form. According to this invention, the feed pressure of the concrete pump is not just used to send concrete overcoming piping resistance as in the past, but is also used to push the sent concrete up from the bottom of the formwork to the top. . In this case, since the pipe end is fixed, there is no risk of it moving due to press-in reaction force, making it possible to increase the pump's maximum pressure, and dramatically improving the casting speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1,2図は従来の水中コンクリート打設法の
二例の説明図、第3,4図はこの発明の水中コン
クリート打設法の原理的説明図、第5図はこの発
明による腐食した鋼管杭の補修状況説明図、第6
図は同じく型枠を当てた状態の説明図、第7図は
型枠底部のコンクリート導入口の拡大説明図、第
8図はそのフランジ、第9図はそのシヤツター板
説明図、第10図はこの発明による護岸壁の鋼矢
板の腐食部補修状況説明図、第11図はこれに型
枠を当てた状態の説明図である。 M……型枠、H……コンクリート送給管(ホー
ス)、1……シヤツター又は弁つき導入口、4…
…ジベル群、5……鉄筋。
Figures 1 and 2 are explanatory diagrams of two examples of the conventional underwater concrete placing method, Figures 3 and 4 are illustrations of the principle of the underwater concrete placing method of the present invention, and Figure 5 is an illustration of the corroded steel pipe pile according to the present invention. Repair status diagram, No. 6
Figure 7 is an enlarged view of the concrete inlet at the bottom of the formwork, Figure 8 is its flange, Figure 9 is an illustration of its shutter plate, and Figure 10 is an explanatory view of the concrete inlet at the bottom of the formwork. Fig. 11 is an explanatory diagram of the state of repair of a corroded portion of a steel sheet pile of a revetment wall according to the present invention, and is an explanatory diagram of a state in which a formwork is applied to this. M... Formwork, H... Concrete feed pipe (hose), 1... Inlet with shutter or valve, 4...
... Jibel group, 5... Rebar.

Claims (1)

【特許請求の範囲】[Claims] 1 水面上の上部構造から水中へ伸びた鋼管杭、
鋼矢板等鋼板の少くとも飛沫帯、干満帯全域に対
し、その健全な部分随所に水中スタツド溶接法で
ジベル群を溶着し、そのジベル間を結んで上記全
域に鉄筋を配設し、コンクリート型枠により全体
を囲み、型枠上縁と上記上部構造下面との間に小
間隙を設け、その型枠底部外面に予め作り付け
た、シヤツター又は弁つき導入口に、コンクリー
トポンプにつながる送給管を接続固定してコンク
リートを圧入することにより、型枠内の水を下か
ら順次、コンクリートに置換える形で押上げて上
記小間隙からすべて排出し、コンクリート表層の
不良部分も溢出させた後、上記シヤツター又は弁
を閉じ、送給管をはずし、養生することを特徴と
するコンクリート被覆による水中防食、補強法。
1 Steel pipe piles extending into the water from the superstructure above the water surface,
Groups of dowels are welded using the underwater stud welding method in healthy parts of steel sheets such as sheet piles, at least throughout the splash zone and tidal zone, and reinforcing bars are placed in the above areas by connecting the dowels, and concrete molding is performed. The whole is surrounded by a frame, a small gap is provided between the upper edge of the formwork and the lower surface of the superstructure, and a feed pipe connected to the concrete pump is connected to an inlet with a shutter or valve built in advance on the outer surface of the bottom of the formwork. By fixing the connection and press-fitting concrete, the water in the formwork is pushed up from the bottom, replacing it with concrete, and all of it is drained from the small gap above. After the defective parts of the concrete surface layer are also spilled out, An underwater corrosion protection and reinforcement method using concrete coating, which is characterized by closing the shutter or valve, removing the feed pipe, and curing it.
JP23625083A 1983-12-16 1983-12-16 Method of puring concrete in underwater form Granted JPS60129325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23625083A JPS60129325A (en) 1983-12-16 1983-12-16 Method of puring concrete in underwater form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23625083A JPS60129325A (en) 1983-12-16 1983-12-16 Method of puring concrete in underwater form

Publications (2)

Publication Number Publication Date
JPS60129325A JPS60129325A (en) 1985-07-10
JPH026888B2 true JPH026888B2 (en) 1990-02-14

Family

ID=16997995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23625083A Granted JPS60129325A (en) 1983-12-16 1983-12-16 Method of puring concrete in underwater form

Country Status (1)

Country Link
JP (1) JPS60129325A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4736179B2 (en) * 2000-11-20 2011-07-27 大日本印刷株式会社 Easy-open carton
JP4761629B2 (en) * 2001-02-06 2011-08-31 シバタ工業株式会社 Concrete formwork and moving method thereof
JP5168027B2 (en) * 2008-08-20 2013-03-21 Jfeスチール株式会社 Repair method for steel revetment structures
CN103306287A (en) * 2013-07-02 2013-09-18 张璐 Underwater concrete pouring hopper
CN103498454A (en) * 2013-10-15 2014-01-08 国家电网公司 Underwater construction process of water inlet/outlet of lower storage reservoir
CN105256806B (en) * 2015-11-20 2017-02-22 江苏盛泰智能基础工程有限公司 Environment-friendly type charging and feeding device for intelligent cemented soil mixing pile
CN106013162B (en) * 2016-06-01 2018-01-12 安徽建工集团有限公司 A kind of construction technology of drape process pouring underwater concrete

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51132608A (en) * 1975-05-12 1976-11-17 Ito Saburou Method of underwater concrete work
JPS52132504A (en) * 1976-04-30 1977-11-07 Bridgestone Tire Co Ltd Method of pouring mortar forming antiicorrosive cover of steel pipe piles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51132608A (en) * 1975-05-12 1976-11-17 Ito Saburou Method of underwater concrete work
JPS52132504A (en) * 1976-04-30 1977-11-07 Bridgestone Tire Co Ltd Method of pouring mortar forming antiicorrosive cover of steel pipe piles

Also Published As

Publication number Publication date
JPS60129325A (en) 1985-07-10

Similar Documents

Publication Publication Date Title
KR100822401B1 (en) Apparatus and stiffener for repairing and reinforcing external surface of footing part of pier
JPH026888B2 (en)
JP2000257023A (en) Underwater work execution method for reinforcing bridge pier for earthquake-resistance
CN113585351A (en) Soil covering plane settlement post-cast strip prefabrication advanced reverse order closed construction method
JP2001193058A (en) Construction method of diaphragm wall and unit wall of diaphragm wall
KR100394780B1 (en) A Repair ethod and Repair tructure of Bridge Pier Mould Construction
KR100422216B1 (en) The method of construction prevening a waterflow of cassion basis for a bridge
KR200232748Y1 (en) Steel caisson working a basic constructing of bridge
JPH11241314A (en) Reinforcing construction method of underwater structure
KR100345018B1 (en) A method and struture of bridge pier mould construction repair
JP3871773B2 (en) Reinforcement method for existing pier underwater
JPS5944460B2 (en) Corrosion prevention construction method for steel sheet piles for bank protection
KR200253526Y1 (en) A repair struture of bridge pier mould construction
KR101259932B1 (en) A structure and method of underwater construction repair
JP2797967B2 (en) Driving method for concrete rising from underground floor by reverse beating method
KR200240379Y1 (en) Reinforcement structure for caisson
CN110206307B (en) Construction method of reinforced concrete septic tank
KR200261320Y1 (en) A Dry F.R.Pstruture center of bridge pier mould construction repair
KR100227536B1 (en) Bell type caisson foundation method
CN212835025U (en) Pier maintenance reinforced structure to rivers erode damage
PL156462B1 (en) Method for repairing building structures of objects,especially in reference to statics and water tightness of damaged channels,piping,without disassembly
SU1084369A1 (en) Method of concreting underwater
KR200230257Y1 (en) A Repair Structure of Bridge Pier Mould Construction
CN205955217U (en) Building concrete excess material recovery device
JPH10121476A (en) Placing method of underwater concrete and its device