JPH0268826A - Three phase package type gas circuit breaker - Google Patents

Three phase package type gas circuit breaker

Info

Publication number
JPH0268826A
JPH0268826A JP21634288A JP21634288A JPH0268826A JP H0268826 A JPH0268826 A JP H0268826A JP 21634288 A JP21634288 A JP 21634288A JP 21634288 A JP21634288 A JP 21634288A JP H0268826 A JPH0268826 A JP H0268826A
Authority
JP
Japan
Prior art keywords
phase
closing
circuit breaker
contact
resistance contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21634288A
Other languages
Japanese (ja)
Other versions
JP2633643B2 (en
Inventor
Hiroaki Toda
戸田 弘明
Seiji Azuma
誠司 東
Hiroshi Okuwa
博 大桑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63216342A priority Critical patent/JP2633643B2/en
Publication of JPH0268826A publication Critical patent/JPH0268826A/en
Application granted granted Critical
Publication of JP2633643B2 publication Critical patent/JP2633643B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Circuit Breakers (AREA)

Abstract

PURPOSE:To make it possible to obtain a compact, highly reliable, large- capacity, single-break gas circuit breaker by reducing the outside diameter of individual containers through the accommodation of input resistance contact point parts for three phases in a container separate from that for the main contact point for three phases. CONSTITUTION:An arc extinguish chamber 30 for three phases, possessing No. 1 movable electrode and No. 2 movable electrode, is housed in an arc chamber housing container 31. Beside the arc chamber housing container 31, a separate container, an input resistance contact point housing container 40 is provided. The housing container 40 is connected, through openings 41, 42 formed on the top and bottom of its side, with openings 39, 52 formed on the side of the arc extinguish chamber housing container 31. Input resistance contact point parts for three phases are installed inside the input resistance contact point housing container 40. The housing of the main contact point for three phases and the input resistance contact point part in separate containers made it possible to break a large capacity and to obtain a compact circuit breaker.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、例えば550KV系統のような大容量の1点
切り投入接点、投入抵抗付き三相一括形ガス遮断器に関
するものである。
[Detailed Description of the Invention] [Purpose of the Invention (Field of Industrial Application) The present invention relates to a large-capacity one-off/closing contact, for example, a 550KV system, and a three-phase collective type gas circuit breaker with a closing resistor. It is.

(従来の技術) 送電系統の大容量化に伴い、変電所や開閉所に用いられ
る遮断器の遮断容量が増大し、且つ高い信頼性が要求さ
れている。遮断器の信頼性を高めるためには、部品点数
を少なくし、構造を単純化することが重要である。その
ため、遮断器の遮断点数の減少が図られている。例えば
、現在550KV系統では、遮断電流が50KAの2点
切り遮断器が実用化されているが、ざらにこれを1点切
り化することが要求されている。同時に、大容量化に伴
う、遮断器或いはそれを使用したガス絶縁開閉装置の大
型化を抑制するために、単一の密封容器内部に三相分の
遮断部を組込んだ三相一括形ガス遮断器も提案され、こ
の様な三相一括形ガス遮断器に付いても、各遮断部を1
点切り化することが要望されている。
(Prior Art) As the capacity of power transmission systems increases, the breaking capacity of circuit breakers used in substations and switchyards increases, and high reliability is required. In order to improve the reliability of circuit breakers, it is important to reduce the number of parts and simplify the structure. Therefore, efforts are being made to reduce the number of breaking points of circuit breakers. For example, currently in the 550 KV system, a two-point circuit breaker with a breaking current of 50 KA is in practical use, but there is a general demand for converting this to one-point circuit breaker. At the same time, in order to suppress the increase in the size of circuit breakers or gas-insulated switchgear using them due to the increase in capacity, we have developed a three-phase integrated gas system that incorporates three-phase circuit breakers into a single sealed container. Circuit breakers have also been proposed, and even with such three-phase bulk gas circuit breakers, each circuit breaker is
It is requested that it be cut into points.

ところで、この様な大容量の遮断器を1点切り化する場
合に、消弧性能を向上させるには、従来の2点切りの遮
断器に比べて、その同極速度を格段に早くする必要があ
る。そのため、固定電極とこれに対向した可動電極を備
え、開極時には可動N極のみを移動させていた従来の遮
断器に対して、対向する2電極を同時に移動させて開極
する、いわゆるダブルモーションと呼ばれる遮断器が提
案されている。このダブルモーション方式の遮断器によ
れば、各電極の移動速度は従来の遮断器と同様でおるに
も拘らず、開極速度が格段に早くなり、消弧性能が向上
される利点がある。
By the way, in order to improve the arc extinguishing performance when cutting a large-capacity circuit breaker with one point, it is necessary to make the homopolar speed much faster than with a conventional two-point breaking circuit breaker. There is. Therefore, unlike conventional circuit breakers, which have a fixed electrode and a movable electrode facing it, and only move the movable N pole when opening, the circuit breaker opens by simultaneously moving two opposing electrodes. A circuit breaker called According to this double-motion type circuit breaker, although the moving speed of each electrode is the same as that of a conventional circuit breaker, the opening speed is much faster and the arc extinguishing performance is improved.

このようなダブルモーション方式の遮断器の一例を第4
図及び第5図に示す。
An example of such a double motion type circuit breaker is shown in the fourth example.
As shown in FIG.

この図において、1は第1の可動電極、10は第2の可
動電極(従来の固定電極に相当する)である。第1の可
動型PJX1は、バッファシリンダ2の先端部に設けら
れ、その外周には絶縁ノズル3、可動通電接触子4が同
心円状に配置されている。
In this figure, 1 is a first movable electrode, and 10 is a second movable electrode (corresponding to a conventional fixed electrode). The first movable PJX 1 is provided at the tip of the buffer cylinder 2, and an insulating nozzle 3 and a movable current-carrying contact 4 are arranged concentrically around its outer periphery.

バッファシリンダ2の中心部には操作ロッド5が固定さ
れ、この操作ロッド5が絶縁ロッド6を介して図示しな
い機構部に接続されている。バッファシリンダ2の内側
には、絶縁筒7に固定して支持されたバッファピストン
8が挿入され、このバッフ7ピストン8と前記バッファ
シリンダ2に囲まれた空間がパンフッ至9になっている
An operating rod 5 is fixed to the center of the buffer cylinder 2, and the operating rod 5 is connected to a mechanism (not shown) via an insulating rod 6. A buffer piston 8 fixedly supported by an insulating cylinder 7 is inserted inside the buffer cylinder 2, and a space surrounded by the buffer piston 8 and the buffer cylinder 2 forms a pan foot 9.

第2可動電極10は、通電円筒11における第1可動電
極1との対向面中央に突出して設けられ、前記絶縁ノズ
ル3及び第1可動電極1内に挿入されるものである。こ
の第2可動電極10の外周には前記第1可動電極の可動
通電接触子4と接触する第2可動通電接触子12と第2
可動シールド13とが設けられている。これら第2可動
電極10を支持する通電円筒11は、その基部において
通電用導体14に摺動自在に挿入されると同時に、前記
第1可動電極1の外側に配設された絶縁ロッド15及び
リンク機構16を介して、第1可動電極1を駆動する操
作ロッド5の基部に接続されている。このリンク機構1
6は、リンク16aの両端にそれぞれ回動自在に連結さ
れた第1、第2の連結棒’15b、16G及びリンク1
6aを支持するリンク支持部16dより構成されている
。リンク16aは、所定のリンク比に設定されたリンク
支持部16dの支点16eを軸にして、リンク支持部1
6dに対して回動自在に支持されている。
The second movable electrode 10 is provided so as to protrude from the center of the face of the current-carrying cylinder 11 facing the first movable electrode 1, and is inserted into the insulating nozzle 3 and the first movable electrode 1. On the outer periphery of the second movable electrode 10, there is a second movable current-carrying contact 12 that contacts the movable current-carrying contact 4 of the first movable electrode.
A movable shield 13 is provided. The current-carrying cylinder 11 that supports these second movable electrodes 10 is slidably inserted into the current-carrying conductor 14 at its base, and at the same time an insulating rod 15 and a link are provided outside the first movable electrode 1. It is connected via a mechanism 16 to the base of the operating rod 5 that drives the first movable electrode 1 . This link mechanism 1
Reference numeral 6 denotes first and second connecting rods 15b and 16G rotatably connected to both ends of the link 16a, and the link 1.
It is composed of a link support part 16d that supports the link 6a. The link 16a rotates around the link support 16e, which is set at a predetermined link ratio, about the fulcrum 16e of the link support 16d.
It is rotatably supported with respect to 6d.

また、第1.12(7)各連結棒16b、16Gは、そ
れぞれの一端にて操作ロッド5と絶縁ロッド15に回動
自在に連結されている。なお、リンク支持部16dは、
図示しない容器に絶縁固定された絶縁筒9に固定されて
いる。
Further, each of the 1.12(7) connecting rods 16b and 16G is rotatably connected to the operating rod 5 and the insulating rod 15 at one end of each. Note that the link support portion 16d is
It is fixed to an insulating tube 9 that is insulated and fixed to a container (not shown).

この様に構成されたダブルモーション方式の遮断器にお
いては、第4図の投入状態にて、図示しない操作機構を
駆動すると、操作ロッド5が所定の速度で操作機構側(
図中右側)に移動し、その先端に固定された第1可動電
極1が右方向に移動し、第2可動電極10との間で遮断
動作が行なわれる。一方、この操作ロッド5の動作に伴
って、これに連結されたリンク機116が駆動され、絶
縁ロッド15を操作ロッド5とは反対側(図中左側)に
移動させる。その結果、この絶縁ロッド15の先端に固
定された通電円筒11及び第2可動電極10が第1可動
電極1とは反対方向(図中左側)に移動する。また、前
記操作ロッド5の移動により、その先端に固定されたバ
ッフ1シリンダ2が絶縁筒9に固定されたバッフ7ピス
トン8に対して移動し、バッファ室9が圧縮されるので
、内部の消弧ガスが絶縁ノズル3に案内されて開離する
第1、第2電極間に吹付けられ、消弧動作がなされる。
In the double-motion circuit breaker configured in this way, when the operating mechanism (not shown) is driven in the closed state shown in FIG. 4, the operating rod 5 moves at a predetermined speed toward the operating mechanism
The first movable electrode 1 fixed to the tip thereof moves rightward, and a disconnection operation is performed between the first movable electrode 1 and the second movable electrode 10. On the other hand, as the operating rod 5 moves, the link machine 116 connected thereto is driven, and the insulating rod 15 is moved to the side opposite to the operating rod 5 (to the left in the figure). As a result, the current-carrying cylinder 11 and the second movable electrode 10 fixed to the tip of the insulating rod 15 move in the opposite direction to the first movable electrode 1 (to the left in the figure). Furthermore, as the operating rod 5 moves, the buff 1 cylinder 2 fixed at its tip moves relative to the buff 7 piston 8 fixed to the insulating cylinder 9, and the buffer chamber 9 is compressed. The arc gas is guided by the insulating nozzle 3 and blown between the first and second electrodes, which are separated, thereby extinguishing the arc.

なお、投入動作は、操作ロッド5を前記遮断動作とは反
対方向に駆動することにより、第1、第2可動電極1,
10を相対的に接近させる。
Note that the closing operation is performed by driving the operating rod 5 in the opposite direction to the closing operation.
10 relatively close together.

この様にダブルモーション方式の遮断器においては、操
作ロッド5の移動速度は従来の遮断器と同様なものであ
りながら、第1、第2可動電極1゜10の両方を駆動す
るため、両電極間の相対的な開離速度が2倍程度に向上
し、大容量の遮断器においても1点切りが可能となる。
In this way, in a double-motion type circuit breaker, although the moving speed of the operating rod 5 is similar to that of a conventional circuit breaker, since it drives both the first and second movable electrodes 1. The relative opening speed between them is improved by about twice, and even a large-capacity circuit breaker can be disconnected at one point.

(発明が解決しようとする課題) ところで、550KV級のような大容量系統における線
路用の遮断器においては、投入時の投入過電圧を抑制す
るために投入抵抗方式が採用されている。これは、遮断
器の主接点と並列に投入抵抗を有する投入抵抗接点を設
け、投入時には主接点に先立ってこの投入抵抗接点が投
入され、その投入抵抗により投入過電圧が抑制された状
態で主接点が投入されるものである。この方式において
開極時には、まず投入抵抗接点が開離し次いで主接点が
開極することが必要でおる。
(Problems to be Solved by the Invention) By the way, in circuit breakers for lines in large-capacity systems such as 550 KV class, a closing resistance method is adopted in order to suppress the closing overvoltage at the time of closing. In this system, a closing resistance contact with a closing resistance is installed in parallel with the main contact of the circuit breaker, and when the circuit breaker is closed, this closing resistance contact is closed before the main contact, and the closing overvoltage is suppressed by the closing resistance. is input. In this method, when opening, it is necessary to first open the closing resistance contact and then open the main contact.

前記したダブルモーション方式の遮断器にこの投入抵抗
接点を採用する場合、開閉過電圧の低減、遮断器及びこ
れを採用したガス絶縁開閉装置全体の小型化が大きな問
題点となり、これを解決することが重要な課題である。
When this closing resistance contact is used in the above-mentioned double-motion type circuit breaker, the major problems are the reduction of switching overvoltage and the miniaturization of the circuit breaker and the entire gas-insulated switchgear that employs it, and it is difficult to solve these problems. This is an important issue.

まず、第6図に、従来の550KV級2点切り遮断器の
1点当たりの投入接点と消弧室(主接点)との絶縁回復
特性と、550KV級1点切り遮断器の投入接点と消弧
室の絶縁回復特性を示した。
First, Figure 6 shows the insulation recovery characteristics between the closing contact and the arc extinguishing chamber (main contact) per point of a conventional 550KV class two-point circuit breaker, and the closing contact and extinguishing point of a 550KV class single-point circuit breaker. The insulation recovery characteristics of the arc chamber are shown.

この図からも明らかな通り、55OKV級1点切り遮断
器においては、 02点切りの各1点における場合より、主接点、投入抵
抗接点の両者共に開極速度が早い。
As is clear from this figure, in the 55 OKV class single-point circuit breaker, the opening speed of both the main contact and the closing resistance contact is faster than in the case of each one point of 02-point disconnection.

■開極時に投入抵抗接点の絶縁回復速度が主接点の絶縁
回復速度より早い。
■When opening, the insulation recovery speed of the closing resistance contact is faster than the insulation recovery speed of the main contact.

■投入時に投入抵抗接点が主接点よりも先に投入される
■When closing, the closing resistance contact is closed before the main contact.

という条件を満足する必要がある。It is necessary to satisfy the following conditions.

ところが、一方の電極のみを可動とした従来の遮断器に
おいては、可動電極と投入抵抗接点を同じ駆動源を使用
して同時に同速度で移動させ、両者の開極或いは投入の
タイミングは、電極形状の相違(主接点はワイプを使用
した電極構造であるのに対し、投入抵抗接点はスプリン
グを使用したバットコンタクトを採用)によって対応し
ていた。
However, in conventional circuit breakers in which only one electrode is movable, the movable electrode and the closing resistance contact are moved simultaneously at the same speed using the same drive source, and the timing of opening or closing of both depends on the shape of the electrode. (The main contact has an electrode structure using a wipe, while the closing resistance contact uses a butt contact using a spring.)

しかし、550KV級1点切り遮断器に採用されるダブ
ルモーション方式では、主接点においては画電極が同時
に移動するので、従来の遮断器のように主接点の開極速
度と同速度で投入抵抗接点を移動させると、投入抵抗接
点の投入或いは開極速度が主接点の約1/2程度となり
、前記■■で述べたように投入抵抗接点の投入或いは開
極速度を主接点よりも早くすることができない問題が生
じる。しかも、この種の大言1遮断器としては、その開
極時に主接点の電極間に消弧ガスを吹付けるバッファ形
ガス遮断器が採用されるのに対して、投入抵抗接点には
待に消弧ガスの吹付けは行なわれないので、この理由か
らも投入抵抗接点の絶縁回復速度を主接点よりも早くす
ることが困難であった。
However, in the double motion system adopted for 550KV class single-break circuit breakers, the picture electrodes move simultaneously at the main contact, so the closing resistor contact opens at the same speed as the opening speed of the main contact, unlike conventional circuit breakers. When the closing resistance contact is moved, the closing or opening speed of the closing resistance contact becomes approximately 1/2 of that of the main contact. The problem arises that it cannot be done. Moreover, this type of circuit breaker uses a buffer type gas circuit breaker that sprays arc-extinguishing gas between the electrodes of the main contact when opening, whereas the closing resistance contact Since arc-extinguishing gas is not sprayed, it has been difficult for this reason to make the insulation recovery speed of the closing resistance contact faster than that of the main contact.

また、従来の投入抵抗接点を有する遮断器においては、
主接点を収納した消弧室と投入抵抗接点とを同一容器内
に収納していたために容器全体の外径が大きくなると同
時に、これを使用したガス絶縁開閉装置全体も大型化す
る欠点もあった。特に、投入抵抗接点を有する三相−指
形ガス遮断器は、投入抵抗接点も主接点も三相分必要で
、それが一つの密封容器内に収納されるため、その容器
は非常に大きなものになり、容器自体の製造・加工が困
難で効果になると共に、これを接続したガス絶縁開閉装
置全体を大型化する欠点もあった。
In addition, in conventional circuit breakers with closing resistance contacts,
Because the arc extinguishing chamber housing the main contact and the closing resistor contact were housed in the same container, the outer diameter of the entire container became large, and at the same time, the entire gas-insulated switchgear using this also became larger. . In particular, a three-phase finger-type gas circuit breaker with a closing resistance contact requires both the closing resistance contact and the main contact for three phases, which are housed in a single sealed container, so the container is very large. This is not only effective because it is difficult to manufacture and process the container itself, but also has the disadvantage of increasing the size of the entire gas-insulated switchgear to which it is connected.

例えば、第7図は、同一容器収納型の三相−指形ガス遮
断器を使用したガス絶縁開閉装置の平面図でおるが、三
相−括母線20から分岐した三相の接続母線21を、断
路器22を介して投入抵抗接点付きの三相−指形ガス遮
断器23に接続し、これをざらに変流器24を介して線
路側の各相のブッシング25に接続する場合、三相−指
形ガス遮断器23の容器外径が大きいと、母線20とブ
ッシング25間の寸法りが大きくなり、その分ガス絶縁
開閉装置の占有スペースが増大する欠点があった。
For example, FIG. 7 is a plan view of a gas insulated switchgear using three-phase finger-shaped gas circuit breakers housed in the same container. , when connecting to a three-phase finger-shaped gas circuit breaker 23 with a closing resistance contact via a disconnector 22, and connecting this to the bushings 25 of each phase on the line side via a current transformer 24, If the external diameter of the container of the interdigital gas circuit breaker 23 is large, the dimension between the bus bar 20 and the bushing 25 becomes large, which has the drawback of increasing the space occupied by the gas insulated switchgear.

ざらに、投入抵抗接点付きの三相−指形ガス遮断器は、
通常の線路用回線部分に使用され、他の回線部分には投
入抵抗接点のないタイプの遮断器が使用されるが、従来
では、規格の同一化を図るため投入抵抗接点が不要な遮
断器に付いても、投入抵抗接点を収納できる大きさの容
器を共通して使用していたので、前記のような占有スペ
ースの増大が、ガス絶縁開閉装置の他の部分においても
問題となっていた。
Roughly speaking, a three-phase finger type gas circuit breaker with a closing resistance contact is
A type of circuit breaker that does not require a closing resistor contact is used for normal line circuits, and a type of circuit breaker without a closing resistor contact is used for other circuits. However, since a container large enough to accommodate the closing resistance contact was commonly used, the increase in occupied space was a problem in other parts of the gas insulated switchgear as well.

本発明は、上記のような従来技術の問題点を解決し、小
型化され且つガス絶縁開閉装置全体の縮小化に奇与し、
しかも投入時の投入過電圧の低減と開極或いは投入時に
おける投入抵抗接点の絶縁回復速度の向上を可能とした
、信頼性の高い大容量1点切り三相−指形ガス遮断器を
提供することを目的とする。
The present invention solves the problems of the prior art as described above, is miniaturized, and contributes miraculously to the downsizing of the entire gas-insulated switchgear,
Moreover, it is an object to provide a highly reliable, large-capacity single-break three-phase finger-shaped gas circuit breaker that can reduce the closing overvoltage at the time of closing and improve the insulation recovery speed of the closing resistance contact at the time of opening or closing. With the goal.

[発明の構成] (課題を解決するための手段) 上記の目的を達成するため、本発明の三相−指形ガス遮
断器は、消弧室収納容器内部にそれぞれ第1と第2の可
動電極とを有する三相分の消弧室が収納され、前記消弧
室収納容器とは別体に構成された投入抵抗接点収納容器
内部に、それぞれ固定側電極と可動側電極及びこれらの
電極に接続された投入抵抗体とから構成された三相分の
投入抵抗接点部が収納され、各密封容器内部の各相の消
弧室と投入抵抗接点とが、各相の導体を介してそれぞれ
電気的に接続されていることを構成上の特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the three-phase finger-shaped gas circuit breaker of the present invention has first and second movable movable parts inside the arc extinguishing chamber storage container. An arc-extinguishing chamber for three phases having electrodes is housed, and a fixed-side electrode, a movable-side electrode, and an arc-extinguishing chamber for these electrodes are housed inside a making resistance contact storage container configured separately from the arc-extinguishing chamber storage container. A three-phase closing resistance contact section consisting of a connected closing resistor is housed, and the arc extinguishing chamber and the closing resistance contact for each phase inside each sealed container are electrically connected to each other through the conductor of each phase. A structural feature is that they are connected.

(作用〉 上記のような構成を有する本発明においては、三相分の
投入抵抗接点部を三相分の主接点とは切言器内に収納し
たので、個々の容器の外径を縮小することが可能となり
、この2つの容器を母線と平行に配置することで、母線
とブッシング間の距離を短縮することができ、ガス絶縁
開閉装置の占有スペースの縮小化を図ることができる。
(Function) In the present invention having the above-described configuration, the closing resistance contact portion for the three phases is housed in the disconnector, which is different from the main contact for the three phases, so that the outer diameter of each container can be reduced. By arranging these two containers parallel to the busbar, the distance between the busbar and the bushing can be shortened, and the space occupied by the gas-insulated switchgear can be reduced.

ざらに、抵抗投入接点の不要な回線には、主接点のみを
収納した小径の容器の三相−指形ガス遮断器を使用でき
るので、ガス絶縁開閉装置の縮小化により寄与できる。
In general, a three-phase finger-shaped gas circuit breaker with a small-diameter container housing only the main contact can be used for lines that do not require a resistor closing contact, which contributes to the downsizing of the gas-insulated switchgear.

(実施例) 以下、本発明の三相−指形ガス遮断器の一実施例を第1
図乃至第3図により具体的に説明する。
(Example) Hereinafter, one example of the three-phase finger-shaped gas circuit breaker of the present invention will be described as a first example.
This will be explained in detail with reference to FIGS. 3 to 3.

なお、前記第4図以下に示した従来の遮断器と同一部材
に付いては同一符号を付し、説明は省略した。また、第
1図は断面図であるため、三相分の主接点及び投入抵抗
接点部が記載され、−相分の各接点が示されていないが
、各容器内にはそれぞれ三相分の各接点が収納されてい
る。
Incidentally, the same members as those of the conventional circuit breaker shown in FIG. Also, since Figure 1 is a cross-sectional view, the main contacts and closing resistance contacts for the three phases are shown, and the contacts for the negative phase are not shown, but each container contains the main contacts and closing resistance contacts for the three phases. Each contact is stored.

本実施例において、第1可動電極1と第2可動電極10
とを有する三相分の消弧室30は、一つの消弧室収納容
器31内に収納されている。各相の消弧L30の下部に
位置する各相の第1可動電極1は、消弧室収納容器31
の下部側面の取出し口32から外部(ガス絶縁開閉装置
の他の機器側)に引出された各相の導体33にそれぞれ
電気的に接続されている。また、各相の消弧W30は、
消弧室収納容器31を設置した操作機構箱34上に各相
の絶縁筒9によって支持されている。各相の消弧室30
において各可動電極1,1oを駆動する操作ロッド5は
、絶縁ロッド6を介して操作機構箱34内に延長され、
その内部に設けられた各相の消弧室操作シリンダ35の
操作ロッド36にそれぞれ接続されている。一方、各相
の消弧室30の上部に位置する各相の第2可動電極10
は、通電導体14を介して、消弧室収納容器31の上部
に設けられた取出し口37から引出された各相の導体3
8にそれぞれ接続されている。
In this embodiment, the first movable electrode 1 and the second movable electrode 10
The three-phase arc extinguishing chamber 30 having three phases is housed in one arc extinguishing chamber storage container 31. The first movable electrode 1 of each phase located below the arc extinguishing L30 of each phase is connected to the arc extinguishing chamber storage container 31.
It is electrically connected to conductors 33 of each phase drawn out to the outside (to other equipment side of the gas insulated switchgear) from an outlet 32 on the lower side surface of the gas insulated switchgear. In addition, the arc extinction W30 of each phase is
It is supported by insulating cylinders 9 of each phase on an operating mechanism box 34 in which an arc extinguishing chamber storage container 31 is installed. Arc extinguishing chamber 30 for each phase
The operating rod 5 that drives each movable electrode 1, 1o is extended into the operating mechanism box 34 via an insulating rod 6,
They are respectively connected to the operating rods 36 of the arc extinguishing chamber operating cylinders 35 of each phase provided therein. On the other hand, the second movable electrode 10 of each phase is located above the arc extinguishing chamber 30 of each phase.
The conductors 3 of each phase are drawn out from the outlet 37 provided at the upper part of the arc extinguishing chamber storage container 31 via the current-carrying conductor 14.
8 respectively.

前記のような消弧室収納容器31の側方には、これと切
言器とした投入抵抗接点収納容器40が設けられている
。この収納容器40は、その側面の上下に設けられた開
口部41.42の部分で、前記消弧室収納容器31の側
面に形成された開口部39.52に接続されている。こ
の投入抵抗接点収納容器40内には、三相分の投入抵抗
接点部が設けられている。即ち、各相の投入抵抗接点部
は、投入抵抗体43、投入接点固定側電極44及びその
復帰用スプリング45と、投入接点固定側電極44に対
向した投入接点可動側電極46とから構成されている。
On the side of the arc extinguishing chamber storage container 31 as described above, there is provided a closing resistance contact storage container 40 which serves as a disconnector. This storage container 40 is connected to an opening 39.52 formed in the side surface of the arc-extinguishing chamber storage container 31 at openings 41.42 provided on the upper and lower sides of the side surface. In the making resistance contact storage container 40, making resistance contact portions for three phases are provided. That is, the closing resistance contact portion of each phase is composed of a closing resistor 43, a closing contact fixed side electrode 44, a spring 45 for its return, and a closing contact movable side electrode 46 facing the closing contact fixed side electrode 44. There is.

このうち各相の固定側電極44は、それぞれ投入抵抗体
43を介して、前記消弧室の第2可動電極10を接続し
た各相の導体38に接続されている。また、各相の可動
側電極46は、前記消弧室の第1可動電極1に接続され
た各相の導体33に!習勤部47を介して電気的に接続
され、ざらに各相の可動側電極46の基部は、それぞれ
絶縁ロッド48及び操作ロッド49によって操作機構箱
34内の各相の投入抵抗接点操作シリンダ50に接続さ
れている。
Of these, the fixed side electrodes 44 of each phase are connected via respective closing resistors 43 to the conductors 38 of each phase connected to the second movable electrode 10 of the arc extinguishing chamber. Moreover, the movable side electrode 46 of each phase is connected to the conductor 33 of each phase connected to the first movable electrode 1 of the arc extinguishing chamber! The base of the movable side electrode 46 of each phase is electrically connected via the training section 47, and the base of the movable side electrode 46 of each phase is connected to the closing resistance contact operation cylinder 50 of each phase in the operation mechanism box 34 by an insulating rod 48 and an operation rod 49, respectively. It is connected to the.

各相の投入抵抗接点操作シリンダ50は、前記した各相
の消弧室操作シリンダ35とそれぞれの油圧配管51に
よって接続されることにより同期して駆動され、且つ各
相の操作ロッド49の駆動速度が前記消弧室操作シリン
ダ35の操作ロンド36の駆動速度の2倍以上となるよ
うに設定されている。
The closing resistance contact operating cylinder 50 of each phase is connected to the above-mentioned arc extinguishing chamber operating cylinder 35 of each phase by the respective hydraulic piping 51, so that it is driven synchronously, and the driving speed of the operating rod 49 of each phase is controlled. is set to be at least twice the driving speed of the operating rod 36 of the arc extinguishing chamber operating cylinder 35.

なお、各収納容器31.40の上部に配設され、各相の
第2可動電極10と投入抵抗接点の固定側電極44を接
続した各相の導体38は、本実施例では消弧室収納容器
31の上部の取出し口37から、また各収納容器31.
40の下部に配設され、各相の第1可動電極1と投入抵
抗接点の可動側電極46を接続した各相の導体33は投
入抵抗接点収納容器40の下部に設けられた取出し口3
2から外部に引出され、ガス絶縁開閉装置を構成する他
の機器に接続されている。また、これら収納容器の各取
出し口32.37には、導体33.38の支持と他の機
器とのカス区分のために絶縁スペーサ53.54が設け
られている。
In addition, in this embodiment, the conductor 38 of each phase, which is arranged on the upper part of each storage container 31, 40 and connects the second movable electrode 10 of each phase and the fixed side electrode 44 of the closing resistance contact, is stored in the arc extinguishing chamber. From the outlet 37 at the top of the container 31, and from each storage container 31.
The conductor 33 of each phase, which connects the first movable electrode 1 of each phase and the movable side electrode 46 of the making resistance contact, is connected to the outlet 3 provided at the bottom of the making resistance contact storage container 40.
2 and is connected to other equipment constituting the gas insulated switchgear. Furthermore, insulating spacers 53, 54 are provided at each outlet 32, 37 of these storage containers to support the conductor 33, 38 and separate it from other equipment.

上記のような構成を右する本実施例の作用を説明する。The operation of this embodiment, which has the above-described configuration, will be explained.

第1図の開極状態において三相−括の投入指令が入ると
、同期して駆動される各相の消弧室操作シリンダ35と
投入抵抗接点操作シリンダ50とが駆動され、各相の操
作ロンド36.49が投入側に移動を開始する。この時
、各相の消弧室側の操作ロッド36によって消弧室30
の第1可動電極1と第2可動電極10は、前記の従来技
術で述べたように、リンク機構16により反対方向に駆
動されるので、両者の相対的な投入速度は操作ロッド3
6の駆動速度の約2倍の高速度となる。−方、投入時の
過電圧を抑制するためには、各相の投入抵抗接点側は、
前記のような高速度の消弧室30の投入よりも早く投入
される必要があるが、本実施例においては、各相の投入
抵抗接点操作シリンダ50が、その操作ロッド49を消
弧室30内における第1、第2可動電極1,10の相対
速度よりも早い速度で駆動しているので、投入抵抗接点
が消弧室の主接点よりも必ず先に投入されることになる
。その結果、まず各相の投入抵抗接点の可動側電極45
がその固定側電極44に接触し、これを復帰用スプリン
グ45に逆らって押込むことにより、三相分の導体33
.38間を投入抵抗体43を介して同時に接続し、その
後各相の投入抵抗接点の投入速度よりも遅い各相の消弧
室30側の主接点が、前記従来技術で述べたようにして
投入され、各相の導体33.38間が電気的に接続され
ることになる。
When a three-phase-batch closing command is input in the open state shown in FIG. 1, the arc extinguishing chamber operation cylinder 35 and closing resistance contact operation cylinder 50 of each phase, which are driven synchronously, are driven to operate each phase. Rondo 36.49 starts moving to the input side. At this time, the arc extinguishing chamber 30 is operated by the operating rod 36 on the arc extinguishing chamber side of each phase.
As described in the prior art, the first movable electrode 1 and the second movable electrode 10 are driven in opposite directions by the link mechanism 16, so the relative input speed of the two is controlled by the operating rod 3.
The driving speed is approximately twice as high as that of No. 6. - On the other hand, in order to suppress overvoltage at the time of closing, the closing resistance contact side of each phase should be
Although it is necessary to close the arc extinguishing chamber 30 earlier than the high-speed closing of the arc extinguishing chamber 30 as described above, in this embodiment, the closing resistance contact operating cylinder 50 of each phase moves its operating rod 49 to the arc extinguishing chamber 30. Since it is driven at a faster speed than the relative speed of the first and second movable electrodes 1 and 10 within the chamber, the closing resistance contact is always closed before the main contact of the arc extinguishing chamber. As a result, first, the movable side electrode 45 of the closing resistance contact of each phase is
contacts the fixed side electrode 44 and pushes it against the return spring 45, thereby removing the three-phase conductor 33.
.. 38 are simultaneously connected via the closing resistor 43, and then the main contact on the arc extinguishing chamber 30 side of each phase, which is slower than the closing speed of the closing resistance contact of each phase, closes as described in the prior art. Thus, the conductors 33 and 38 of each phase are electrically connected.

一方、三相−括の開極時には、前記投入時とは逆方向に
各操作シリンダ35.50を駆動するが、この場合も投
入抵抗接点の可動側電極45は、消弧室30の第1に第
2可動電極1,10の相対的な開離速度よりも高速で開
離するので、前記従来技術の第6図に示すような絶縁回
復特性を充分満足することができる。即ち、各相の投入
抵抗接点部はバットコンタクトになっているので、操作
ロッド48が開離する方向に駆動されると、可動側電極
45は固定側電極44から開離する。この時、固定側電
極44の復帰用スプリング45の復帰速度は、可動側電
極45の開離速度よりも遅いので、各相の画電極は直ち
に開離することができる。−方、各相の消弧室側の第1
、第2可動電極1,10はワイプ構造となっているので
、操作ロッド36の開極開始後も直ちに開離することが
なく、前記のように直ちに開極した投入抵抗接点側から
一定のタイミングをおいて開極することができる。
On the other hand, when opening the three-phase bracket, each operating cylinder 35.50 is driven in the opposite direction to the closing time, but in this case as well, the movable electrode 45 of the closing resistance contact is connected to the first Since the second movable electrodes 1 and 10 are separated at a higher speed than the relative separation speed of the second movable electrodes 1 and 10, the insulation recovery characteristics as shown in FIG. 6 of the prior art can be fully satisfied. That is, since the closing resistance contact portion of each phase is a butt contact, when the operating rod 48 is driven in the direction of separation, the movable side electrode 45 separates from the fixed side electrode 44. At this time, since the return speed of the return spring 45 of the fixed side electrode 44 is slower than the opening speed of the movable side electrode 45, the picture electrodes of each phase can be opened and separated immediately. - side, the first on the arc extinguishing chamber side of each phase.
Since the second movable electrodes 1 and 10 have a wipe structure, they do not open immediately even after the operation rod 36 starts opening, and as described above, they do not open immediately after the opening of the operating rod 36, and they can be opened at a certain timing from the closing resistance contact side, which is opened immediately as described above. The electrode can be opened after .

以上のような構成及び作用を有する本実施例においては
、次のような効果が発揮される。
In this embodiment having the configuration and operation as described above, the following effects are exhibited.

■三相の投入抵抗接点部の開極速度を三相の主接点の相
対的な開極速度よりも大きくしたので、投入抵抗接点の
絶縁回復特性が主接点のそれよりを確実に上回ることに
なり、機器の信頼性が向上する。
■Since the opening speed of the three-phase closing resistor contact is greater than the relative opening speed of the three-phase main contact, the insulation recovery characteristics of the closing resistor contact are guaranteed to exceed those of the main contact. This improves the reliability of the equipment.

■三相分の消弧室収納容器31と三相分の投入抵抗接点
の収納容器40とを別体としたので、容器外径の縮小化
が可能となる。その結果、第2図、第3図に示すように
、本実施例の三相−指形ガス遮断器を両容器が母線20
と平行になるようにしてガス絶縁開閉装置に組込んだ場
合、母線とブッシング関の寸法を縮小することが可能と
なり、ガス絶縁開閉装置の縮小が可能となる。特に、第
2図のように配置すると、投入抵抗接点収納容器40の
配@場所は、各相のブッシングの絶縁距離を確保するた
め必要な空間でおり、その空間の有効利用が計れる利点
がある。
(2) Since the arc extinguishing chamber storage container 31 for three phases and the storage container 40 for the closing resistance contacts for three phases are made separate, it is possible to reduce the outer diameter of the container. As a result, as shown in FIGS. 2 and 3, in the three-phase finger-shaped gas circuit breaker of this embodiment, both containers were
If it is incorporated into a gas insulated switchgear so that it is parallel to , it becomes possible to reduce the dimensions of the connection between the bus bar and the bushing, and the size of the gas insulated switchgear becomes possible. In particular, when arranged as shown in Figure 2, the placement location of the making resistance contact storage container 40 is the space required to ensure the insulation distance of the bushings of each phase, and there is an advantage that the space can be used effectively. .

■三相分の投入抵抗接点収納容器を三相分の消弧室収納
容器と別体としたので、線路用回線以外の投入抵抗接点
を必要としない箇所では、消弧室収納容器に収納された
主接点を有する遮断器のみを配置すれば良いので、容器
の共通化を図りながら、ガス絶縁開閉装置の縮小化が可
能となる。
■The three-phase closing resistance contact storage container is separate from the three-phase arcing chamber storage container, so in locations where closing resistance contacts are not required other than for railroad lines, they can be stored in the arcing chamber storage container. Since it is only necessary to arrange circuit breakers having main contacts, it is possible to use a common container and downsize the gas insulated switchgear.

■各相の投入抵抗体が投入抵抗接点収納容器40の上部
に配設され、しかも各相の投入抵抗接点の可動側電極4
5の操作ロッド49がその操作シリンダ50に直接接続
されているので、構造が単純で信頼性が高い。
■The making resistor of each phase is arranged on the upper part of the making resistance contact storage container 40, and the movable side electrode 4 of the making resistance contact of each phase is arranged.
Since the operating rod 49 of No. 5 is directly connected to the operating cylinder 50, the structure is simple and highly reliable.

■三相分の投入抵抗接点と主接点の駆動源として、それ
ぞれ油圧操作シリンダ50.35を使用し、且つ両者を
油圧配管51で接続したので、各操作シリンダの制御が
容易となり、各接点を異なった速度で駆動することが極
めて容易であり、しかも正確なタイミングで開閉するこ
とが可能となる。
■ Hydraulic operation cylinders 50.35 are used as the drive source for the three-phase closing resistance contact and the main contact, and both are connected by hydraulic piping 51, making it easy to control each operation cylinder and controlling each contact. It is extremely easy to drive at different speeds, and it is also possible to open and close with precise timing.

■投入抵抗接点部と主接点の操作機構系統を別々に設け
ると、一方の系統に不備があっても正常な方の接点のみ
が開閉してしまい、その結果遮断器が破壊される恐れが
あったが、油圧配管により隔操作用シリンダを連動させ
ることで、一方の接点のみが開閉されるような不都合を
解消できる。
■If the operating mechanism systems for the closing resistance contact section and the main contact are provided separately, even if there is a defect in one system, only the normal contacts will open or close, which may result in the breaker being destroyed. However, by interlocking the remote control cylinders with hydraulic piping, it is possible to eliminate the inconvenience of only one contact being opened or closed.

なあ、本発明は、前記実施例に限定されるものではなく
、主接点の開閉方式がダブルモーション方式の三相−指
形ガス遮断器全体に広く適用できるものである。また、
主接点及び投入抵抗接点の操作機構も油圧に限らず、他
の流体を使用したり、リンクを用いた機械的な手段を使
用することもできる。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but can be widely applied to all three-phase finger-shaped gas circuit breakers in which the main contact opening/closing method is a double motion method. Also,
The operating mechanism for the main contact and the closing resistance contact is not limited to hydraulic pressure, but may also use other fluids or mechanical means using links.

[発明の効果] 以上の通り、本発明によれば、三相分の主接点と三相分
の投入抵抗接点部とを別々の容器内に収納するという構
成により、大容量の遮断が可能で、信頼性が高く、小型
化された三相−指形ガス遮断器を提供することが可能と
なる。
[Effects of the Invention] As described above, according to the present invention, large-capacity interrupting is possible by storing the main contacts for three phases and the closing resistance contacts for three phases in separate containers. , it becomes possible to provide a highly reliable and compact three-phase finger-shaped gas circuit breaker.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の三相−指形ガス遮断器の一実施例を示
す断面図、第2図は第1図の三相−指形ガス遮断器をガ
ス絶縁開閉装置に組込んだ状態の平面図、第3図は同じ
く側面図、第4図及び第5図は従来のダブルモーション
方式のバッフ?形ガス遮断器の一相分を示す断面図で、
第4図は投入状態、第5図は開極状態を示す。第6図は
、550KV級1点切り遮断器と2点切り遮断器におけ
る主接点と投入抵抗接点の絶縁回復特性を示す特性図、
第7図は従来の三相−指形ガス遮断器を使用したガス絶
縁開閉装置の問題点を示す平面図である。 1・・・第1可動電極、10・・・第2可動電極、20
・・・主母線、21・・・断路器、22・・・接続母線
、23・・・遮断器、24・・・変流器、25・・・ブ
ッシング、30・・・消弧室、31・・・消弧室収納容
器、32・・・取出し口、33・・・導体、34・・・
操作機構箱、35・・・消弧室操作シリンダ、36・・
・操作ロッド、37・・・取出し口、38・・・導体、
39,41,42.52・・・開口部、40・・・投入
抵抗接点収納容器、43・・・投入抵抗体、44・・・
投入抵抗固定側電極、45・・・投入抵抗接点可動側電
極、46・・・復帰用スプリング、47・・・摺動部、
48・・・絶縁ロッド、49・・・操作ロッド、50・
・・投入抵抗接点操作シリンダ、51・・・油圧配管。 第 図 冑゛ ljf /’B’I 第 図 第 図 第 閏 f”’ h’c ’I市11二 、1:(方式) %式% [ 発明の名称 三相−話形ガス1Llli器 3、?Il正をする考 事件との関係
Fig. 1 is a sectional view showing an embodiment of the three-phase finger-shaped gas circuit breaker of the present invention, and Fig. 2 shows a state in which the three-phase finger-shaped gas circuit breaker of Fig. 1 is assembled into a gas-insulated switchgear. Figure 3 is a side view, and Figures 4 and 5 are the conventional double motion buff. A cross-sectional view showing one phase of a type gas circuit breaker.
FIG. 4 shows the closed state, and FIG. 5 shows the open state. FIG. 6 is a characteristic diagram showing the insulation recovery characteristics of the main contact and the closing resistance contact in a 550KV class single-break circuit breaker and two-point trip circuit breaker,
FIG. 7 is a plan view showing the problems of a gas insulated switchgear using a conventional three-phase finger type gas circuit breaker. 1... First movable electrode, 10... Second movable electrode, 20
... Main bus, 21... Disconnector, 22... Connection bus, 23... Circuit breaker, 24... Current transformer, 25... Bushing, 30... Arc extinguishing chamber, 31 ... Arc chamber storage container, 32 ... Outlet, 33 ... Conductor, 34 ...
Operation mechanism box, 35... Arc chamber operation cylinder, 36...
・Operation rod, 37... Outlet, 38... Conductor,
39, 41, 42.52... Opening, 40... Closing resistance contact storage container, 43... Closing resistor, 44...
Closing resistance fixed side electrode, 45... Closing resistance contact movable side electrode, 46... Return spring, 47... Sliding part,
48... Insulating rod, 49... Operating rod, 50...
... Closing resistance contact operation cylinder, 51... Hydraulic piping. Fig. ゛ljf /'B'I Fig. Fig. Fig. Fig. Fig. Fig. 112, 1: (Method) % formula% ?Relationship with the case to be corrected

Claims (1)

【特許請求の範囲】[Claims] (1)消弧室収納容器内部にそれぞれ第1と第2の可動
電極とを有する三相分の消弧室が収納され、前記消弧室
収納容器とは別体に構成された投入抵抗接点収納容器内
部に、それぞれ固定側電極と可動側電極及びこれらの電
極に接続された投入抵抗体とから構成された三相分の投
入抵抗接点部が収納され、各密封容器内部の各相の消弧
室と投入抵抗接点とが、各相の導体を介してそれぞれ電
気的に接続されていることを特徴とする三相一括形ガス
遮断器。
(1) Three-phase arc extinguishing chambers having first and second movable electrodes are housed inside the arc extinguishing chamber storage container, and a closing resistance contact is configured separately from the arc extinguishing chamber storage container. Inside the storage container, three-phase closing resistance contacts are housed, each consisting of a fixed side electrode, a movable side electrode, and a closing resistor connected to these electrodes. A three-phase collective gas circuit breaker characterized in that the arc chamber and the closing resistance contact are electrically connected to each other through conductors of each phase.
JP63216342A 1988-09-01 1988-09-01 Three-phase batch gas circuit breaker Expired - Lifetime JP2633643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63216342A JP2633643B2 (en) 1988-09-01 1988-09-01 Three-phase batch gas circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63216342A JP2633643B2 (en) 1988-09-01 1988-09-01 Three-phase batch gas circuit breaker

Publications (2)

Publication Number Publication Date
JPH0268826A true JPH0268826A (en) 1990-03-08
JP2633643B2 JP2633643B2 (en) 1997-07-23

Family

ID=16687048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63216342A Expired - Lifetime JP2633643B2 (en) 1988-09-01 1988-09-01 Three-phase batch gas circuit breaker

Country Status (1)

Country Link
JP (1) JP2633643B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134752U (en) * 1975-04-23 1976-10-30

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134752U (en) * 1975-04-23 1976-10-30

Also Published As

Publication number Publication date
JP2633643B2 (en) 1997-07-23

Similar Documents

Publication Publication Date Title
EP0172409A2 (en) Hybrid circuit breaker
JPH0268826A (en) Three phase package type gas circuit breaker
JP2609652B2 (en) Puffer type gas circuit breaker
JP2633644B2 (en) Puffer type gas circuit breaker
US4307273A (en) Gas blast circuit breaker
JPH03129616A (en) Three-phase package type gas circuit breaker
JP2868794B2 (en) Puffer type gas circuit breaker
JPH0334230A (en) Buffer type gas circuit breaker
JPH034418A (en) Buffer type gas breaker
JPH02253528A (en) Buffer type gas circuit breaker
JP2653502B2 (en) Gas circuit breaker
JP2874917B2 (en) Puffer type gas circuit breaker
JP2523478B2 (en) Puffer type gas breaker
JPS61193321A (en) Buffer type gas breaker
JP2859357B2 (en) Puffer type gas circuit breaker with closing resistor
JP2670375B2 (en) Puffer type gas circuit breaker
JPH0473834A (en) Puffer type gas-blast circuit-breaker with closing resistance
JPH0770278B2 (en) Gas circuit breaker
JP2866428B2 (en) Puffer type gas circuit breaker
JPS61163527A (en) Gas breaker
JPH01209622A (en) Buffer type gas-blasted circuit breaker
JPH01132022A (en) Buffer type gas circuit breaker
JPH11250785A (en) Puffer type gas-blast circuit breaker with closing resistance
JPH0224928A (en) Buffer-type gas-blast circuit breaker
JPH01248423A (en) Buffer type gas-blasted circuit breaker