JPH034418A - Buffer type gas breaker - Google Patents

Buffer type gas breaker

Info

Publication number
JPH034418A
JPH034418A JP13614489A JP13614489A JPH034418A JP H034418 A JPH034418 A JP H034418A JP 13614489 A JP13614489 A JP 13614489A JP 13614489 A JP13614489 A JP 13614489A JP H034418 A JPH034418 A JP H034418A
Authority
JP
Japan
Prior art keywords
closing
contact
speed
main contact
resistance contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13614489A
Other languages
Japanese (ja)
Inventor
Hirokazu Takagi
弘和 高木
Seiji Azuma
誠司 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13614489A priority Critical patent/JPH034418A/en
Publication of JPH034418A publication Critical patent/JPH034418A/en
Pending legal-status Critical Current

Links

Landscapes

  • Circuit Breakers (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

PURPOSE:To break a large capacity, enhance reliability and enable miniaturization by setting a closing speed of a closing resistant contact higher than a relative closing speed of first and second movable electrodes constituting a main contact, and keeping the closing resistant contact in a switched state even in the closing state of the main contact. CONSTITUTION:A closing resistant contact movable electrode 46 is driven by a resistant contact operating cylinder 50 in association with a main contact operating cylinder 35. A closing speed of the closing resistant contact movable electrode 46 is set higher than a relative closing speed of two movable electrodes 1, 10 constituting a main contact in an arc extinguish chamber 30 in such a manner that the closing resistant contact is switched during closing of the main contact. Therefore, a device as a whole can be constituted compact, and further, decrease in closing overvoltage in closing or an insulative recovery speed of the closing resistant contact in closing can be improved, thus enhancing reliability.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、例えば550KV系統のような大容量の1点
切り投入接点、投入抵抗付きバッファ形ガス遮断器に関
するものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a large-capacity one-off, closing contact, and a buffer type gas circuit breaker with closing resistance, such as for a 550 KV system. .

(従来の技術) 送電系統の大容量化に伴い、変電所や開閉所に用いられ
る遮断器の遮断容量が増大し、且つ高い信頼性が要求さ
れている。遮断器の信頼性を高めるためには、部品点数
を少なくし、構造を単純化することが重要である。その
ため、遮断器の遮断点数の減少が図られている。例えば
、現在550KV系統では、遮断電流が50KAの2点
切り遮断器が実用化されているが、さらにこれを1点切
り化することが要求されている。
(Prior Art) As the capacity of power transmission systems increases, the breaking capacity of circuit breakers used in substations and switchyards increases, and high reliability is required. In order to improve the reliability of circuit breakers, it is important to reduce the number of parts and simplify the structure. Therefore, efforts are being made to reduce the number of breaking points of circuit breakers. For example, currently in the 550 KV system, a two-point circuit breaker with a breaking current of 50 KA is in practical use, but there is a demand for a one-point circuit breaker.

ところで、この様な大容量の遮断器を1点切り化する場
合に、消弧性能を向上させるには、従来の2点切りの遮
断器に比べて、その開極速度を格段に早くする必要があ
る。そのため、固定電極とこれに対向した可動電極を備
え、開極時には可動電極のみを移動させていた従来の遮
断器に対して、対向する2電極を同時に移動させて開極
する、いわゆるダブルモーションと呼ばれる遮断器が提
案されている。このダブルモーション方式の遮断器によ
れば、各電極の移動速度は従来の遮断器と同様であるに
も拘らず、開極速度が格段に早くなり、消弧性能が向上
される利点がある。
By the way, in order to improve the arc extinguishing performance when converting such a large-capacity circuit breaker to one point, it is necessary to make the opening speed much faster than that of a conventional two-point circuit breaker. There is. Therefore, unlike conventional circuit breakers, which are equipped with a fixed electrode and a movable electrode facing the fixed electrode and move only the movable electrode when opening, we have developed a so-called double-motion circuit breaker that opens the circuit by simultaneously moving two opposing electrodes. A circuit breaker called According to this double-motion type circuit breaker, although the moving speed of each electrode is similar to that of a conventional circuit breaker, the opening speed is much faster and the arc extinguishing performance is improved.

このようなダブルモーション方式の遮断器の一例を第6
図及び第7図に示す。
An example of such a double motion type circuit breaker is shown in the sixth section.
It is shown in FIG.

この図において、1は第1の可動電極、10は第2の可
動電極(従来の固定電極に相当する)である。第1の可
動電極1は、バッファシリンダ2の先端部に設けられ、
その外周には絶縁ノズル3、可動通電接触子4が同心円
状に配置されている。
In this figure, 1 is a first movable electrode, and 10 is a second movable electrode (corresponding to a conventional fixed electrode). The first movable electrode 1 is provided at the tip of the buffer cylinder 2,
An insulating nozzle 3 and a movable current-carrying contact 4 are arranged concentrically around its outer periphery.

バッファシリンダ2の中心部には操作ロッド5が固定さ
れ、この操作ロッド5が絶縁ロッド6を介して図示しな
い機構部に接続されている。バッファシリンダ2の内側
には、絶縁筒7に固定して支持されたバッファピストン
8が挿入され、このバッファピストン8と前記バッファ
シリンダ2に囲まれた空間がバッファ室9になっている
An operating rod 5 is fixed to the center of the buffer cylinder 2, and the operating rod 5 is connected to a mechanism (not shown) via an insulating rod 6. A buffer piston 8 fixedly supported by an insulating cylinder 7 is inserted inside the buffer cylinder 2, and a space surrounded by the buffer piston 8 and the buffer cylinder 2 forms a buffer chamber 9.

第2可動電極10は、通電円筒11における第1可動電
極1との対向面中央に突出して設けられ、前記絶縁ノズ
ル3及び第1可動電極1内に挿入されるものである。こ
の第2可動電極10の外周には前記第1可動電極の可動
通電接触子4と接触する第2可動通電接触子12と第2
可動シールド13とが設けられている。これら第2可動
電極10を支持する通電円筒11は、その基部において
通電用導体14に摺動自在に挿入されると同時に、前記
第1可動電極1の外側に配設された絶縁ロッド15及び
リンク機構16を介して、第1可動電極1を駆動する操
作ロッド5の基部に接続されている。このリンク機構1
6は、リンク16aの両端にそれぞれ回動自在に連結さ
れた第1、第2の連結棒16b、16c及びリンク16
aを支持するリンク支持部16dより構成されている。
The second movable electrode 10 is provided so as to protrude from the center of the face of the current-carrying cylinder 11 facing the first movable electrode 1, and is inserted into the insulating nozzle 3 and the first movable electrode 1. On the outer periphery of the second movable electrode 10, there is a second movable current-carrying contact 12 that contacts the movable current-carrying contact 4 of the first movable electrode.
A movable shield 13 is provided. The current-carrying cylinder 11 that supports these second movable electrodes 10 is slidably inserted into the current-carrying conductor 14 at its base, and at the same time an insulating rod 15 and a link are provided outside the first movable electrode 1. It is connected via a mechanism 16 to the base of the operating rod 5 that drives the first movable electrode 1 . This link mechanism 1
Reference numeral 6 denotes first and second connecting rods 16b, 16c and a link 16 rotatably connected to both ends of the link 16a.
The link support section 16d supports the link a.

リンク16aは、所定のリンク比に設定されたリンク支
持部16dの支点16eを軸にして、リンク支持部16
dに対して回転自在に支持されている。
The link 16a rotates around the fulcrum 16e of the link support 16d, which is set to a predetermined link ratio.
It is rotatably supported with respect to d.

また、第1、第2の各連結部16b、16cは、それぞ
れの一端にて操作ロッド5と絶縁ロッド15に回転自在
に連結されている。なお、リンク支持部16dは、図示
しない容器に絶縁固定された絶縁筒9に固定されている
Further, each of the first and second connecting portions 16b and 16c is rotatably connected to the operating rod 5 and the insulating rod 15 at one end of each. Note that the link support portion 16d is fixed to an insulating cylinder 9 that is insulated and fixed to a container (not shown).

この様に構成されたダブルモーション方式の遮断器にお
いては、第6図の投入状態にて、図示しない操作機構を
駆動すると、操作ロッド5が所定の速度で操作機構側(
図中右側)に移動し、その先端に固定された第1可動電
極1が右方向に移動し、第2可動電極10との間で遮断
動作が行なわれる。一方、この操作ロッド5の動作に伴
って、これに連結されたリンク機構16が駆動され、絶
縁ロッド15を操作ロッド5とは反対側(図中左側)に
移動させる。その結果、この絶縁ロッド15の先端に固
定された通電円筒11及び第2可動電極10が、第1可
動電極1とは反対方向(図中左側)に移動する。また、
前記操作ロッド5の移動により、その先端に固定された
バッファシリンダ2が絶縁筒7に固定されたバッファピ
ストン8に対して移動し、バッファ室9が圧縮されるの
で、内部の消弧ガスが絶縁ノズル3に案内されて開離す
る第1、第2電極間に吹付けられ、消弧動作がなされる
In the double-motion circuit breaker configured in this way, when the operating mechanism (not shown) is driven in the closed state shown in FIG.
The first movable electrode 1 fixed to the tip thereof moves rightward, and a disconnection operation is performed between the first movable electrode 1 and the second movable electrode 10. On the other hand, as the operating rod 5 moves, a link mechanism 16 connected thereto is driven, and the insulating rod 15 is moved to the side opposite to the operating rod 5 (to the left in the figure). As a result, the current-carrying cylinder 11 and the second movable electrode 10 fixed to the tip of the insulating rod 15 move in the opposite direction to the first movable electrode 1 (to the left in the figure). Also,
As the operating rod 5 moves, the buffer cylinder 2 fixed at its tip moves relative to the buffer piston 8 fixed to the insulating cylinder 7, and the buffer chamber 9 is compressed, so that the arc extinguishing gas inside is insulated. The arc is blown between the first and second electrodes which are guided by the nozzle 3 and separated, thereby extinguishing the arc.

なお、投入動作は、操作ロッド5を前記遮断動作とは反
対方向に駆動することにより、第1、第2可動電極1,
10を相対的に接近させる。
Note that the closing operation is performed by driving the operating rod 5 in the opposite direction to the closing operation.
10 relatively close together.

この様にダブルモーション方式の遮断器においては、操
作ロッド5の移動速度は従来の遮断器と同様なものであ
りながら、第1、第2可動電極1゜10の両方を駆動す
るため、両電極間の相対的な開離速度が2倍以上に向上
し、大容量の遮断器においても1点切りが可能となる。
In this way, in a double-motion type circuit breaker, although the moving speed of the operating rod 5 is similar to that of a conventional circuit breaker, since it drives both the first and second movable electrodes 1. The relative opening speed between them is more than doubled, making it possible to trip at one point even in large-capacity circuit breakers.

(発明が解決しようとする課題) ところで、550KV級のような大容量系統における線
路用の遮断器においては、投入時の投入過電圧を抑制す
るために投入抵抗方式が採用されている。これは、遮断
器の主接点と並列に投入抵抗を有する投入抵抗接点を設
け、投入時には主接点に先立ってこの投入抵抗接点が投
入され、その投入抵抗により投入過電圧が抑制された状
態で主接点が投入されるものである。この方式において
開極時には、まず投入抵抗接点が開離し次いで主接点が
開極することが必要である。
(Problems to be Solved by the Invention) By the way, in circuit breakers for lines in large-capacity systems such as 550 KV class, a closing resistance method is adopted in order to suppress the closing overvoltage at the time of closing. In this system, a closing resistance contact with a closing resistance is installed in parallel with the main contact of the circuit breaker, and when the circuit breaker is closed, this closing resistance contact is closed before the main contact, and the closing overvoltage is suppressed by the closing resistance. is input. In this method, when opening, it is necessary that the making resistance contact first be opened, and then the main contact must be opened.

前記したダブルモーション方式の遮断器にこの投入抵抗
接点を採用する場合、開閉過電圧の低減、遮断器及びこ
れを採用したガス絶縁開閉装置全体の小型化が大きな問
題点となり、これを解決することが重要な課題である。
When this closing resistance contact is used in the above-mentioned double-motion type circuit breaker, the major problems are the reduction of switching overvoltage and the miniaturization of the circuit breaker and the entire gas-insulated switchgear that employs it, and it is difficult to solve these problems. This is an important issue.

まず、第8図に、従来の550KV級2点切り遮断器の
1点当たりの投入接点と消弧室(主接点)との絶縁回復
特性と、550KV級1点切り遮断器の投入接点と消弧
室の絶縁回復特性を示した。
First, Figure 8 shows the insulation recovery characteristics between the closing contact and the arc extinguishing chamber (main contact) per point of a conventional 550KV class two-point circuit breaker, and the closing contact and extinguishing point of a 550KV class single-point circuit breaker. The insulation recovery characteristics of the arc chamber are shown.

この図からも明らかな通り、550KV級1点切り遮断
器においては、 ■ 2点切りの各1点における場合より、主接点、投入
抵抗接点の両者共に開極速度が早い。
As is clear from this figure, in a 550 KV class single-point circuit breaker, the opening speed of both the main contact and the closing resistance contact is faster than in the case of two-point circuit breakers, each with one point.

■ 開極時に投入抵抗接点の絶縁回復速度が主接点の絶
縁回復速度より早い。
■ When opening, the insulation recovery speed of the closing resistance contact is faster than that of the main contact.

■ 投入時に投入抵抗接点が主接点よりも先に投入され
る。
■ At the time of closing, the closing resistance contact is closed before the main contact.

という条件を満足する必要がある。It is necessary to satisfy the following conditions.

ところが、一方の電極のみを可動とした従来の遮断器に
おいては、可動電極と投入抵抗接点を同じ駆動源を使用
して同時に同速度で移動させ、両者の開極或いは投入の
タイミングは、電極形状の相違(主接点はワイプを使用
した電極構造であるのに対し、投入抵抗接点はスプリン
グを使用したバットコンタクトを採用)によって対応し
ていた。
However, in conventional circuit breakers in which only one electrode is movable, the movable electrode and the closing resistance contact are moved simultaneously at the same speed using the same drive source, and the timing of opening or closing of both depends on the shape of the electrode. (The main contact has an electrode structure using a wipe, while the closing resistance contact uses a butt contact using a spring.)

しかし、55OKV級1点切り遮断器に採用されるダブ
ルモーション方式では、主接点においては画電極が同時
に移動するので、従来の遮断器のように主接点の開極速
度と同速度で投入抵抗接点を移動させると、投入抵抗接
点の投入或いは開極速度が主接点の約172程度となり
、前記■■で述べたように投入抵抗接点の投入或いは開
極速度を主接点よりも早くすることができないという問
題が生じる。しかも、この種の大容量遮断器としては、
その開極時に主接点の電極間に消弧ガスを吹付けるバッ
ファ形ガス遮断器が採用されるのに対して、投入抵抗接
点には特に消弧ガスの吹付けは行なわれないので、この
理由からも投入抵抗接点の絶縁回復速度を主接点よりも
早くすることが困難であった。
However, in the double motion method adopted for 55 OKV class single-break circuit breakers, the picture electrodes at the main contact move simultaneously, so the closing resistor contact opens at the same speed as the opening speed of the main contact, unlike conventional circuit breakers. If the closing resistance contact is moved, the closing or opening speed of the closing resistance contact will be approximately 172 times that of the main contact, and as mentioned above, the closing or opening speed of the closing resistance contact cannot be made faster than that of the main contact. A problem arises. Moreover, as this type of large capacity circuit breaker,
The reason for this is that while a buffer type gas circuit breaker is used that sprays arc-extinguishing gas between the electrodes of the main contact when opening, no arc-extinguishing gas is sprayed on the closing resistance contact. Also, it was difficult to make the insulation recovery speed of the closing resistance contact faster than that of the main contact.

また、従来の投入抵抗接点を有する遮断器においては、
主接点を収納した消弧室と投入抵抗接点とを同一容器内
に収′容していたために、容器全体の外径が大きくなる
と同時に、これを使用したガス絶縁開閉装置全体も大型
化するという欠点もあった。例えば、第9図は従来の同
一容器収納型の遮断器を使用したガス絶縁開閉装置の平
面図であるが、三相−括母線20から分岐した各相の接
続母線21を、断路器22を介して投入抵抗接点付きの
遮断器23に接続し、これをさらに変流器24を介して
線路側のブッシング25に接続する場合、各相の遮断器
23の容器外径が大きいと、各層の遮断器23を配設し
た場合の相間寸法りが大きくなり、その分ガス絶縁開閉
装置の占有スペースが増大すると共に、製作が困難で高
価な三相−括母線20の長さが大きくなるという欠点が
あった。
In addition, in conventional circuit breakers with closing resistance contacts,
Because the arc extinguishing chamber housing the main contact and the closing resistance contact were housed in the same container, the outer diameter of the entire container became larger, and at the same time, the entire gas-insulated switchgear that used it also became larger. There were also drawbacks. For example, FIG. 9 is a plan view of a gas-insulated switchgear using conventional circuit breakers housed in the same container. When the circuit breaker 23 with a closing resistance contact is connected to the circuit breaker 23 with a closing resistance contact through the current transformer 24, and this is further connected to the bushing 25 on the line side through the current transformer 24, if the outer diameter of the container of the circuit breaker 23 of each phase is large, the When the circuit breaker 23 is installed, the dimension between the phases increases, which increases the space occupied by the gas-insulated switchgear, and also increases the length of the three-phase bracket bus 20, which is difficult and expensive to manufacture. was there.

さらに、投入抵抗接点付きの遮断器は、通常の線路用回
線部分に使用され、他の回線部分には投入抵抗接点のな
いタイプの遮断器が使用されるが、従来では、規格の同
一化を図るため投入抵抗接点が不要な遮断器についても
、投入抵抗接点を収納できる大きさの容器を共通して使
用していたので、前記のような占有スペースや三相−括
母線長の増大が、ガス絶縁開閉装置の他の部分において
も問題となっていた。
Furthermore, circuit breakers with closing resistance contacts are used for normal line circuits, and circuit breakers without closing resistance contacts are used for other line sections. Even for circuit breakers that do not require a closing resistor contact, a container large enough to accommodate the closing resistor contact is commonly used. Problems also occurred in other parts of gas-insulated switchgear.

本発明は、上記のような従来技術の問題点を解決し、小
型化され且つガス絶縁開閉装置全体の縮小化に寄与し、
しかも投入時の投入過電圧の低減と開極或いは投入時に
おける投入抵抗接点の絶縁回復速度の向上を可能とした
、信頼性の高い大容量1点切りバッファ形ガス遮断器を
提供することを目的とする。
The present invention solves the problems of the prior art as described above, is miniaturized, and contributes to the downsizing of the entire gas-insulated switchgear,
Moreover, the purpose is to provide a highly reliable, large-capacity, single-break buffer type gas circuit breaker that can reduce the closing overvoltage at the time of closing and improve the insulation recovery speed of the closing resistance contact at the time of opening or closing. do.

[発明の構成] (課題を解決するための手段) 本発明は、消弧室内に第1と第2の可動電極とから成る
主接点が収納され、この主接点と並列に、固定側電極と
可動側電極及びこれらの電極に接続された投入抵抗体と
から構成された投入抵抗接点部が設けられたダブルモー
ション方式の1点切り投入抵抗接点付きバッファ形ガス
遮断器において、投入抵抗接点の可動電極を、主接点操
作シリンダと連動する抵抗接点操作シリンダによって駆
動し、また、投入抵抗接点部の可動電極の投入速度を、
消弧室内の主接点を構成する両可動電極の相対投入速度
以上にすると共に、主接点の投入ワイプ中に、投入抵抗
接点が開離動作を行う様にしたことを構成上の特徴とす
るものである。
[Structure of the Invention] (Means for Solving the Problems) In the present invention, a main contact consisting of a first and a second movable electrode is housed in an arc extinguishing chamber, and a fixed electrode and a fixed side electrode are arranged in parallel with the main contact. In a buffer type gas circuit breaker with a double-motion single-break closing resistance contact, which is equipped with a closing resistance contact section consisting of a movable side electrode and a closing resistor connected to these electrodes, the closing resistance contact is movable. The electrode is driven by a resistance contact operation cylinder that is linked with the main contact operation cylinder, and the closing speed of the movable electrode of the closing resistance contact is controlled by
The structural feature is that the closing speed is higher than the relative closing speed of both movable electrodes that constitute the main contact in the arc extinguishing chamber, and the closing resistance contact performs opening and closing operations during closing wipe of the main contact. It is.

(作用) 上記のような構成を有する本発明のバッファ形ガス遮断
器においては、投入抵抗接点が主接点の両可動電極の投
入ワイプ動作中に開離し、主接点が投入静止状態にある
とき、投入抵抗接点は開極状態を保持するようになるの
で、主接点の開極動作時に投入抵抗接点を高速で動作さ
せる必要はなく、良好な絶縁回復特性を示すとともに、
機械的強度についても良好な性能をもたせることが可能
となる。
(Function) In the buffer type gas circuit breaker of the present invention having the above configuration, when the closing resistance contact is opened during the closing wipe operation of both movable electrodes of the main contact and the main contact is in the closing stationary state, Since the closing resistance contact maintains the open state, there is no need to operate the closing resistance contact at high speed when the main contact opens, and it exhibits good insulation recovery characteristics.
It is also possible to provide good mechanical strength.

(実施例) 以下、本発明の一実施例を第1図乃至第5図により具体
的に説明する。なお、前記第6図以下に示した従来の遮
断器と同一部材に付いては同一符号を付し、説明は省略
した。
(Example) Hereinafter, an example of the present invention will be specifically described with reference to FIGS. 1 to 5. It should be noted that the same members as those of the conventional circuit breaker shown in FIG.

本実施例においては、第1図に示した様に、第1可動電
極1と第2可動電極10とを有する主接点の消弧室30
は、専用の消弧室収納容器31内に収納されている。こ
の消弧室30の下部に位置する第1可動電極1は、消弧
室収納容器31の下部側面の開口部32から外部(投入
抵抗接点収納容器側)に引出された導体33に電気的に
接続されている。また、消弧室30は、消弧室収納容器
31を設置した操作機構箱34上に絶縁筒9によって支
持されている。この消弧室30において各可動電極1,
10を駆動する操作ロッド5は、絶縁ロッド6を介して
操作機構箱34内に延長され、その内部に設けられた消
弧室操作シリンダ35の操作ロッド36に接続されてい
る。一方、消弧室30の上部に位置する第2可動電極1
0は、通電導体14を介して、消弧室収納容器31の上
部に設けられた取出し口37から引出された導体38に
接続されている。
In this embodiment, as shown in FIG.
is stored in a dedicated arc extinguishing chamber storage container 31. The first movable electrode 1 located at the lower part of the arc extinguishing chamber 30 is electrically connected to a conductor 33 drawn out from an opening 32 on the lower side of the arc extinguishing chamber storage container 31 (to the side of the closing resistance contact storage container). It is connected. Further, the arc extinguishing chamber 30 is supported by an insulating tube 9 on an operating mechanism box 34 in which an arc extinguishing chamber storage container 31 is installed. In this arc extinguishing chamber 30, each movable electrode 1,
The operating rod 5 that drives the arc-extinguishing chamber 10 is extended into the operating mechanism box 34 via an insulating rod 6, and is connected to an operating rod 36 of an arc-extinguishing chamber operating cylinder 35 provided therein. On the other hand, the second movable electrode 1 located at the upper part of the arc extinguishing chamber 30
0 is connected to a conductor 38 drawn out from an outlet 37 provided at the upper part of the arc-extinguishing chamber storage container 31 via a current-carrying conductor 14.

また、前記のような消弧室収納容器31の側方には、こ
れと別容器とした投入抵抗接点収納容器40が設けられ
ている。この収納容器40は、その側面の上下に設けら
れた開口部41.42の部分で、前記消弧室収納容器3
1の側面に形成された開口部39.32に接続されてい
る。この投入抵抗接点収納容器40内には、投入抵抗接
点部が収納されている。この投入抵抗接点部は、投入抵
抗体43、投入接点固定側電極44及びその復帰用スプ
リング45と、投入接点固定側電極44に対向した投入
接点可動側電極46とから構成されている。このうち固
定側電極44は、投入抵抗体43を介して、前記消弧室
の第2可動電極10を接続した導体38に接続されてい
る。また、可動側電極46は、前記消弧室の第1可動電
極1に接続された導体33に摺動部47を介して電気的
に接続され、さらにこの可動側電極46の基部は、絶縁
ロッド48及び操作ロッド49によって操作機構箱34
内の投入抵抗接点操作シリンダ50に接続されている。
Moreover, on the side of the arc extinguishing chamber storage container 31 as described above, a closing resistance contact storage container 40 which is a separate container is provided. This storage container 40 has openings 41 and 42 provided on the upper and lower sides of the side surface of the arc extinguishing chamber storage container 3.
1 is connected to an opening 39.32 formed in one side. A making resistance contact portion is housed in the making resistance contact storage container 40 . This closing resistance contact section is composed of a closing resistor 43, a closing contact fixed electrode 44, a spring 45 for returning the closing contact, and a closing contact movable electrode 46 facing the closing contact fixed electrode 44. Among these, the fixed side electrode 44 is connected via the closing resistor 43 to the conductor 38 connected to the second movable electrode 10 of the arc extinguishing chamber. Further, the movable electrode 46 is electrically connected to the conductor 33 connected to the first movable electrode 1 of the arc extinguishing chamber via a sliding part 47, and the base of the movable electrode 46 is connected to an insulating rod. 48 and the operating mechanism box 34 by the operating rod 49.
It is connected to the closing resistance contact operating cylinder 50 inside.

この投入抵抗接点操作シリンダ50は、前記消弧室操作
シリンダ35と油圧配管51によって接続されることに
より同期して駆動される。ここで、消弧室操作シリンダ
35は概略第2図の様な系統として構成されている。即
ち、操作シリンダ35はシリンダ351とピストン35
2から成り、ピストン352に対してシリンダ351の
一側の液室351aは、ポンプPにて昇圧された圧液を
蓄えたアキュムレータALに接続されている。一方、シ
リンダ351の他側の液室351bは、制御弁CVを介
してアキュムレータAL又はタンクTに接続され、制御
弁Cvの動作は投入用パイロット弁PVI、遮断用パイ
ロット弁PV2によって行われる。即ち、パイロット弁
PVI、PV2を操作することにより制御弁Cvは流路
を切換え、液室351b内に圧液を充排することでピス
トン352と係合した操作ロッド36が駆動される。
The closing resistance contact operation cylinder 50 is connected to the arc extinguishing chamber operation cylinder 35 through a hydraulic pipe 51 and is driven synchronously. Here, the arc extinguishing chamber operating cylinder 35 is configured as a system as schematically shown in FIG. 2. In other words, the operation cylinder 35 has a cylinder 351 and a piston 35.
A liquid chamber 351a on one side of the cylinder 351 with respect to the piston 352 is connected to an accumulator AL that stores pressurized liquid pressurized by the pump P. On the other hand, the liquid chamber 351b on the other side of the cylinder 351 is connected to the accumulator AL or the tank T via the control valve CV, and the operation of the control valve Cv is performed by the closing pilot valve PVI and the shutting pilot valve PV2. That is, by operating the pilot valves PVI and PV2, the control valve Cv switches the flow path, and the operating rod 36 engaged with the piston 352 is driven by charging and discharging the pressure liquid into the liquid chamber 351b.

一方、投入抵抗接点操作シリンダ50は、第3図(A)
(B)に示した様に構成されている。即ち、シリンダ5
01内には、操作ロッド49と係合し、その内面を摺動
するピストン502によって液室501a及び501b
が形成されている。
On the other hand, the closing resistance contact operation cylinder 50 is shown in FIG. 3(A).
It is configured as shown in (B). That is, cylinder 5
01, liquid chambers 501a and 501b are formed by a piston 502 that engages with the operating rod 49 and slides on its inner surface.
is formed.

また、前記液室501aは、供給弁503を介して消弧
室操作シリンダ35の液室351bと連通されると共に
、ピストン502内に設けられた排出弁504を介して
、液室501bと連通されている。なお、この供給弁5
03は、その背部に設けられた弁室503a内の液圧と
、それに対抗する位置に設けられた弁室503b内に設
けられたバネ505a作用力によって図中左右方向に駆
動される。この供給弁503の動作によって、シリンダ
501内に形成されたシート部503Cとの当接、開離
が行われ、液室351bに接続された配管51の流路と
、液室501aに接続された流路506aとの閉止及び
連通が行われる。また、弁室503aには、配管51の
流路と連通した流路506bが接続され、弁室503b
は図示しないタンクに接続された低圧流路506cと連
通されている。
Further, the liquid chamber 501a is communicated with the liquid chamber 351b of the arc extinguishing chamber operating cylinder 35 via a supply valve 503, and is also communicated with the liquid chamber 501b via a discharge valve 504 provided in the piston 502. ing. Note that this supply valve 5
03 is driven in the left-right direction in the drawing by the hydraulic pressure in a valve chamber 503a provided at the back thereof and the force acting on a spring 505a provided in a valve chamber 503b provided at a position opposing the hydraulic pressure. By the operation of this supply valve 503, the seat portion 503C formed in the cylinder 501 is brought into contact with and separated from the seat portion 503C, and the flow path of the piping 51 connected to the liquid chamber 351b is connected to the liquid chamber 501a. Closing and communication with the flow path 506a are performed. Further, a flow path 506b communicating with the flow path of the piping 51 is connected to the valve chamber 503a.
is in communication with a low pressure flow path 506c connected to a tank (not shown).

一方、排出弁504は、弁体504aとピストン502
を液室501b側に貫通、突出した弁ロッド504bと
から成り、排出弁504を押し下げる方向に作用するバ
ネ505bと共にピストン502内に組み込まれている
。そして、弁体504aとシート部504Cとの当接、
開離によって液室501aと501bは閉止、連通され
、ピストン502の上方向への移動時に、弁ロッド50
4bの先端がシリンダ501の上端部に当接するように
構成されている。さらに、液室501b内には、ピスト
ン502を常に下方へ押し下げるように作用するバネ5
05cが設けられると共に、低圧流路506cと連通さ
れている。
On the other hand, the discharge valve 504 has a valve body 504a and a piston 502.
It consists of a valve rod 504b that penetrates and protrudes toward the liquid chamber 501b side, and is incorporated into the piston 502 together with a spring 505b that acts in a direction to push down the discharge valve 504. Then, the valve body 504a and the seat portion 504C come into contact,
By opening, the liquid chambers 501a and 501b are closed and communicated with each other, and when the piston 502 moves upward, the valve rod 50
The tip of the cylinder 4b is configured to abut against the upper end of the cylinder 501. Furthermore, inside the liquid chamber 501b, there is a spring 5 that acts to constantly push down the piston 502.
05c is provided and communicated with the low pressure flow path 506c.

なお、各収納容器31.40の上部に配設され、第2可
動電極10と投入抵抗接点の固定側電極44を接続した
導体38は、本実施例では消弧室収納容器31の上部の
取出し口37から、また各収納容器31.40の下部に
配設され、第1可動電極1と投入抵抗接点の可動側電極
46を接続した導体33は、投入抵抗接点収納容器40
の下部に設けられた取出し口52から外部に引出され、
ガス絶縁開閉装置を構成する他の機器に接続されている
。また、これら収納容器の各取出し口37゜52には、
導体33.38の支持と他の機器とのガス区分のために
絶縁スペーサ53.54が設けられている。
In addition, in this embodiment, the conductor 38, which is arranged at the upper part of each storage container 31, 40 and connects the second movable electrode 10 and the fixed side electrode 44 of the closing resistance contact, is connected to the upper part of the arc-extinguishing chamber storage container 31. The conductor 33, which is disposed at the bottom of each storage container 31 and 40 and connects the first movable electrode 1 and the movable side electrode 46 of the making resistance contact, is connected to the making resistance contact storage container 40 from the opening 37.
is pulled out from the outlet 52 provided at the bottom of the
Connected to other equipment that makes up the gas-insulated switchgear. In addition, each outlet 37°52 of these storage containers has
Insulating spacers 53,54 are provided for supporting the conductors 33,38 and for gas separation with other equipment.

上記のような構成を有する本実施例のバッファ形ガス遮
断器の作用を説明する。
The operation of the buffer type gas circuit breaker of this embodiment having the above configuration will be explained.

第1図及び第3図(A)は開極状態を示したものであり
、第3図(A)において、供給弁503はシート部50
3cを開いた状態に保持され、低圧状態にある消弧室操
作シリンダ35の液室351bと連通した液室501a
も低圧状態に保持される。このため、シリンダ501内
に配設されたバネ505cの作用によって、ピストン5
02はシリンダ501の下部に押し付けられると共に、
排出弁504には、その弁体504aをシート部504
cに当接させるような力が作用し、液室501aと50
1b間の連通は阻止されている。
1 and 3(A) show the open state, and in FIG. 3(A), the supply valve 503 is connected to the seat portion 50.
3c is held in an open state and communicates with the liquid chamber 351b of the arc extinguishing chamber operation cylinder 35 which is in a low pressure state.
is also maintained at low pressure. Therefore, due to the action of the spring 505c disposed inside the cylinder 501, the piston 5
02 is pressed against the bottom of the cylinder 501, and
The discharge valve 504 has a valve body 504a attached to the seat portion 504.
A force is applied to bring the liquid chambers 501a and 50 into contact with each other.
Communication between 1b is blocked.

この時、投入指令が入ると、消弧室操作シリンダ35の
液室351b内に圧液が供給されて、その操作ロッド3
6は投入側に移動を開始する。同時に、投入抵抗接点操
作シリンダ50の液室501a内に配管51及び供給弁
503を介して圧液が供給されるため、ピストン502
は液室501b内のバネ505Cの反力に対抗して投入
側(図中、上方向)へ移動を開始する。この様なピスト
ン502の動作中、排出弁504は液室501aの液圧
を受け、シート部504Cは弁体504aによ゛って閉
じられた状態を保ち、一方、供給弁503は、流路50
6bから弁室503bに液圧が供給されるため、その受
圧面積の差によってシート部503Cを閉止する方向(
図中、左方向)へ動作する。
At this time, when a closing command is input, pressure liquid is supplied into the liquid chamber 351b of the arc extinguishing chamber operation cylinder 35, and the operation rod 3
6 starts moving to the input side. At the same time, pressure liquid is supplied into the liquid chamber 501a of the closing resistance contact operation cylinder 50 via the piping 51 and the supply valve 503, so that the piston 502
starts moving toward the input side (upward in the figure) against the reaction force of the spring 505C in the liquid chamber 501b. During such operation of the piston 502, the discharge valve 504 receives the liquid pressure in the liquid chamber 501a, the seat portion 504C remains closed by the valve body 504a, while the supply valve 503 receives the liquid pressure in the liquid chamber 501a. 50
6b to the valve chamber 503b, the difference in pressure receiving area causes the direction of closing the seat portion 503C (
(in the figure, to the left).

なお、ピストン502の駆動速度は、操作ロッド36の
駆動速度の2倍以上になるよう設定すると共に、投入側
への移動終了付近で、供給弁503がシート部503c
に当接し、排出弁504の弁ロッド504bの先端がシ
リンダ501の上端に当接するように設定しておく。
The driving speed of the piston 502 is set to be at least twice the driving speed of the operating rod 36, and near the end of the movement toward the input side, the supply valve 503 closes to the seat portion 503c.
The discharge valve 504 is set so that the tip of the valve rod 504b of the discharge valve 504 comes into contact with the upper end of the cylinder 501.

この時、消弧室側の操作ロッド36によって消弧室30
の第1可動電極1と第2可動電極10は、前記の従来技
術で述べたように、リンク機構16により反対方向に駆
動されるので、両者の相対的な投入速度は操作ロッド3
6の駆動速度の約2倍の高速度となる。一方、投入時の
過電圧を抑制するためには、投入抵抗接点側は、前記の
ような高速度の消弧室30の投入よりも早(投入される
必要があるが、本実施例においては、投入抵抗接点操作
シリンダ50が、その操作ロッド49を消弧室30内に
おける第1、第2可動電極1.10の相対速度よりも早
い速度で駆動しているので、投入抵抗接点が消弧室の主
接点よりも必ず先に投入されることになる。その結果、
まず投入抵抗接点の可動側電極46がその固定側電極4
4に接触し、これを復帰用スプリング45に逆らって押
込むことにより、導体33.38間を投入抵抗体43を
介して接続し、その後その投入抵抗接点の投入速度より
も遅い消弧室30側の主接点が、前記従来技術で述べた
ようにして投入され、導体33,38間が電気的に接続
されることになる。
At this time, the arc extinguishing chamber 30 is operated by the operating rod 36 on the arc extinguishing chamber side.
As described in the prior art, the first movable electrode 1 and the second movable electrode 10 are driven in opposite directions by the link mechanism 16, so the relative input speed of the two is controlled by the operating rod 3.
The driving speed is approximately twice as high as that of No. 6. On the other hand, in order to suppress overvoltage at the time of closing, the closing resistance contact side needs to be closed earlier than the high-speed closing of the arc extinguishing chamber 30 as described above, but in this embodiment, Since the closing resistance contact operating cylinder 50 drives its operating rod 49 at a speed faster than the relative speed of the first and second movable electrodes 1.10 within the arc extinguishing chamber 30, the closing resistance contact operates within the arc extinguishing chamber. The main contact is always closed before the main contact.As a result,
First, the movable side electrode 46 of the closing resistance contact is connected to its fixed side electrode 4.
4 and pushing it against the return spring 45, the conductors 33 and 38 are connected through the closing resistor 43, and then the arc extinguishing chamber 30 is opened at a speed slower than the closing speed of the closing resistor contact. The side main contact is closed in the manner described in the prior art section, resulting in an electrical connection between the conductors 33 and 38.

また、第3図(B)は投入抵抗接点操作シリンダ50の
投入状態を示したものである。即ち、ピストン502の
投入終了時に、排出弁504の弁ロッド504bの先端
がシリンダ501の上壁に接触するため、ピストン50
2の慣性力の反力によって排出弁504は押し下げられ
、弁体504aがシート部504cを開く。これとほぼ
同時に、供給弁503はシート部503Cを閉じる。こ
れによって液室501aと501bは連通されると共に
、液室501aと液室351b間の連通は遮断されるた
め、液室501a内の圧液は排出弁504、液室501
b及び低圧流路506Cを介して排出されるが、液室3
51b内は高圧に保持される。このため、ピストン50
2はバネ505Cの圧縮力によって開極動作を開始する
が、これは消弧室30の接点が投入動作を完了した時点
になるように設定されている。また、ピストン502の
開極動作中、排出弁504はバネ505bの作′用で開
状態を維持し、液室501a内の液圧が極端に上昇して
ピストン502の動作を妨げることがないようにしてい
る。さらに、供給弁503は、弁室503a内の液圧に
より閉状態を保持するため、消弧室操作シリンダ35の
投入状態が保持される。そして、ピストン502が開極
動作を終了すると、排出弁504の弁体504aの頭部
がシリンダ501の下壁に当接し、バネ505bを圧縮
してシート部504cを閉止する。この時、供給弁50
3は閉止されているため、液室501a内に液圧が供給
されることはなく、接点が再度投入方向に動作すること
はない。
Further, FIG. 3(B) shows the closing state of the closing resistance contact operating cylinder 50. That is, when the piston 502 is completely closed, the tip of the valve rod 504b of the discharge valve 504 comes into contact with the upper wall of the cylinder 501, so that the piston 50
The discharge valve 504 is pushed down by the reaction force of the inertial force No. 2, and the valve body 504a opens the seat portion 504c. At approximately the same time, the supply valve 503 closes the seat portion 503C. As a result, the liquid chambers 501a and 501b are communicated with each other, and the communication between the liquid chamber 501a and the liquid chamber 351b is cut off.
b and is discharged via the low pressure flow path 506C, but the liquid chamber 3
The inside of 51b is maintained at high pressure. For this reason, the piston 50
2 starts the opening operation by the compressive force of the spring 505C, but this is set so that the contact point of the arc extinguishing chamber 30 completes the closing operation. Further, during the opening operation of the piston 502, the discharge valve 504 is maintained in the open state by the action of the spring 505b, so that the liquid pressure in the liquid chamber 501a does not rise excessively and interfere with the operation of the piston 502. I have to. Furthermore, since the supply valve 503 is kept closed by the hydraulic pressure in the valve chamber 503a, the arc extinguishing chamber operation cylinder 35 is kept in the closed state. Then, when the piston 502 completes the opening operation, the head of the valve body 504a of the discharge valve 504 comes into contact with the lower wall of the cylinder 501, compressing the spring 505b and closing the seat portion 504c. At this time, the supply valve 50
3 is closed, no liquid pressure is supplied into the liquid chamber 501a, and the contact does not operate in the closing direction again.

一方、消弧室操作シリンダ35の投入状態において開極
指令が与えられると、液室351b内の圧液は排出され
、操作ロッド36は開極側に移動する。これに伴い、配
管51の流路に連通している弁室503aも低圧になる
ため、供給弁503はバネ505aの作用によって図中
右方向に移動して、開状態に復帰し、第3図(A)に示
した状態に戻る。この様に主接点開極時には、投入抵抗
接点の電極44.46は既に開極状態にあるため、従来
の様に抵抗接点の絶縁回復速度を考慮する必要はなくな
る。
On the other hand, when an opening command is given with the arc extinguishing chamber operating cylinder 35 in the closed state, the pressure liquid in the liquid chamber 351b is discharged and the operating rod 36 moves to the opening side. Along with this, the pressure in the valve chamber 503a communicating with the flow path of the pipe 51 also becomes low, so the supply valve 503 moves rightward in the figure by the action of the spring 505a and returns to the open state, as shown in FIG. The state returns to the state shown in (A). In this way, when the main contact is opened, the electrodes 44 and 46 of the closing resistance contact are already in the open state, so there is no need to consider the insulation recovery speed of the resistance contact as in the conventional case.

以上のような構成及び作用を有する本実施例のバッファ
形ガス遮断器においては、次の様な効果が発揮される。
The buffer type gas circuit breaker of this embodiment having the configuration and operation described above exhibits the following effects.

■ 投入抵抗接点の投入後、自動的に開離動作を行う様
にしたので、主接点の開極動作時に投入抵抗接点を高速
で動かす必要はなく、絶縁回復特性や機械的強度など、
機器の信頼性が向上する。
■ After the closing resistance contact is closed, it is automatically opened, so there is no need to move the closing resistance contact at high speed when the main contact is opened, which improves insulation recovery characteristics, mechanical strength, etc.
Improves equipment reliability.

■ 消弧室収納容器31と投入抵抗接点の収納容器40
とを別体としたので、容器外径の縮小化が可能となる。
■ Arc extinguishing chamber storage container 31 and closing resistance contact storage container 40
Since these are made into separate bodies, it is possible to reduce the outer diameter of the container.

その結果、第4図及び第5図に示すように、本実施例の
バッファ形ガス遮断器をガス絶縁開閉装置に組込んだ場
合、相間寸法を縮小することが可能となり、母線長の短
縮及びガス絶縁開閉装置の縮小が可能となる。
As a result, as shown in FIGS. 4 and 5, when the buffer type gas circuit breaker of this embodiment is incorporated into a gas insulated switchgear, it becomes possible to reduce the phase-to-phase dimension, shorten the busbar length, and Gas-insulated switchgear can be downsized.

■ 投入抵抗接点収納容器を消弧室収納容器と別体とし
たので、線路用回線以外の投入抵抗接点を必要としない
箇所では、消弧室収納容器に収納された主接点を有する
遮断器のみを配置すれば良いので、容器の共通化を図り
ながら、ガス絶縁開閉装置の縮小化が可能となる。
■ Since the closing resistance contact storage container is separate from the arc-extinguishing chamber storage container, in places other than railroad circuits that do not require closing resistance contacts, only circuit breakers with main contacts housed in the arc-extinguishing chamber storage container can be used. Since it is only necessary to arrange the gas insulated switchgear, it is possible to reduce the size of the gas insulated switchgear while attempting to share the container.

■ 投入抵抗体が投入抵抗接点収納容器40の上部に配
設され、しかも投入抵抗接点の可動側電極45の操作ロ
ッド49がその操作シリンダ50に直接接続されている
ので、構造が単純で信頼性が高い。
■ The closing resistor is arranged on the upper part of the closing resistance contact storage container 40, and the operation rod 49 of the movable side electrode 45 of the closing resistance contact is directly connected to the operation cylinder 50, so the structure is simple and reliable. is high.

■ 投入抵抗接点と主接点の駆動源として、それぞれ油
圧操作シリンダ50.35を使用し、且つ両者を油圧配
管51で接続したので、置換作シリンダの制御が容易と
なり、各接点を異なった速度で駆動することが極めて容
易であり、しかも正確なタイミングで開閉することが可
能となる。
■ Hydraulic operation cylinders 50.35 are used as the driving sources for the closing resistance contact and the main contact, respectively, and both are connected by hydraulic piping 51, making it easy to control the displacement cylinders, and each contact can be operated at different speeds. It is extremely easy to drive and can be opened and closed at precise timing.

■ 各接点の操作機構系統を別々に設けると、方の系統
に不備があっても正常な方の接点のみが開閉してしまい
、その結果遮断器が破壊される恐れがあったが、油圧配
管により置換作用シリンダを連動させることで、一方の
接点のみが開閉されるような不都合を解消できる。
■ If the operating mechanism system for each contact was provided separately, even if there was a defect in one system, only the normal contact would open or close, which could result in the circuit breaker being destroyed. By interlocking the displacement action cylinders, it is possible to eliminate the inconvenience that only one contact is opened and closed.

なお、本発明は、前記実施例に限定されるものではなく
、主接点の開閉方式がダブルモーション方式の遮断器全
体に広く適用できるものである。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but can be widely applied to all circuit breakers in which the main contact opening/closing method is a double motion method.

また、主接点及び投入抵抗接点の操作機構も油圧に限ら
ず、他の流体を使用したり、リンクを用いた機械的な手
段を使用することもできる。さらに、同一収納容器内に
主接点と投入抵抗接点を収容した遮断器にも適用可能で
ある。
Furthermore, the operation mechanism for the main contact and the closing resistance contact is not limited to hydraulic pressure, but may also use other fluids or mechanical means using links. Furthermore, it is also applicable to a circuit breaker in which a main contact and a closing resistance contact are housed in the same container.

[発明の効果] 以上の通り、本発明によれば、投入抵抗接点の投入速度
を主接点を構成する第1、第2可動電極の相対的な投入
速度よりも大きくするとともに、主接点が投入状態にあ
っても、投入抵抗接点は開離状態に保持されるようにす
ることにより、大容量の遮断が可能で、信頼性が高く、
小型化されたバッファ形ガス遮断器を提供することがで
きる。
[Effects of the Invention] As described above, according to the present invention, the closing speed of the closing resistance contact is made larger than the relative closing speed of the first and second movable electrodes constituting the main contact, and the closing speed of the main contact is By keeping the closing resistance contact in the open state even when the
A miniaturized buffer type gas circuit breaker can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のバッファ形ガス遮断器の一実施例を示
す断面図、第2図は第1図の遮断器用液圧操作シリンダ
の一例を示す概略構成図、第3図は第1図の投入抵抗接
点操作シリンダの一実施例を示す断面図で、(A)は開
極状態、(B)は投入状態を示し、第4図は第1図のバ
ッファ形ガス遮断器をガス絶縁開閉装置に組込んだ状態
−を示す平面図、第5図はその側面図、第6図及び第7
図は従来のダブルモーション方式のバッファ形ガス遮断
器の一例を示す断面図で、第6図は投入状態、第7図は
開極状態を示す。第8図は550KV級1点切り遮断器
と2点切り遮断器における主接点と投入抵抗接点の絶縁
回復特性を示す特性図、第9図は従来のバッファ形ガス
遮断器を使用したガス絶縁開閉装置の問題点を示す平面
図である。 1・・・第1可動電極、10・・・第2可動電極、20
・・・三相−括母線、21・・・接続母線、22・・・
断路器、23・・・遮断器、24・・・変流器、25・
・・ブッシング、30・・・消弧室、31・・・消弧室
収納容器、32・・、開口部、33・・・導体、34・
・・操作機構箱、35・・・消弧室操作シリンダ、36
・・・操作ロッド、37・・・取出し口、38・・・導
体、39.41.42・・、開口部、40・・・投入抵
抗接点収納容器、43・・・投入抵抗体、44・・・投
入抵抗固定側電極、45・・・復帰用スプリング、46
・・・投入抵抗接点可動側電極、47・・・摺動部、4
8・・・絶縁ロッド、49・・・操作ロッド、50・・
・投入抵抗接点操作シリンダ、51・・・油圧配管、5
2・・・取出し口、501・・・シリンダ、501a。 b・・・液室、502・・・ピストン、503・・・供
給弁、503a、b−・・弁室、504−・・排出弁、
504a・・・弁体、504 b 用弁ロット、505
a 〜505C・・・バネ、506a、b・・・流路、
506c・・・低圧流路。 第 2 図 第 図 (Al 第 3 図 (8) 第 図 ■ 第 図
FIG. 1 is a sectional view showing one embodiment of the buffer type gas circuit breaker of the present invention, FIG. 2 is a schematic configuration diagram showing an example of the hydraulic operation cylinder for the circuit breaker shown in FIG. 1, and FIG. 3 is the same as that shown in FIG. 1. FIG. 4 is a sectional view showing an embodiment of the closing resistance contact operation cylinder, in which (A) shows the open state, (B) shows the closed state, and FIG. 4 shows the buffer type gas circuit breaker of FIG. A plan view showing the state in which it is incorporated into the device, FIG. 5 is a side view, and FIGS. 6 and 7.
The figures are cross-sectional views showing an example of a conventional double-motion buffer type gas circuit breaker, with FIG. 6 showing the closed state and FIG. 7 showing the open state. Figure 8 is a characteristic diagram showing the insulation recovery characteristics of the main contact and closing resistance contact in a 550KV class single-break circuit breaker and double-break circuit breaker, and Figure 9 is a gas-insulated switchgear using a conventional buffer type gas circuit breaker. FIG. 3 is a plan view showing a problem with the device. 1... First movable electrode, 10... Second movable electrode, 20
...Three-phase-block busbar, 21...Connection busbar, 22...
Disconnector, 23... Circuit breaker, 24... Current transformer, 25.
... Bushing, 30... Arc extinguishing chamber, 31... Arc extinguishing chamber storage container, 32... Opening, 33... Conductor, 34...
...Operation mechanism box, 35...Arc chamber operation cylinder, 36
... Operating rod, 37... Output port, 38... Conductor, 39.41.42... Opening, 40... Closing resistance contact storage container, 43... Closing resistor, 44... ... Closing resistance fixed side electrode, 45 ... Return spring, 46
... Closing resistance contact movable side electrode, 47 ... Sliding part, 4
8... Insulating rod, 49... Operating rod, 50...
- Closing resistance contact operation cylinder, 51... Hydraulic piping, 5
2... Takeout port, 501... Cylinder, 501a. b...liquid chamber, 502...piston, 503...supply valve, 503a, b-...valve chamber, 504-...discharge valve,
504a...valve body, 504b valve lot, 505
a ~ 505C... Spring, 506a, b... Channel,
506c...Low pressure flow path. Figure 2 Figure (Al Figure 3 (8) Figure ■ Figure

Claims (1)

【特許請求の範囲】 消弧室内に第1と第2の可動電極とから成る主接点が収
納され、この主接点と並列に、固定側電極と可動側電極
及びこれらの電極に接続された投入抵抗体とから構成さ
れた投入抵抗接点部が設けられたダブルモーション方式
の1点切り投入抵抗接点付きバッファ形ガス遮断器にお
いて、 投入抵抗接点の可動電極を、主接点操作シリンダと連動
する抵抗接点操作シリンダによって駆動し、また、投入
抵抗接点部の可動電極の投入速度を、消弧室内の主接点
を構成する両可動電極の相対投入速度以上とするととも
に、主接点の投入後、投入抵抗接点部のみが開離動作を
行うことを特徴とするバッファ形ガス遮断器。
[Scope of Claims] A main contact consisting of a first and a second movable electrode is housed in the arc extinguishing chamber, and in parallel with the main contact, a fixed side electrode, a movable side electrode, and an input terminal connected to these electrodes are arranged. In a buffer type gas circuit breaker with a double-motion single-break closing resistance contact, which is equipped with a closing resistance contact consisting of a resistor, the movable electrode of the closing resistance contact is connected to a resistance contact that interlocks with the main contact operating cylinder. It is driven by an operating cylinder, and the closing speed of the movable electrode of the closing resistance contact section is set to be higher than the relative closing speed of both movable electrodes that constitute the main contact in the arc extinguishing chamber, and after closing the main contact, the closing speed of the movable electrode of the closing resistance contact section is set to be higher than the relative closing speed of both movable electrodes that constitute the main contact in the arc extinguishing chamber. A buffer type gas circuit breaker characterized in that only the opening section performs the opening operation.
JP13614489A 1989-05-31 1989-05-31 Buffer type gas breaker Pending JPH034418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13614489A JPH034418A (en) 1989-05-31 1989-05-31 Buffer type gas breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13614489A JPH034418A (en) 1989-05-31 1989-05-31 Buffer type gas breaker

Publications (1)

Publication Number Publication Date
JPH034418A true JPH034418A (en) 1991-01-10

Family

ID=15168336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13614489A Pending JPH034418A (en) 1989-05-31 1989-05-31 Buffer type gas breaker

Country Status (1)

Country Link
JP (1) JPH034418A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567924A (en) * 1994-03-31 1996-10-22 Hitachi, Ltd. Circuit breaker with parallel resistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567924A (en) * 1994-03-31 1996-10-22 Hitachi, Ltd. Circuit breaker with parallel resistor

Similar Documents

Publication Publication Date Title
US5905242A (en) High voltage hybrid circuit-breaker
US3857006A (en) Gas insulated switching apparatus
US5750949A (en) Metal-encapsulated, gas-insulated high-voltage circuit-breaker
CN112103125A (en) Operation method of high-speed railway high-voltage circuit breaker
JPH034418A (en) Buffer type gas breaker
US3303309A (en) Series connected switches of different types
JPH02253528A (en) Buffer type gas circuit breaker
JPH0268827A (en) Buffer type gas circuit breaker
JP2609652B2 (en) Puffer type gas circuit breaker
JP2868794B2 (en) Puffer type gas circuit breaker
JP2633643B2 (en) Three-phase batch gas circuit breaker
JPH0334230A (en) Buffer type gas circuit breaker
JPS61121222A (en) Compound type switchgear
JP2653502B2 (en) Gas circuit breaker
JPH03129616A (en) Three-phase package type gas circuit breaker
JP2874917B2 (en) Puffer type gas circuit breaker
JP2866428B2 (en) Puffer type gas circuit breaker
GB1590725A (en) High-voltage interrupters
JPH07105799A (en) Gas-blast circuit-breaker
JPH03297021A (en) Buffer-type gas-blast circuit breaker
Toda et al. Development of 550 kV 1-break GCB. II. Development of prototype
JPH11250785A (en) Puffer type gas-blast circuit breaker with closing resistance
SU930413A1 (en) Pneumatic drive
JPH03246841A (en) Buffer type gas blast circuit breaker
JPS61193321A (en) Buffer type gas breaker