JPH026819A - Pretreatment of denitrification catalyst - Google Patents

Pretreatment of denitrification catalyst

Info

Publication number
JPH026819A
JPH026819A JP63156060A JP15606088A JPH026819A JP H026819 A JPH026819 A JP H026819A JP 63156060 A JP63156060 A JP 63156060A JP 15606088 A JP15606088 A JP 15606088A JP H026819 A JPH026819 A JP H026819A
Authority
JP
Japan
Prior art keywords
catalyst
denitrification
pretreatment
contg
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63156060A
Other languages
Japanese (ja)
Inventor
Toshiaki Matsuda
松田 敏昭
Yasuyoshi Kato
泰良 加藤
Kunihiko Konishi
邦彦 小西
Hiroshi Akama
弘 赤間
Nobue Tejima
手嶋 信江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP63156060A priority Critical patent/JPH026819A/en
Publication of JPH026819A publication Critical patent/JPH026819A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To increase the durability of a denitrification catalyst contg. the oxides of Ti and Mo and/or V by previously bringing the catalyst into contact with SO2 and/or SO3 at 300-400 deg.C. CONSTITUTION:A catalyst contg. the oxides of Ti and Mo and/or V is brought into contact with SO2 and/or SO3 at 300-400 deg.C for several hr. Exhaust gas contg. compds. of volatile metals such as As from a coal burning boiler is subjected to catalytic NH3 reduction and denitrification with the catalyst. Since the active site of the catalyst is previously coated with SO2 and/or SO3, the metal adsorption site is reduced and the deterioration of the catalyst by the volatile metals such as is As prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は脱硝触媒の前処理方法に係り、特に排ガス中の
窒素酸化物をアンモニア接触還元により低減するのに好
適な脱硝触媒の前処理方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for pretreatment of a denitrification catalyst, and in particular, a pretreatment method for a denitration catalyst suitable for reducing nitrogen oxides in exhaust gas by catalytic reduction with ammonia. Regarding.

〔従来の技術〕[Conventional technology]

一般に触媒毒成分としては塩素(C1)などのハロゲン
やカリウム(K)、ナトリウム(Na)などのアルカリ
金属、イオウ(S) 、水8! (Hg)などがよく知
られており、脱硝触媒においてもに、Naなどのアルカ
リ金属やso2 、SO3などのイオウ酸化物により脱
硝性能が低下する。このため触媒の改良が行なわれ、現
在のチタン系酸化物(Ti02−V20g −Mo03
 、Ti02−V20!1−WO3)触媒が開発された
。ところが近年、石炭焚きボイラに使用されている燃料
中に、ヒ素(As)、セレン(Se)、テルル(Te)
等の揮発性金属が微量に含まれており、これが触媒の脱
硝性能を低下させることが判明し、問題となってきてい
る。この揮発性触媒による劣化を低減する方法として種
々の方法、例えばアルカリや酸による洗浄により触媒毒
をとり除く方法等が開発されたが、排液処理などの点で
2次公害をひきおこすことが多(問題があった。
In general, catalyst poison components include halogens such as chlorine (C1), alkali metals such as potassium (K) and sodium (Na), sulfur (S), and water8! (Hg) is well known, and the denitrification performance of denitrification catalysts is also reduced by alkali metals such as Na and sulfur oxides such as SO2 and SO3. For this reason, improvements were made to the catalyst, and the current titanium-based oxide (Ti02-V20g -Mo03
, Ti02-V20!1-WO3) catalyst was developed. However, in recent years, arsenic (As), selenium (Se), and tellurium (Te) have been added to the fuel used in coal-fired boilers.
It has been found that these volatile metals, such as these, reduce the denitrification performance of the catalyst, which has become a problem. Various methods have been developed to reduce the deterioration caused by volatile catalysts, such as cleaning with alkali or acid to remove catalyst poisons, but these often cause secondary pollution due to wastewater treatment, etc. There was a problem.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上に示したように、上記従来技術は、揮発性触媒によ
って劣化した触媒を再生する技術であり、再生する上で
酸やアルカリ溶液を必要とし、2次公害をひきおこすと
いう問題があった。本発明の目的は、これら再生を行な
うことなく、触媒の前処理によって劣化を防止すること
にある。
As described above, the above-mentioned conventional technology is a technology for regenerating a deteriorated catalyst using a volatile catalyst, and requires an acid or alkaline solution for regeneration, which has the problem of causing secondary pollution. An object of the present invention is to prevent deterioration by pre-treating the catalyst without performing these regenerations.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、アンモニア接触還元脱硝反応に使用するチ
タン、モリブデンまたは、およびバナジウムの酸化物を
含む触媒を、予め300〜400℃の温度で二酸化イオ
ウまたは、および三酸化イオウと接触させて前処理する
ことにより達成される。
The above purpose is to pretreat a catalyst containing an oxide of titanium, molybdenum, or vanadium used in the ammonia catalytic reduction denitrification reaction by contacting it with sulfur dioxide or sulfur trioxide at a temperature of 300 to 400°C. This is achieved by

〔作用〕[Effect]

ボイラ燃料中の微量の揮発性金属蒸気は、脱硝触媒に吸
着し、脱硝触媒の活性点を覆うことにより触媒を劣化さ
せる。一方、SO2、SO3も同様に触媒に吸着し劣化
させるが、劣化度合が揮発性金属よりも低い。このため
、予じめSo2、S03を先に触媒に吸着させることに
より、Asなどの揮発性金属蒸気の吸着点を減少させる
ことができ、従って触媒の寿命が大幅にのびることにな
る。
A trace amount of volatile metal vapor in the boiler fuel is adsorbed on the denitration catalyst and covers the active sites of the denitration catalyst, thereby degrading the catalyst. On the other hand, SO2 and SO3 are similarly adsorbed onto the catalyst and deteriorated, but the degree of deterioration is lower than that of volatile metals. Therefore, by adsorbing So2 and S03 on the catalyst in advance, the adsorption points of volatile metal vapors such as As can be reduced, and the life of the catalyst can therefore be significantly extended.

本発明による揮発性触媒毒を有する脱硝触媒の前処理と
しては、300〜400℃の温度で802またはくおよ
び)S03ガスを数時間、触媒に吸着させることにより
行なわれる。この触媒の組成は、チタン、モリブデン、
バナジウム酸化物であれば効果があるが、その割合はT
i:Mo:V= 80.0〜96.5=3〜15:0.
5〜5.0で、かつ5o−f’が10%以下の触媒であ
ることが望ましい。前処理温度は、脱硝反応温度(30
0〜400℃)が運転上好ましい。イオウ酸化物の吸着
時間は数時間ないし数十時間が適当であり、吸着温度に
より決定される。このようにして前処理された脱硝触媒
を揮発性金属化合物を含む石炭焚きボイラの脱硝反応に
使用すると、予じめ触媒の活性点がSo2、So3によ
り覆れているので、Asなどの金属酸化物の吸着点が少
なくなり、従って揮発性金属による劣化の少ない触媒の
通用が可能となる。以下実施例によりさらに詳細に説明
する。
The pretreatment of the denitrification catalyst having volatile catalyst poison according to the present invention is carried out by adsorbing 802 or 802 or ) S03 gas onto the catalyst for several hours at a temperature of 300 to 400°C. The composition of this catalyst is titanium, molybdenum,
Vanadium oxide is effective, but its proportion is T
i:Mo:V=80.0~96.5=3~15:0.
5 to 5.0 and a catalyst with 5o-f' of 10% or less. The pretreatment temperature is the denitrification reaction temperature (30
0 to 400°C) is preferable for operation. The adsorption time of sulfur oxide is suitably several hours to several tens of hours, and is determined by the adsorption temperature. When the denitrification catalyst pretreated in this way is used in the denitrification reaction of a coal-fired boiler containing volatile metal compounds, the active sites of the catalyst are covered in advance with So2 and So3, so metals such as As can be oxidized. There are fewer adsorption points for substances, and therefore a catalyst that is less susceptible to deterioration due to volatile metals can be used. The present invention will be explained in more detail with reference to Examples below.

〔実施例〕〔Example〕

実施例1 チタン、モリブデン、バナジウム酸化物の組成比がTi
/Mo/V=86/10/4 (原子比)であり、かつ
硫酸根(So−2)が8%(重量比)となるように混線
法で調製した20mmX100m■の板状触媒に石炭焚
きボイラ排ガス成分(ガス組成1)を350℃で20時
間処理した。その後、ヒ素を含むガス(ガス組成2)に
同温度で20時間さらした。
Example 1 The composition ratio of titanium, molybdenum, and vanadium oxide is Ti
/Mo/V = 86/10/4 (atomic ratio) and sulfuric acid radical (So-2) was 8% (weight ratio) using a 20 mm x 100 m plate-shaped catalyst prepared by the cross-wire method. Boiler exhaust gas components (gas composition 1) were treated at 350°C for 20 hours. Thereafter, it was exposed to a gas containing arsenic (gas composition 2) at the same temperature for 20 hours.

比較例1 実施例1の前処理工程を省略し、ガス組成2で20時間
後の脱硝率を調べた。実施例、比較例のガス組成条件、
および20時間後の脱硝率を表1、表2に示した。これ
によりSo2 、So3により劣化が防止されることが
わかる。
Comparative Example 1 The pretreatment step of Example 1 was omitted, and the denitrification rate after 20 hours was investigated using gas composition 2. Gas composition conditions of Examples and Comparative Examples,
Tables 1 and 2 show the denitrification rates after 20 hours. This shows that deterioration is prevented by So2 and So3.

以下余白 第  1  表 比較例2 実施例1の板状触媒に5%の希硫酸溶液を含浸し、18
0℃で2時間乾燥させた。この触媒をガス組成2で20
時間、350℃で反応させた後、脱硝率を比較した。結
果を第2表にあわせて示した。
The following is a margin: Table 1 Comparative Example 2 The plate-shaped catalyst of Example 1 was impregnated with a 5% dilute sulfuric acid solution.
It was dried at 0°C for 2 hours. This catalyst has a gas composition of 20
After reacting at 350°C for an hour, the denitrification rates were compared. The results are also shown in Table 2.

第 表 比較例2により、so2 、SO3はガス状であること
が必要であり、含浸による触媒はあまり効果がないこと
がわかる。
Comparative Example 2 in Table 1 shows that so2 and SO3 need to be in gaseous form, and catalysts by impregnation are not very effective.

本結果かられかるように、本発明の前処理方法は、簡単
な操作で行なうことができ、また装置の運転条件もその
まま使用することができるので、経済的であり、有効な
方法である。
As can be seen from the present results, the pretreatment method of the present invention is an economical and effective method because it can be performed with simple operations and the operating conditions of the device can be used as they are.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、触媒の耐久性を増加させることができ
る。また比較的簡単な前処理方法なので経済的メリット
も大きい。
According to the present invention, the durability of the catalyst can be increased. Furthermore, since it is a relatively simple pretreatment method, it has great economic benefits.

代理人 弁理士 川 北 武 長Agent: Patent Attorney Kawakita Takecho

Claims (1)

【特許請求の範囲】[Claims] (1)アンモニア接触還元脱硝反応に使用するチタン、
モリブデンまたは、およびバナジウムの酸化物を含む触
媒を、予め300〜400℃の温度で二酸化イオウまた
は、および三酸化イオウと接触させて前処理することを
特徴とする脱硝触媒の前処理方法。
(1) Titanium used in ammonia catalytic reduction denitrification reaction,
A method for pretreating a denitrification catalyst, comprising pretreating a catalyst containing an oxide of molybdenum or vanadium by bringing it into contact with sulfur dioxide or sulfur trioxide at a temperature of 300 to 400°C.
JP63156060A 1988-06-24 1988-06-24 Pretreatment of denitrification catalyst Pending JPH026819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63156060A JPH026819A (en) 1988-06-24 1988-06-24 Pretreatment of denitrification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63156060A JPH026819A (en) 1988-06-24 1988-06-24 Pretreatment of denitrification catalyst

Publications (1)

Publication Number Publication Date
JPH026819A true JPH026819A (en) 1990-01-11

Family

ID=15619431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63156060A Pending JPH026819A (en) 1988-06-24 1988-06-24 Pretreatment of denitrification catalyst

Country Status (1)

Country Link
JP (1) JPH026819A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011140005A (en) * 2010-01-08 2011-07-21 Hitachi Zosen Corp Method for preparing denitration catalyst, and catalyst prepared by the same method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011140005A (en) * 2010-01-08 2011-07-21 Hitachi Zosen Corp Method for preparing denitration catalyst, and catalyst prepared by the same method

Similar Documents

Publication Publication Date Title
KR100671978B1 (en) Scr catalyst for de nox
EP0802825B1 (en) Regeneration of catalyst/absorber
JP5495001B2 (en) Catalyst regeneration method
US20010012817A1 (en) Methods for the regenertion of a denitration catalyst
EP0161206A2 (en) Method for regenerating a denitration catalyst
US4141959A (en) Process for removing nitrogen oxides from combustion flue gas
JPH07299331A (en) Dry desulfurization and denitration process
CN113117517B (en) Treatment method of high-concentration sulfur-containing organic waste gas
JP3059137B2 (en) Reprocessing method for denitration catalyst
KR20060076297A (en) Method of regenerating deteriorated catalyst
SK282140B6 (en) Process of catalytic oxidation of ammonia to nitrogen in exhaust gas
JPH026819A (en) Pretreatment of denitrification catalyst
JP2003340282A (en) Low temperature denitration catalyst, and low temperature denitration method for exhaust gas
CA2095938A1 (en) Removal of nitrogen from flue gases at low temperatures
KR102292551B1 (en) Scr catalyst with enhanced stability for surfur components
KR20190049746A (en) DENOX catalyst regeneration method
US10843132B2 (en) Method of reducing nitrogen oxide compounds
CN111774074B (en) Denitration catalyst suitable for high-content toxic component flue gas and preparation method thereof
EP0914191B1 (en) Catalyst composition, its preparation, and its use in catalytic incineration
JPH06182202A (en) Low temperature denitration catalyst
JP2002316051A (en) Method and apparatus for regenerating denitration catalyst or dioxin decomposition catalyst
WO2023203603A1 (en) Exhaust gas denitration method
JPH07222924A (en) Regeneration of denitration catalyst
KR100325126B1 (en) Method of denitrificating exhaust gas
JPS62273040A (en) Removal of nitrogen oxide in exhaust gas