JPS62273040A - Removal of nitrogen oxide in exhaust gas - Google Patents

Removal of nitrogen oxide in exhaust gas

Info

Publication number
JPS62273040A
JPS62273040A JP61116923A JP11692386A JPS62273040A JP S62273040 A JPS62273040 A JP S62273040A JP 61116923 A JP61116923 A JP 61116923A JP 11692386 A JP11692386 A JP 11692386A JP S62273040 A JPS62273040 A JP S62273040A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
waste
denitration
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61116923A
Other languages
Japanese (ja)
Inventor
Teruo Sugitani
照雄 杉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP61116923A priority Critical patent/JPS62273040A/en
Publication of JPS62273040A publication Critical patent/JPS62273040A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To lower denitration cost, by contacting NOX-containing exhaust gas with the zeolite type waste catalyst or a molded body thereof from a fluidized catalytic decomposition apparatus in the presence of NH3. CONSTITUTION:A waste catalyst (FCC waste catalyst) having a metal component such as V or Ni deposited thereon is obtained from a fluidized catalytic decomposition apparatus decomposing heavy oil through the contact with a fine particulate fluidized zeolite type catalyst to produce a light fraction and used as a denitration catalyst as it is or said waste catalyst is molded along with a molding aid being a binder to obtain the denitration catalyst. NOX-containing waste gas is contacted with the above mentioned denitration catalyst at 200-600 deg.C while receiving the addition of NH3 being a reducing agent to be subjected to denitration. Because the waste catalyst is used as mentioned above, denitration cost is lowered.

Description

【発明の詳細な説明】 3、発明の詳細な説明 【技術分野〕 本発明は、アンモニアを還元剤として用いる排ガス中に
含まれる窒素酸化物の除去方法に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Technical Field] The present invention relates to a method for removing nitrogen oxides contained in exhaust gas using ammonia as a reducing agent.

〔従来技術〕[Prior art]

ボイラー、硝酸プラント、発電所、製鉄プラント等の装
置からの排ガス中には、有害な窒素酸化物(NOX)が
含まれ、その除去が要求されている。
Exhaust gases from equipment such as boilers, nitric acid plants, power plants, and steel plants contain harmful nitrogen oxides (NOX), and their removal is required.

従来、排ガス中に含まれる窒素酸化物の除去については
1種々の方法が提案されているが、その中でも、還元剤
としてアンモニアを用いる方法が。
Conventionally, various methods have been proposed for removing nitrogen oxides contained in exhaust gas, and among them, a method using ammonia as a reducing agent has been proposed.

装置が比較的簡単で、設備費、運転費も比較的安い上に
、副生品処理や排水処理等の後処理が必要とされないこ
とから、最も多く採用されている。
It is the most commonly used method because the equipment is relatively simple, equipment costs and operating costs are relatively low, and post-treatment such as by-product treatment or wastewater treatment is not required.

ところで、このアンモニアを還元剤として用いる窒素酸
化物の除去においては、触媒の選択が重要である。排ガ
スにはLNG等燃焼によるクリーン排ガスと重油石炭等
燃焼によるダーティ排ガスとがあり、前者はNOxのみ
を問題にすればよいが後者ではNOxのほかに含まれる
SOx、アルカリ金属類、ダスト等による脱硝活性低下
が問題になる。工業的にはチタニア担体上にバナジウム
、モリブデン。
By the way, in the removal of nitrogen oxides using ammonia as a reducing agent, the selection of a catalyst is important. There are two types of exhaust gas: clean exhaust gas from combustion of LNG, etc., and dirty exhaust gas from combustion of heavy oil, coal, etc. In the former, only NOx is a problem, but in the latter, denitrification is caused by SOx, alkali metals, dust, etc. contained in addition to NOx. Decreased activity becomes a problem. Industrially, vanadium and molybdenum are used on titania carriers.

タングステン等の金属成分を担持させたものが両種の排
ガスに用いられている。しかし、この触媒は、担体にチ
タニアを用いることから、非常に高価で、脱硝反応装置
コストの30〜60%を占めている。一方、アルカリ金
属類、例えば、 K、 Na等を含む排ガスの場合、脱
硫活性が低下する欠点がある。また、従来、前記チタニ
ア以外にも、アルミナやゼオライト等を担体とする触媒
も提案されているが、アルミナ担体触媒の場合、クリー
ン排ガス用としては使用可であるがダーティ排ガス適用
時には耐久性が悪く、アルミナが排ガス中に含まれてい
るSOxと反応して硫酸アルミニウムとなり。
Gases carrying metal components such as tungsten are used for both types of exhaust gases. However, since this catalyst uses titania as a carrier, it is very expensive and accounts for 30 to 60% of the cost of the denitrification reactor. On the other hand, in the case of exhaust gas containing alkali metals such as K and Na, there is a drawback that the desulfurization activity is reduced. In addition to titania, catalysts using alumina, zeolite, etc. as carriers have been proposed, but alumina carrier catalysts can be used for clean exhaust gas, but have poor durability when used for dirty exhaust gas. , alumina reacts with SOx contained in exhaust gas to form aluminum sulfate.

その脱硝活性を容易に失うという問題がある。一方、ゼ
オライト担体触媒としては、イオン交換法により銅イオ
ンを担持させたものが知られているが、この触媒の場合
、担持させた銅成分のSOxに対する耐久性が悪いとい
われており、実用化されていない。
There is a problem in that it easily loses its denitrification activity. On the other hand, as a zeolite-supported catalyst, one in which copper ions are supported by an ion exchange method is known, but in the case of this catalyst, the supported copper component is said to have poor durability against SOx, and is not suitable for practical use. It has not been.

特公昭61−8733号公報によれば、安価な脱硝触媒
を得るために、水添脱硫廃触媒を原料とし、これを酸素
存在下において加熱処理することにより、それに含まれ
る炭素分を燃焼除去すると共に、金属硫化物を酸化物に
転換させる方法が示されている。しかし、この場合に用
いられろ水添脱硫廃触媒はアルミナ担体触媒であり、S
Oxを含むダーティ排ガスと脱硝条件下で接触させると
、アルミナ担体が硫酸塩化され、その触媒活性を容易に
失うという問題がある。
According to Japanese Patent Publication No. 61-8733, in order to obtain an inexpensive denitrification catalyst, a waste hydrodesulfurization catalyst is used as a raw material, and by heat-treating it in the presence of oxygen, the carbon content contained in it is burned off. Additionally, a method for converting metal sulfides to oxides is disclosed. However, the waste hydrodesulfurization catalyst used in this case is an alumina carrier catalyst, and S
When brought into contact with dirty exhaust gas containing Ox under denitrification conditions, the alumina support becomes sulfated and easily loses its catalytic activity.

〔目  的〕〔the purpose〕

本発明は、前記した如き従来触媒に見られる問題のない
安価な脱硝触媒を用いた排ガスの脱硝方法を提供するこ
とを1的とする。
One object of the present invention is to provide a method for denitrating exhaust gas using an inexpensive denitrification catalyst that does not have the problems encountered with conventional catalysts as described above.

〔構  成〕〔composition〕

本発明者らは、前記目的を達成すべく種々研究を重ねた
結果、流動接触分解装置から排出されるゼオライト系廃
触媒が意外にも脱硝触媒としてすぐれた活性を有するこ
とを見出し、本発明を完成するに到った。
As a result of various studies to achieve the above object, the present inventors discovered that the zeolite-based waste catalyst discharged from a fluid catalytic cracker has unexpectedly excellent activity as a denitrification catalyst, and has developed the present invention. It has been completed.

即ち、本発明によれば、排ガス中に含まれている窒素酸
化物を還元剤としてのアンモニアの存在下で脱硝触媒と
接触させるに際し、該触媒として、流動接触分解装置か
らのゼオライト系廃触媒又はその成形体を用いることを
特徴とする排ガス中の窒素酸化物の除去方法が提供され
る。
That is, according to the present invention, when nitrogen oxides contained in exhaust gas are brought into contact with a denitrification catalyst in the presence of ammonia as a reducing agent, a zeolite-based waste catalyst from a fluid catalytic cracker or a denitrification catalyst is used as the catalyst. A method for removing nitrogen oxides from exhaust gas is provided, which uses the molded article.

流動接触分解装置(以下、FCC装置とも言う)は、減
圧軽油や蒸留残渣油等の重質油を、微粒子状の流動ゼオ
ライト系触媒と接触させて分解し、ガソリンや中間留分
のような・より付加価値の高い軽質留分を生産する装置
であり、この装置からは、バナジウムやニッケル等の金
属分の堆積した廃触媒(以下、 FCC廃触媒とも言う
)が排出される。この廃触媒は、従来、工業廃棄物とし
て取扱われているもので、埋立て処理等で廃棄されてい
るものである。本発明では、このようなFCC廃触媒を
、脱硝触媒又はその主成分として用いるものである。
Fluid catalytic cracking equipment (hereinafter also referred to as FCC equipment) cracks heavy oils such as vacuum gas oil and distillation residue oil by contacting them with a particulate fluid zeolite catalyst. This equipment produces light fractions with higher added value, and waste catalysts (hereinafter also referred to as FCC waste catalysts) with deposits of metals such as vanadium and nickel are discharged from this equipment. This waste catalyst has conventionally been treated as industrial waste, and is disposed of in landfills or the like. In the present invention, such a waste FCC catalyst is used as a denitrification catalyst or its main component.

このFCC廃触媒は、ゼオライト系廃触媒であって、そ
れに堆積するバナジウム、ニッケル等の金属成分が触媒
被毒として作用して劣化したものであるが、このような
廃触媒が逆に脱硝触媒としてすぐれた作用を示すことは
本発明者らが初めて見出したことである。従来、ゼオラ
イト系の脱硝触媒としては、前記したように、イオン交
換法により担持された銅イオン担持触媒が知られている
が、この場合、金属成分としては、銅イオン以外のニッ
ケルやコバルト等を用いては、脱硝活性のある触媒は得
られないとされていたものである(「環境技術JVo 
Q 8. No4(1979)、第23〜24頁)、従
って、ゼオライト系の廃触媒であるFCC廃触媒が脱硝
触媒としてすぐれた作用を示すことは、予想外のものと
言うことができる。
This FCC waste catalyst is a zeolite-based waste catalyst that has deteriorated due to the metal components such as vanadium and nickel deposited on it acting as catalyst poisoning, but on the contrary, such waste catalyst can be used as a denitrification catalyst. The present inventors have discovered for the first time that it exhibits excellent effects. Conventionally, as a zeolite-based denitrification catalyst, a copper ion-supported catalyst supported by an ion exchange method is known as described above, but in this case, the metal components include nickel, cobalt, etc. other than copper ions. It was believed that a catalyst with denitrification activity could not be obtained by using
Q8. No. 4 (1979), pp. 23-24) Therefore, it can be said that it is unexpected that the FCC waste catalyst, which is a zeolite-based waste catalyst, exhibits an excellent action as a denitrification catalyst.

本発明で用いる脱硝触媒は、FCC廃触媒そのものを使
用する場合もあるが1通常はこれを原料とし、成形助剤
として、アルミナゲルやシリカゲル等の適当なバインダ
ー成分を加え、適当な成形機により、従来の脱硝触媒に
用いられている形状にすればよく、例えば顆粒状、板状
、ハニカム状。
The denitrification catalyst used in the present invention may use the FCC waste catalyst itself, but usually it is used as a raw material, a suitable binder component such as alumina gel or silica gel is added as a molding aid, and it is processed using a suitable molding machine. , it may be in any shape used in conventional denitrification catalysts, such as granules, plates, or honeycombs.

パイプ状等の形状、あるいは金属板に焼付ける等が採用
される。この場合、成形原料として用いるFCC廃触媒
は、炭素質分を、5重量%以下、好ましくは1重量%以
下に調整したものを用いるが、FCC装置の触媒の再生
塔から排出基れる廃触媒の炭素分は、既に、このような
範囲にあるので、本発明では、この触媒再生塔から排出
される廃触媒をそのまま本発明の触媒製造原料として用
いることができる。また、 FCC廃触媒を成形する場
合、必要に応じ、他の触媒成分1例えば、チタニア等を
適量加えることも可能である。
A pipe-like shape, or baked onto a metal plate, etc., is adopted. In this case, the FCC waste catalyst used as the forming raw material has a carbonaceous content adjusted to 5% by weight or less, preferably 1% by weight or less. Since the carbon content is already within such a range, in the present invention, the spent catalyst discharged from the catalyst regeneration tower can be used as it is as a raw material for producing the catalyst of the present invention. Furthermore, when molding the FCC waste catalyst, it is also possible to add an appropriate amount of other catalyst components 1, such as titania, if necessary.

本発明により徘ガス中の窒素酸化物を除去するには、前
記したFCC廃触媒又はその成形体に、還元剤としてア
ンモニアを加えた排ガスを接触させる。この場合1反応
温度は、200〜600℃、好ましくは300〜400
℃であり、排ガスの空間速度としては、1000〜10
0000hr−’ 、好ましくは2000〜30000
hr−1である。また、アンモニアの添加量は、操業時
企図する脱硝率により異るが排ガス中に含まれる窒素酸
化物に対して1モル比で、2以下、好ましくは1以下で
ある。
In order to remove nitrogen oxides from wandering gas according to the present invention, the above-mentioned FCC waste catalyst or its compact is brought into contact with exhaust gas to which ammonia has been added as a reducing agent. In this case, the reaction temperature is 200 to 600°C, preferably 300 to 400°C.
℃, and the space velocity of exhaust gas is 1000 to 10
0000hr-', preferably 2000-30000
It is hr-1. The amount of ammonia added varies depending on the intended denitrification rate during operation, but is 2 or less, preferably 1 or less, in a molar ratio of 1 to nitrogen oxides contained in the exhaust gas.

本発明で処理対象とする排ガスは、窒素酸化物を含むも
のであり、クリーン排ガスとダーティ排ガスを包含する
。特に1本発明で用いる触媒は、SOxやダスト等を含
むダーティ排ガス処理に対して、有利に適用される。
The exhaust gas to be treated in the present invention contains nitrogen oxides, and includes clean exhaust gas and dirty exhaust gas. In particular, the catalyst used in the present invention is advantageously applied to the treatment of dirty exhaust gas containing SOx, dust, and the like.

〔効  果〕〔effect〕

本発明で用いる触媒は、FCC廃触媒からなるもので、
ゼオライト系触媒であるため、アルミナ系触媒とは異な
り、SOxによる被毒の問題がなく、又Na、に等アル
カリ金属類による被毒の開運もない上、その触媒原料は
、従来産業廃棄物として取扱われているFCC廃触媒で
あるため、極めて安価である。
The catalyst used in the present invention is made of FCC waste catalyst,
Because it is a zeolite-based catalyst, unlike alumina-based catalysts, there is no problem of poisoning by SOx, and there is no risk of poisoning by alkali metals such as Na, and the catalyst raw material is conventionally treated as industrial waste. Since it is a widely available FCC waste catalyst, it is extremely inexpensive.

〔実施例〕〔Example〕

次に本発明を実施例によりさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

実施例 〔触媒〕 下記成分組成を有するA及びBの2種の微粉末FCC廃
触媒(ゼオライト系)を原料として用いた。
Examples [Catalyst] Two types of finely powdered FCC waste catalysts (zeolite type), A and B, having the following component compositions were used as raw materials.

第1表 〔脱硝試験〕 前記の廃触媒A及びBをそれぞれ石英製反応管(内径2
5mm)に充填し、この反応管を電気炉内で加熱すると
共に、その反応管にアンモニアを添加した下記組成のモ
デル排ガスを流通させて、脱硝試験を行った。
Table 1 [Denitrification test] The above waste catalysts A and B were each placed in a quartz reaction tube (inner diameter 2
A denitrification test was conducted by heating the reaction tube in an electric furnace and passing a model exhaust gas having the composition shown below to which ammonia had been added.

第2表 前記脱硝試験において、ガス空間速度5V(NTP換算
空塔基準)としては、50000hr−1を使用し1反
応温度としては、300〜400℃を使用し、またアン
モニア添加量は、排ガスに対し250ρρmで、得られ
た処理排ガス中の酸化窒素を分析して脱硝率を算出した
。その結果を次表に示す。
Table 2 In the above denitrification test, the gas hourly space velocity of 5V (NTP equivalent superficial column standard) was 50,000 hr-1, the reaction temperature was 300 to 400°C, and the amount of ammonia added was On the other hand, at 250 ρρm, the nitrogen oxide in the obtained treated exhaust gas was analyzed to calculate the denitrification rate. The results are shown in the table below.

第3表 以上の脱硝試験の結果から、本発明で用いるFCC廃触
媒から得られた脱硝触媒は、十分な脱硝活性を有し、工
業触媒として好適であることは明らかである。
From the results of the denitrification tests shown in Table 3 and above, it is clear that the denitrification catalyst obtained from the FCC waste catalyst used in the present invention has sufficient denitrification activity and is suitable as an industrial catalyst.

Claims (1)

【特許請求の範囲】[Claims] (1)排ガス中に含まれている窒素酸化物を還元剤とし
てのアンモニアの存在下で触媒と接触させるに際し、該
触媒として、流動接触分解装置からのゼオライト系廃触
媒又はその成形体を用いることを特徴とする排ガス中の
窒素酸化物の除去方法。
(1) When nitrogen oxides contained in exhaust gas are brought into contact with a catalyst in the presence of ammonia as a reducing agent, a zeolite-based waste catalyst from a fluid catalytic cracker or a compact thereof is used as the catalyst. A method for removing nitrogen oxides from exhaust gas, characterized by:
JP61116923A 1986-05-21 1986-05-21 Removal of nitrogen oxide in exhaust gas Pending JPS62273040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61116923A JPS62273040A (en) 1986-05-21 1986-05-21 Removal of nitrogen oxide in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61116923A JPS62273040A (en) 1986-05-21 1986-05-21 Removal of nitrogen oxide in exhaust gas

Publications (1)

Publication Number Publication Date
JPS62273040A true JPS62273040A (en) 1987-11-27

Family

ID=14699020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61116923A Pending JPS62273040A (en) 1986-05-21 1986-05-21 Removal of nitrogen oxide in exhaust gas

Country Status (1)

Country Link
JP (1) JPS62273040A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002052379A (en) * 2000-08-09 2002-02-19 Babcock Hitachi Kk Method and apparatus for cleaning ammonia-containing wastewater
KR100439004B1 (en) * 2000-09-27 2004-07-02 에스케이 주식회사 A Catalyst for Selective Catalytic Reduction of Nitrogen Oxides and A Method for Preparing the Same
CN111565840A (en) * 2018-01-12 2020-08-21 雅宝公司 FCC catalysts prepared by processes involving more than one silica material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002052379A (en) * 2000-08-09 2002-02-19 Babcock Hitachi Kk Method and apparatus for cleaning ammonia-containing wastewater
KR100439004B1 (en) * 2000-09-27 2004-07-02 에스케이 주식회사 A Catalyst for Selective Catalytic Reduction of Nitrogen Oxides and A Method for Preparing the Same
CN111565840A (en) * 2018-01-12 2020-08-21 雅宝公司 FCC catalysts prepared by processes involving more than one silica material

Similar Documents

Publication Publication Date Title
JP3480596B2 (en) Dry desulfurization denitrification process
US4141959A (en) Process for removing nitrogen oxides from combustion flue gas
KR20070112201A (en) Ammonia oxidation catalyst for the coal fired utilities
US4629609A (en) Process of removing SOx and NOx from waste gases
KR920005938B1 (en) Catalyst for the reduction of nitrogen oxides a method for its preparation and the use thereof
JPS5915022B2 (en) Catalyst for removing nitrogen oxides from exhaust gas
TW201838708A (en) Process for the removal of sulphur oxides and nitrogen oxides contained in off-gas from an industrial plant
JPS6268527A (en) Method of removing sulfur oxide from gas by using absorbing material capable of being regenerated by reaction with hydrogen sulfide
JP3543224B2 (en) Method for reducing NOx in combustion exhaust gas and reduction catalyst
JPS62273040A (en) Removal of nitrogen oxide in exhaust gas
US4986897A (en) Catalytic conversion of NOx with NH3
JPH07328440A (en) Catalyst for decomposition of ammonia
KR20190049746A (en) DENOX catalyst regeneration method
JP3785296B2 (en) Catalyst regeneration method
JPS6333891B2 (en)
JPS6333890B2 (en)
JPH11171522A (en) Production of activated carbon for desulfurization and denitration having high denitrating performance
KR20190050992A (en) Methods for reducing nitric oxide compounds
KR0146879B1 (en) Mordenite containing zeolite catalyst for nox removal
KR100325126B1 (en) Method of denitrificating exhaust gas
JPH07222924A (en) Regeneration of denitration catalyst
JPH08266912A (en) Regenerating process for solid catalyst
WO1995024258A1 (en) Method for removing nitrous oxide
CN117942704A (en) Method and device for purifying flue gas and recycling
JPS5817821A (en) Method for removing nox and sox from waste gas