JPH0268037A - Magnetic resonance imaging device - Google Patents

Magnetic resonance imaging device

Info

Publication number
JPH0268037A
JPH0268037A JP63218336A JP21833688A JPH0268037A JP H0268037 A JPH0268037 A JP H0268037A JP 63218336 A JP63218336 A JP 63218336A JP 21833688 A JP21833688 A JP 21833688A JP H0268037 A JPH0268037 A JP H0268037A
Authority
JP
Japan
Prior art keywords
frequency
temp
permanent magnet
magnetic resonance
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63218336A
Other languages
Japanese (ja)
Inventor
Masao Kuroda
正夫 黒田
Shigenobu Yanaka
矢仲 重信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP63218336A priority Critical patent/JPH0268037A/en
Publication of JPH0268037A publication Critical patent/JPH0268037A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To relieve the conditions for limiting installation of a shielding room by controlling the temp. of a permanent magnet as well as an irradiation magnetic field and the frequency of a high-frequency signal receiving section in such a manner that the frequency of magnetic resonance is turned to the frequency deviated form the frequency of unnecessary radio waves, etc. CONSTITUTION:This imaging device is so constituted that the set temp. of a temp. controller 8 controlling a magnetic circuit 1 to retain the temp. thereof can be changed to change the temp. of the magnetic circuit. The magnetic circuit is constituted of the permanent magnet. The magnetic field intensity of the permanent magnet in general changes with temp. The temp. coefft. of a neodium/iron/boron (Nd.Fe.B) magnet having powerful PH product to the permanent magnet is about-0.12%/ deg.C. The central frequency changes from 8.514MHz of a standard to 8.504MHz by increasing the temp. of the permanent magnet in 1 deg.C. The device is constituted to change the tuning frequency of the high-frequency signal receiving section and the detecting frequency of a detecting section 12 in this way. The frequency which is not affected by the noises of the electromagnetic waves is set by deviating the temp. of the magnet, the tuning frequency of the signal transmitting and receiving section, the frequency of the detector, etc., so as to avert the frequency of the electromagnetic noises when the noises appear within the image according to the conditions of the installation place.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気共鳴イメージング(以下MHIと略す。)
装置において、特に外来電波等による雑音を避けるのに
好適な手段に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to magnetic resonance imaging (hereinafter abbreviated as MHI).
The present invention relates to means suitable for avoiding noise caused by external radio waves, etc. in a device.

〔従来の技術〕[Conventional technology]

MHI装置は静磁場中に置かれた被検体に、磁気共鳴を
起こさせる照射パルスを印加すると、被検体のある原子
核はこのエネルギーを吸収し、共鳴状態となる。ここで
照射パルスを断つと、吸収したエネルギーを放出しなが
ら元の状態に緩和する。この時の微弱な信号を検出して
、像再生を行うものである。この放出される電磁波のエ
ネルギーは10−’eV位の微弱なものである。このた
め従来は、この微弱な磁気共鳴信号を受信するのに、外
来からくる電磁波を遮へいするため電磁波シールドルー
ムを作成して、この中にMHI装置を設置していた。
When an MHI device applies an irradiation pulse that causes magnetic resonance to a subject placed in a static magnetic field, certain atomic nuclei in the subject absorb this energy and become in a resonant state. When the irradiation pulse is cut off at this point, it relaxes to its original state while releasing the absorbed energy. The weak signal at this time is detected and the image is reconstructed. The energy of this emitted electromagnetic wave is as weak as about 10-'eV. For this reason, conventionally, in order to receive this weak magnetic resonance signal, an electromagnetic wave shield room was created to block electromagnetic waves coming from outside, and the MHI device was installed in this room.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は電磁波シールドのためにシールド材で囲
った30〜100m’位の室を作成する必要がある。こ
れに伴い、この部屋の空調、照明。
In the above-mentioned conventional technology, it is necessary to create a chamber of approximately 30 to 100 m' in length surrounded by shielding material for electromagnetic wave shielding. Along with this, air conditioning and lighting in this room.

医療配管その他、装置の設置時に付帯設備を必要とし、
大がかシな工事となり、工期、工費ともに問題となる。
Medical piping and other incidental equipment is required when installing equipment,
It will be a large-scale construction project, and both the construction period and cost will be problematic.

通常の電波シールド工事は、その遮へい能力が60dB
位であシ、近くに無線局等がある時にはこの遮へい性能
が問題となり、画像上に周波数ノイズが発生する。この
ような時に、シールド性能の向上のため、シールドを2
重にしたり、特別の材料、工法を必要とし、シールドル
ームの設置が大きな問題である。
Normal radio wave shielding work has a shielding ability of 60 dB.
However, when there is a wireless station nearby, this shielding performance becomes a problem, causing frequency noise on the image. In such cases, in order to improve shield performance, the shield should be set to 2.
The installation of a shield room is a major problem, as it requires heavy weight, special materials, and construction methods.

本発明の目的は、上記の問題点に対し、シールドルーム
設置の制限条件を緩和させる手段を提供することにある
SUMMARY OF THE INVENTION An object of the present invention is to provide a means for alleviating the restrictive conditions for installing a shield room in order to solve the above-mentioned problems.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、無線局等からの電波の周波数帯域を避けて
、磁気共鳴の周波数を選択する手段によシ達成できる。
The above object can be achieved by means of selecting the frequency of magnetic resonance while avoiding the frequency band of radio waves from radio stations and the like.

即ち、静磁場の発生に永久磁石を用いるものは、永久磁
石材料の磁気特性の温度依存性を利用し、永久磁石の温
度を変化させる手段をもち、静磁場強度を変化させる。
That is, those that use a permanent magnet to generate a static magnetic field utilize the temperature dependence of the magnetic properties of the permanent magnet material, and have means for changing the temperature of the permanent magnet, thereby changing the static magnetic field strength.

磁気共鳴の周波数は静磁場強度に比例するため、静磁場
強度の変化に従って磁気共鳴の周波数が変化する。一方
、磁気共鳴を起こさせる照射磁場系、及び信号を検出す
る受信系にもこれらの変化した磁気共鳴の周波数に対応
できるような手段を持たせる。このような手段によυ、
装置の設置場所に応じて、電波障害の少ない周波数を選
択できる。
Since the frequency of magnetic resonance is proportional to the strength of the static magnetic field, the frequency of magnetic resonance changes as the strength of the static magnetic field changes. On the other hand, the irradiating magnetic field system that causes magnetic resonance and the receiving system that detects signals are also provided with means that can accommodate these changed frequencies of magnetic resonance. By such means υ,
Depending on the installation location of the device, you can select a frequency that causes less radio interference.

〔作用〕[Effect]

永久磁石回路は、断熱用部材とヒーター等を組み合わせ
た保温制御機構によシ断熱保温され、−定の温度に保持
される。この温度は保温制御機構の設定温度の調整によ
りヒーターの電流を制御し。
The permanent magnet circuit is insulated and kept at a constant temperature by a heat retention control mechanism that combines a heat insulating member, a heater, and the like. This temperature is controlled by controlling the heater current by adjusting the set temperature of the heat retention control mechanism.

保温温度を可変できるように作用する。一方、磁気共鳴
を起こさせる周波数発生源の発振周波数と磁気共鳴信号
を検出するための同調回路の同調周波数を可変させるこ
とによシ、磁気共鳴を能率よく発生させさらに、磁気共
鳴信号を最大感度で検知できるように受信コイルを含め
た受信系の同調周波数を選択できる。以上のことから、
さらに受信時の基準周波数も可変として、磁気共鳴信号
の周波数が変っても常に最大効率で動作可能となるよう
に作用する。
It works so that the heat retention temperature can be varied. On the other hand, by varying the oscillation frequency of the frequency source that causes magnetic resonance and the tuning frequency of the tuning circuit that detects the magnetic resonance signal, magnetic resonance can be generated efficiently and the magnetic resonance signal can be detected with maximum sensitivity. The tuning frequency of the receiving system, including the receiving coil, can be selected to enable detection. From the above,
Furthermore, the reference frequency during reception is also variable, so that even if the frequency of the magnetic resonance signal changes, it can always operate at maximum efficiency.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図によシ説明する。第1
図は本発明の一実施例であるMHI装置のブロック図で
ある。装置は被検体4の存在する空間に強く均一な磁場
を発生する永久磁石1と、この永久磁石の温度を一定に
する保温制御機構5と、温度制御装置8と、x、y、z
の3次元の空間情報を付与するために傾斜磁場を発生さ
せる傾斜磁場コイル2と、傾斜磁場電源6と、磁気共鳴
現象を起こさせる照射コイル3と、高周波受信部7と、
磁気共鳴信号を受信するコイル1oと、この信号を増幅
する高周波受信部11と、検波部12、アナログ/デジ
タル変換器13と、儂を再構成するための演算装置14
と、像を表示するデイスプレィ15と、基準周波数源9
と、全体の制御回路16とよシ成シ立っている。以下、
この第1図に示した装置について動作を説明する。ここ
で永久磁石の磁場強度Hoを0.2テスラ(T)、傾斜
磁場強度Gを2 m T/ mの場合を例にとシ説明す
る。磁気共鳴の周波数fは、良く知られているように(
1)式で与えられる。
An embodiment of the present invention will be explained below with reference to FIG. 1st
The figure is a block diagram of an MHI device that is an embodiment of the present invention. The device includes a permanent magnet 1 that generates a strong and uniform magnetic field in a space where a subject 4 exists, a heat retention control mechanism 5 that keeps the temperature of this permanent magnet constant, a temperature control device 8, and x, y, z.
A gradient magnetic field coil 2 that generates a gradient magnetic field to provide three-dimensional spatial information, a gradient magnetic field power supply 6, an irradiation coil 3 that causes a magnetic resonance phenomenon, and a high frequency receiver 7.
A coil 1o for receiving a magnetic resonance signal, a high frequency receiving section 11 for amplifying this signal, a detection section 12, an analog/digital converter 13, and an arithmetic device 14 for reconfiguring me.
, a display 15 for displaying an image, and a reference frequency source 9
The overall control circuit 16 is also well established. below,
The operation of the apparatus shown in FIG. 1 will be explained. Here, an example will be explained in which the magnetic field strength Ho of the permanent magnet is 0.2 Tesla (T) and the gradient magnetic field strength G is 2 mT/m. As is well known, the frequency f of magnetic resonance is (
1) Given by Eq.

γ f=−・ Ho            (1)2π ここでγは磁気回転比と呼ばれ、原子核固有の値であυ
、プロトンIHでは、 r/2π=42.57MH2/T     (2)であ
る。従って、静磁場強度0.2 Tのプロトンのイメー
ジングにおいては、磁気共鳴の周波数f−8,514M
Hzとなる。ここで撮像視野りを40Cr11(±20
 cm )に選択すれば、その取シ扱う帯域Δfは(1
)式よ!り 、 (3)式で与えられる。
γ f=-・Ho (1) 2π Here, γ is called the gyromagnetic ratio and is a value specific to the atomic nucleus.
, for proton IH, r/2π=42.57MH2/T (2). Therefore, in proton imaging with a static magnetic field strength of 0.2 T, the magnetic resonance frequency is f-8,514M.
Hz. Here, the imaging field of view is 40Cr11 (±20
cm), the band Δf to be handled is (1
) ceremony! is given by equation (3).

ここに前述の条件を代入して、Δf=±8.5KHzを
得る。即ち、イメージングにおいては、8.514MH
z±8.5KHzの周波数範囲を取り扱えば良い。ここ
で被検体の横断像(体軸と直交方向)を撮像する時につ
いて説明する。この時には最初にスライス位置を選択す
るために、被検体の体軸に沿って勾配をもつ傾斜磁場を
印加する。ここで中心周波数fO&帯域Δf1の高周波
を印加する。
By substituting the above-mentioned conditions here, Δf=±8.5 KHz is obtained. That is, in imaging, 8.514MH
It is sufficient to handle the frequency range of z±8.5KHz. Here, a description will be given of when a cross-sectional image of the subject (in a direction orthogonal to the body axis) is captured. At this time, first, in order to select the slice position, a gradient magnetic field having a gradient is applied along the body axis of the subject. Here, a high frequency wave having a center frequency fO and a band Δf1 is applied.

この時体軸のスライス位置は中心周波数f、で、スライ
ス面の厚さは帯域Δfxの周波数で各々決定される。高
周波によシ選択されたあるスライス面だけが磁気共鳴現
象を起こす(スライス選択)。
At this time, the slice position of the body axis is determined by the center frequency f, and the thickness of the slice surface is determined by the frequency of the band Δfx. Only a certain slice plane selected by high frequency waves causes a magnetic resonance phenomenon (slice selection).

ここで選択された2次元面にXとYの傾斜磁場を印加し
て、この時の信号を受信コイル10で検知して、高周波
受信部11によシ周波数帯域f、±Δfの信号は増幅さ
れて、位相検波部12により、中心周波数f、は取り除
かれ、±Δfの可聴周波数に落とされる。この低周波信
号はA/D変換器13によりデジタル化されて演算装置
14に送られる。演算装置14は通常、周波数分析器か
ら成り立っており、磁気共鳴信号のもつ周波数に応じて
位置情報を知シ、2次元面のマトリクスに再配置する。
A gradient magnetic field of X and Y is applied to the two-dimensional plane selected here, the signal at this time is detected by the receiving coil 10, and the signal in the frequency band f, ±Δf is amplified by the high frequency receiving section 11. Then, the center frequency f is removed by the phase detection section 12 and reduced to an audible frequency of ±Δf. This low frequency signal is digitized by the A/D converter 13 and sent to the arithmetic unit 14. The arithmetic unit 14 usually consists of a frequency analyzer, which knows the position information according to the frequency of the magnetic resonance signal and rearranges it into a two-dimensional matrix.

この時の周波数帯域は、前述した如く視野と傾斜磁場の
大きさにより決まり、前記条件では±8.5KH2であ
る。すなわち、受信コイルで取り扱う周波数帯域は、8
.514±&5KHzの帯域があれば、所望の視野をカ
バーでき、それ以外の周波数は不要であ右。
The frequency band at this time is determined by the field of view and the magnitude of the gradient magnetic field, as described above, and is ±8.5 KH2 under the above conditions. In other words, the frequency band handled by the receiving coil is 8
.. If there is a band of 514±&5KHz, the desired field of view can be covered, and other frequencies are unnecessary.

さて、ここで設置場所によシ、無線局等のラジオ周波数
が前記周波数に存在することがある。この時は画像上に
その周波数に対応する所に、縦。
Now, depending on the installation location, a radio frequency such as a wireless station may exist at the above frequency. At this time, the vertical position on the image corresponds to that frequency.

或いは横に輝線が入シ、ノイズとなシ画像を乱すことに
なる。MHIでは微弱な信号を扱っておシ、このような
外来からの電波の電界強度は1通常OdBμV/mより
小さくないとノイズとして現われてくる。放送局や無線
局の電波による電界強度は場所により異なるが、設置条
件の目安として、装置又は部屋のシールドにより60d
B位の遮へい能力があシ、設置場所での電界強度は、6
0dBμV/m以下を必要とする。このようなシールド
能力により、自己の機器が発するノイズや通常の場所で
の放送による電磁波は遮断することができる。
Alternatively, bright lines may appear horizontally, causing noise and disturbing the image. MHI deals with weak signals, and if the field strength of such radio waves from an external source is not smaller than 1 normal OdBμV/m, it will appear as noise. The electric field strength due to radio waves from broadcasting stations and radio stations varies depending on the location, but as a guide for installation conditions, it is 60 d depending on the shielding of the equipment or room.
The shielding ability is level B, and the electric field strength at the installation location is 6.
0dBμV/m or less is required. This shielding ability allows it to block noise emitted by its own devices and electromagnetic waves from broadcasts in normal locations.

しかしながら無線局が近くにあったり、或いは周囲環境
条件によっては、この性能では不足し、ノイズが問題と
なる場合がある。この時に、本発明では磁気回路1を保
温制御している温度制御装置8の設定温度を変更できる
構成とし、磁気回路の温度を変化させる。磁気回路は永
久磁石から構成されておシ、一般に永久磁石はこの磁場
強度が温度によシ変化する。か久蔽石−に強−カカー=
imデ1表1 永久磁石材料の特性例 表1は各種磁石材料の温度係数を示し九ものである。
However, depending on the proximity of a wireless station or the surrounding environmental conditions, this performance may be insufficient and noise may become a problem. At this time, in the present invention, the set temperature of the temperature control device 8 which controls the magnetic circuit 1 to keep it warm can be changed, and the temperature of the magnetic circuit is changed. The magnetic circuit is composed of permanent magnets, and in general, the magnetic field strength of permanent magnets changes depending on the temperature. Strong against Kukaishi - Kaka =
Table 1 Examples of properties of permanent magnet materials Table 1 shows nine temperature coefficients of various magnet materials.

永久磁石に強力なりH積をもつネオジウム・鉄・はう素
(Nd−Fe−33)磁石では、この温度係数は約−0
,12%/l:’である。従ってこの例では、温度をI
C変えることによって、8,514 KM zX O,
12X 10−”= 10.2 KHzだけ偏移させる
ことができる。即ち、永久磁石の温度をIC高めること
によシ、中心周波数は、基準の8.514 MHzから
&504MHzに変る。これに応じて高周波受信部11
の同調周波数、及び検波部12の検波周波数を変える構
成とする。
For neodymium-iron-boron (Nd-Fe-33) magnets, which are strong permanent magnets and have a high H product, this temperature coefficient is approximately -0.
, 12%/l:'. Therefore, in this example, we set the temperature to I
By changing C, 8,514 KM zX O,
It can be shifted by 12X 10-" = 10.2 KHz. That is, by increasing the temperature of the permanent magnet IC, the center frequency changes from the standard 8.514 MHz to &504 MHz. Accordingly, High frequency receiving section 11
The configuration is such that the tuning frequency of the detector 12 and the detection frequency of the detector 12 are changed.

以上の構成により、設置場所の条件により、画像内に電
波ノイズが現われた時、その周波数を避けるように磁石
の温度、送受信系の同調周波数、検波器の周波数等を偏
移させて、電磁波のノイズの影響のない周波数を設定で
きる。この結果、特に放送電波強度の強い所でもこの影
響をさけて。
With the above configuration, when radio wave noise appears in an image due to the conditions of the installation location, the temperature of the magnet, the tuning frequency of the transmitter/receiver system, the frequency of the detector, etc. are shifted to avoid that frequency, and the electromagnetic wave is removed. You can set a frequency that is not affected by noise. As a result, this effect can be avoided even in areas with particularly strong broadcast signal strength.

曳好な画像を得ることができる。A clear image can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、設置場所ごとに異なる無線局等からの
電磁波を、一般の60dB程度の性能をもつシールドル
ームや、これよシ性能の劣るガントリーシールドでも対
応できる。このため、特殊な2重シールドや複雑な工事
を必要とせず、設置条件の大幅な緩和を図ることが可能
となる。
According to the present invention, electromagnetic waves from radio stations, etc., which vary depending on the installation location, can be dealt with even with a general shield room having a performance of about 60 dB or a gantry shield with a performance inferior to this. Therefore, there is no need for special double shielding or complicated construction, and it is possible to significantly ease installation conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図である。 1・・・磁気回路、2・・・傾斜磁場コイル、3・・・
照射コイル、4・・・被検体、5・・・保温回路、6・
・・傾斜磁場電源、7・・・高周波送信系、8・・・温
度制御装置、9・・・基準周波数源、10・・・検出コ
イル%11・・・高周波受信部、12・・・検波部、1
3・・・A/D変換器。 14・・・演算装置、15・・・デイスプレィ、16・
・・制御回路。
FIG. 1 is a block diagram showing one embodiment of the present invention. 1... Magnetic circuit, 2... Gradient magnetic field coil, 3...
Irradiation coil, 4... Subject, 5... Heat retention circuit, 6.
... Gradient magnetic field power supply, 7 ... High frequency transmission system, 8 ... Temperature control device, 9 ... Reference frequency source, 10 ... Detection coil %11 ... High frequency receiving section, 12 ... Detection Part 1
3...A/D converter. 14... Arithmetic device, 15... Display, 16.
...Control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1、静磁場の発生に永久磁石を用いる磁気共鳴イメージ
ング装置において、該永久磁石を一定温度に保つ手段と
、この温度を変化させる手段と、磁気共鳴を起こさせる
照射磁場及び高周波受信部の周波数を変化させる手段を
具備し、磁気共鳴の周波数が外部からの不要電波等の周
波数からずらした周波数に同調するように前記永久磁石
の温度と、前記照射磁場及び前記高周波受信部の周波数
とを制御することを特徴とする磁気共鳴イメージング装
置。
1. In a magnetic resonance imaging device that uses a permanent magnet to generate a static magnetic field, there is a means for keeping the permanent magnet at a constant temperature, a means for changing this temperature, and a frequency of an irradiation magnetic field and a high-frequency receiver that cause magnetic resonance. and controlling the temperature of the permanent magnet and the frequency of the irradiation magnetic field and the high-frequency receiving section so that the frequency of magnetic resonance is tuned to a frequency shifted from the frequency of unnecessary radio waves from the outside. A magnetic resonance imaging device characterized by:
JP63218336A 1988-09-02 1988-09-02 Magnetic resonance imaging device Pending JPH0268037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63218336A JPH0268037A (en) 1988-09-02 1988-09-02 Magnetic resonance imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63218336A JPH0268037A (en) 1988-09-02 1988-09-02 Magnetic resonance imaging device

Publications (1)

Publication Number Publication Date
JPH0268037A true JPH0268037A (en) 1990-03-07

Family

ID=16718265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63218336A Pending JPH0268037A (en) 1988-09-02 1988-09-02 Magnetic resonance imaging device

Country Status (1)

Country Link
JP (1) JPH0268037A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002238873A (en) * 2001-02-14 2002-08-27 Ge Medical Systems Global Technology Co Llc Magnetic field stabilizer, magnetic resonance imaging apparatus, and method of stabilizing magnetic field

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002238873A (en) * 2001-02-14 2002-08-27 Ge Medical Systems Global Technology Co Llc Magnetic field stabilizer, magnetic resonance imaging apparatus, and method of stabilizing magnetic field
JP4592975B2 (en) * 2001-02-14 2010-12-08 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Magnetic field stabilization device, magnetic resonance imaging apparatus, and magnetic field stabilization method

Similar Documents

Publication Publication Date Title
US7372271B2 (en) Main magnet perforated eddy current shield for a magnetic resonance imaging device
US6249006B1 (en) Electromagnetic field shielding device
JP4472926B2 (en) RF surface resonator
EP0218290B1 (en) A magnetic resonance apparatus with a decoupling detection surface coil
JP2007511331A (en) Phased array knee coil
US5939883A (en) Magnetic resonance imaging excitation and reception methods and apparatus
AU556600B2 (en) Electromagnet for nmr tomography
EP0459569A3 (en) Radio frequency quadrature coil construction for magnetic resonance imaging (mri) apparatus
JP4050828B2 (en) Magnetic resonance imaging system with peripheral access and inhomogeneous magnetic field
KR100458775B1 (en) Second-order static magnetic field correcting method and mri apparatus
JPH0268037A (en) Magnetic resonance imaging device
JP2002200055A (en) Magnetic resonance imaging apparatus
US20030169044A1 (en) Magnetic resonance imaging apparatus
AU2001235870A1 (en) Magnetic resonance imaging apparatus with means to screen rf fields
JP3934312B2 (en) Magnetic resonance imaging system
JP3897958B2 (en) Magnetic resonance imaging system
JPH048348A (en) Receiving coil for magnetic resonance imaging device
Handa et al. Development of a local electromagnetic shielding for an extremity magnetic resonance imaging system
JP4494751B2 (en) Magnetic resonance imaging device
JP3339880B2 (en) Magnetic resonance imaging equipment
JP2005249463A5 (en)
JP3213819B2 (en) High frequency receiving coil for magnetic resonance imaging equipment
JPH05161625A (en) Superconducting device
JP4509625B2 (en) Magnetic resonance imaging apparatus and static magnetic field forming apparatus
JPH0225206U (en)