JPH0267989A - Gravity-wave measuring apparatus - Google Patents

Gravity-wave measuring apparatus

Info

Publication number
JPH0267989A
JPH0267989A JP63219568A JP21956888A JPH0267989A JP H0267989 A JPH0267989 A JP H0267989A JP 63219568 A JP63219568 A JP 63219568A JP 21956888 A JP21956888 A JP 21956888A JP H0267989 A JPH0267989 A JP H0267989A
Authority
JP
Japan
Prior art keywords
optical fiber
coils
optical
interferometer
coherent light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63219568A
Other languages
Japanese (ja)
Inventor
Masataka Mizushima
水島 正喬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A T R KOUDENPA TSUSHIN KENKYUSHO KK
ATR Optical and Radio Communications Research Laboratories
Original Assignee
A T R KOUDENPA TSUSHIN KENKYUSHO KK
ATR Optical and Radio Communications Research Laboratories
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A T R KOUDENPA TSUSHIN KENKYUSHO KK, ATR Optical and Radio Communications Research Laboratories filed Critical A T R KOUDENPA TSUSHIN KENKYUSHO KK
Priority to JP63219568A priority Critical patent/JPH0267989A/en
Publication of JPH0267989A publication Critical patent/JPH0267989A/en
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To simplify an apparatus by inputting coherent light beams from the ends of two optical fiber coils which are arranged so as to receive gravity waves in the different directions into the other ends, and measuring inference fringes of the coherent light beams. CONSTITUTION:Laser light rays are used as coherent light rays 1. Two optical fiber coils A and B are formed by winding optical fibers around cylinders each having a diameter of, e.g. about 1m, by one million times. It is not necessary that the two coils A and B have the equal length and equal diameter. The coils A and B are fixed to the surfaces having an angle which is not zero, e.g. at a right angle. The light emitted from one hyperstable light source 1 is split into two beams. The light beams are inputted into the ends of the respective coils A and B. The light beams which are emitted from the other ends of the coils A and B are combined again. The light beams are made to interfere and inputted into an interferometer 2. By this constitution, an optical element and an optical apparatus can be formed with the coherent light source such as the laser light source, the optical fiber coils and the optical interferometer. Thus the apparatus can be made simple.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は光ファイバを利用した重力波の測定装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a gravitational wave measuring device using an optical fiber.

従来の技術 重力波は電磁波と異なってその発生および検出が極めて
困難であることが明らかになっている。
BACKGROUND OF THE INVENTION It has become clear that unlike electromagnetic waves, gravitational waves are extremely difficult to generate and detect.

また近年においても、天体より到来する重力波を検出す
る研究が種々方面において研究されているが、いまだに
効率良く検出することができない。
In recent years, research has been conducted in various fields to detect gravitational waves arriving from celestial bodies, but it is still not possible to detect them efficiently.

この問題を解決するために、たとえば特開昭49−10
7788号公報は導体物質または水晶からなる重力波受
波体に対する電磁波の透過率がその重力波受波体内の歪
みの有無によって異なることを利用したものを提案して
いる。
In order to solve this problem, for example,
Publication No. 7788 proposes a method that utilizes the fact that the transmittance of electromagnetic waves to a gravitational wave receiver made of a conductive material or crystal varies depending on the presence or absence of distortion in the gravitational wave receiver.

発明が解決すべき課題 この発明は重力波受波体としての半導体素子を用いるこ
となく、光ファイバを用いて、主体は光学的素子で構成
した構成の簡単な重力波測定装置を堤供することを目的
とする。
Problems to be Solved by the Invention The present invention aims to provide a simple gravitational wave measurement device that uses optical fibers as the gravitational wave receiving body and is mainly composed of optical elements. purpose.

課題を解決する手段 この発明の重力波測定装置は異方向に重力波を受けるよ
うに配置された2つの光ファイバコイルと、各光ファイ
バコイルの一方の端部からコヒーレント光を入射する光
源と、各光ファイバコイルの他方端からコヒーレント光
を受けるように設けられ、両方の光ファイバを通過した
コヒーレント光による干渉縞を測定する干渉計とを備え
たことを特徴とする特 上述の構成によって、一つの超安定レーザー光源からの
光を二つの互いに並行でない光ファイバコイルに分けて
入れる。それらの光ファイバの他端で光を再び合わせて
干渉させる。それぞれの光ファイバの長さを百方km程
にすれば、この干渉計は一つの腕が百方kmのm1ch
elson干渉計にほど対応した感度を持つ重力波測定
器となる。
Means for Solving the Problems The gravitational wave measuring device of the present invention includes two optical fiber coils arranged to receive gravitational waves in different directions, a light source that enters coherent light from one end of each optical fiber coil, By the above-mentioned configuration, an interferometer is provided to receive coherent light from the other end of each optical fiber coil, and to measure interference fringes due to the coherent light that has passed through both optical fibers. Light from two ultra-stable laser sources is split into two non-parallel optical fiber coils. At the other ends of the optical fibers, the light is recombined and interfered. If the length of each optical fiber is about 100 km, this interferometer will be an ML channel with one arm of 100 km.
This is a gravitational wave measuring instrument with sensitivity comparable to that of the Elson interferometer.

上述の構成において第1図に示すようにコヒーレント光
源1からの光は両方の光ファイバコイルA、Bに入射さ
れ、さらにそれぞれ光ファイバコイルA、Bを通って干
渉計2に入射される。重力波が二つの光ファイバコイル
に作用すると、それぞれの光ファイバコイルは異なる方
向に変形する。
In the above configuration, as shown in FIG. 1, light from a coherent light source 1 is incident on both optical fiber coils A and B, and further incident on an interferometer 2 through optical fiber coils A and B, respectively. When gravitational waves act on two optical fiber coils, each optical fiber coil deforms in different directions.

そして両光ファイバコイル内での光の波長も変化する。The wavelength of light within both optical fiber coils also changes.

両光ファイバコイルを通過した光は1つに結合され、干
渉計に入射される。そして干渉計をよぎる干渉縞の数は
重力波に応じて変化する。
The light passing through both optical fiber coils is combined into one and input into an interferometer. The number of interference fringes that cross the interferometer changes depending on the gravitational waves.

以下にさらに、この発明の詳細な説明する。The present invention will be further explained in detail below.

第1図に示すように二つの光ファイバコイルAとBが互
いに直角をなすとして重力波がA面に垂直に来たとする
。簡単化の為に重力波の振動数はIHz以下であるとす
ると(我々は連星からの重力波を狙っているが連星の周
期は大抵1日より長い)光ファイバの中の光にとっては
重力波は振動していないと見なされる。成る時には四極
子である重力波は光ファイバAを第1図の点線の方向に
歪ませる。重力波の強さはh(・Δ1/l)で与えられ
るからAは一方向にh1伸びそれと直角の方向にh1縮
まる。その為円形であったコイルはa/b=1+2hっ
まり離心率e=25の楕円になる。一方コイルBは同じ
重力波によって第1図の点線の方向に変形され、こちら
は一方向にしか変形を受けないから円からe=iの楕円
になる。AもBも共に楕円に変形されるがその度合が違
う。光ファイバの中を通る光の振幅及び偏波面が光ファ
イバの変形によって変わることが知られている。変形が
長さ又は光ファイバの屈折率を変えるなら光フアイバ中
の光の位相も変わる。その度合は光ファイバの材料によ
るが、変形度、この場合Δe・o、r5或いはΔe2・
hに比例する。重力波の場合りはl0E−16位と予測
されるからこのような変形による二つの光のずれら小さ
い。しかし光ファイバをそれぞれn回巻きのコイルにす
れば、ずれもn倍に増幅される。光の性質がnΔeの変
化を受けるのであればnが1068とするとその重力波
による変化が観測され得る。
Assume that two optical fiber coils A and B are perpendicular to each other as shown in FIG. 1, and that a gravitational wave comes perpendicular to plane A. For simplicity, assuming that the frequency of gravitational waves is less than IHz (we are aiming for gravitational waves from binary stars, but the period of binary stars is usually longer than one day), for light inside an optical fiber, Gravitational waves are considered non-oscillating. When this happens, the gravitational wave, which is a quadrupole, distorts the optical fiber A in the direction of the dotted line in FIG. Since the strength of the gravitational wave is given by h(・Δ1/l), A extends by h1 in one direction and contracts by h1 in the direction perpendicular to that direction. Therefore, the circular coil becomes an ellipse with a/b=1+2h or eccentricity e=25. On the other hand, coil B is deformed in the direction of the dotted line in Figure 1 by the same gravitational wave, and since it is deformed only in one direction, it changes from a circle to an ellipse with e=i. Both A and B are deformed into ellipses, but the degree of deformation is different. It is known that the amplitude and polarization plane of light passing through an optical fiber change depending on the deformation of the optical fiber. If the deformation changes the length or refractive index of the optical fiber, the phase of the light in the optical fiber also changes. The degree of deformation depends on the material of the optical fiber, but the degree of deformation, in this case Δe・o, r5 or Δe2・
It is proportional to h. In the case of gravitational waves, the deviation is predicted to be on the order of 10E-16, so the deviation between the two lights due to such deformation is small. However, if each optical fiber is made into a coil with n turns, the deviation will also be amplified by n times. If the properties of light change by nΔe, then if n is 1068, the change due to gravitational waves can be observed.

もし重力波の振動数が光ファイバの固宵振動数より遥か
に低いと光ファイバは剛体で中を通る光の波長が重力波
の偏波方向にλhだけ変化したと考えるのがよい。この
時もコイルAでは右左端では波長が伸びるが前後端では
波長が縮まり結局全体としての変化がないのに対しコイ
ルBでは上下で波長が伸びるだけだから重力波による空
間の収縮がdxとすると一周で(π/4)dxだけ波長
が伸びるであろう (第2図参照)。コイルが円周をn
周していれば波長はn(π/4)dxだけ短くなる。
If the frequency of the gravitational waves is much lower than the solid frequency of the optical fiber, it is best to consider that the optical fiber is a rigid body and the wavelength of the light passing through it changes by λh in the polarization direction of the gravitational waves. At this time, in coil A, the wavelength is extended at the right and left ends, but the wavelength is shortened at the front and rear ends, and there is no change as a whole.In contrast, in coil B, the wavelength is only extended at the top and bottom, so if dx is the contraction of space due to gravitational waves, it is one revolution. Therefore, the wavelength will be extended by (π/4)dx (see Figure 2). The coil has a circumference of n
If it circulates, the wavelength becomes shorter by n(π/4)dx.

つまり光ファイバの全長がして円筒の直径がXであれば
この効果で干渉計をよぎる干渉縞の数は(L/4λXd
x/x)(L/4λ)hである。
In other words, if the total length of the optical fiber is X and the diameter of the cylinder is X, the number of interference fringes that cross the interferometer due to this effect is (L/4λXd
x/x)(L/4λ)h.

実施例 コヒーレント光源1としてはレーザー光源を用いる。Example As the coherent light source 1, a laser light source is used.

光ファイバコイルA、Bは例えば1mの直径の円筒に光
ファイバを百方辺巻き付けたコイルを二つ作る。この二
つのコイルは同じ長さ、直径である必要は無い。これら
二つのコイルをゼロでない或角度、例えば互いに直角の
面に固定する。ひとつの超安定レーザー光源lから出る
光を二つに分けてそれぞれの光ファイバコイルA、Bの
一端に入射する。光ファイバコイルA、Bの他端から出
る一つの光を再び結合して互いに干渉させて干渉計2に
入射する。
For the optical fiber coils A and B, two coils are made by winding an optical fiber around a cylinder with a diameter of 1 m in 100 directions. The two coils do not need to have the same length and diameter. The two coils are fixed at a non-zero angle, for example in planes perpendicular to each other. The light emitted from one ultra-stable laser light source 1 is divided into two parts and input to one end of each optical fiber coil A and B. One light emitted from the other ends of the optical fiber coils A and B is recombined to interfere with each other and enter the interferometer 2.

いま重力波の強さhをl0E−16、レーザー光の波長
をλとして1μmをとれば、1本の光ファイバの全長し
がl0EIImっまりnがl0EIIの程度であればそ
の重力波が測れる事になる。これば地球と太陽の距離で
ある。
Now, if the strength h of the gravitational wave is l0E-16, and the wavelength of the laser beam is λ, which is 1 μm, then if the total length of one optical fiber is l0EIIm, and n is about l0EII, then the gravitational wave can be measured. become. This is the distance between the earth and the sun.

静止衛星を使う干渉計はi0E5kmだがこんな長さの
光ファイバを作る事は比較的容易であろう。これでもブ
ラックホール二つから成る連星からの重力波が測れると
予測される。いずれにしてもここに提言される干渉計は
従来の長大干渉計に比べて小さく作る事が著しく容易に
なる。もし光ファイバの断面積が10μm2であるとす
るとnがl0EIIの場合コイルの断面積は1m”とな
る。
The interferometer using a geostationary satellite is i0E5km, but it would be relatively easy to make an optical fiber of this length. Even with this, it is predicted that gravitational waves from a binary star consisting of two black holes can be measured. In any case, the interferometer proposed here is significantly easier to make smaller than conventional long and large interferometers. If the cross-sectional area of the optical fiber is 10 μm2, then if n is 10EII, the cross-sectional area of the coil will be 1 m''.

勿論この長さを一つの光ファイバで造る事が困難であれ
ば途中に位相を乱さない増幅器をたくさん置けばよい。
Of course, if it is difficult to create this length with one optical fiber, it is sufficient to place many amplifiers that do not disturb the phase in the middle.

この干渉計は著しく温度に敏感であるので非常に正確な
温度制御が必要である。これはコイル全体をオイルバス
に入れる事によって達成出来るかもしれない。それは光
ファイバの自分の重みによる歪みを防ぐにも役立つであ
ろう。或いは全体を衛生又は宇宙ステイションに置く方
法も考えられる。
This interferometer is extremely temperature sensitive and requires very precise temperature control. This may be accomplished by placing the entire coil in an oil bath. It will also help prevent distortion of the optical fiber due to its own weight. Alternatively, it is also possible to place the entire system in a sanitary or space station.

発明の効果 以上のようにこの発明によればレーザー光源などのコヒ
ーレント光源と光ファイバコイルと光干渉計とで光学的
素子や光学機器のみで重力波の測定装置をつくることが
でき、装置を比較的簡単にすることができる。
Effects of the Invention As described above, according to this invention, it is possible to create a gravitational wave measuring device using only optical elements and equipment such as a coherent light source such as a laser light source, an optical fiber coil, and an optical interferometer, and it is possible to compare the devices. It can be made very simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の装置の一例を示す図、第2図は第1
図の装置における重力波の作動方向を示した図である。 lx・・レーザー光源、2・・・干渉計、A、B・・・
光ファイバコイル。 特許出願人 昧式会社エイ・ティ・アール光電波通信研
究所 代 理 人 弁理士青白 葆ほか1名
FIG. 1 is a diagram showing an example of the device of the present invention, and FIG.
FIG. 3 is a diagram showing the direction of operation of gravitational waves in the device shown in the figure. lx...Laser light source, 2...Interferometer, A, B...
fiber optic coil. Patent applicant: A.T.R. Optical Radio Communication Research Institute, patent attorney; Patent attorney, Aobai Bo, and one other person

Claims (1)

【特許請求の範囲】[Claims] (1)異方向に重力波を受けるように配置された2つの
光ファイバコイルと、各光ファイバコイルの一方の端部
からコヒーレント光を入射する光源と、各光ファイバコ
イルの他方端からコヒーレント光を受けるように設けら
れ、両方の光ファイバを通過したコヒーレント光による
干渉縞を測定する干渉計とを備えたことを特徴とする重
力波測定装置。
(1) Two optical fiber coils arranged to receive gravitational waves in different directions, a light source that inputs coherent light from one end of each optical fiber coil, and coherent light from the other end of each optical fiber coil. 1. A gravitational wave measurement device comprising: an interferometer that is arranged to receive a gravitational wave and measures interference fringes caused by coherent light that has passed through both optical fibers.
JP63219568A 1988-09-01 1988-09-01 Gravity-wave measuring apparatus Pending JPH0267989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63219568A JPH0267989A (en) 1988-09-01 1988-09-01 Gravity-wave measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63219568A JPH0267989A (en) 1988-09-01 1988-09-01 Gravity-wave measuring apparatus

Publications (1)

Publication Number Publication Date
JPH0267989A true JPH0267989A (en) 1990-03-07

Family

ID=16737551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63219568A Pending JPH0267989A (en) 1988-09-01 1988-09-01 Gravity-wave measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0267989A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002095451A1 (en) * 2001-05-21 2002-11-28 Pilkin, Vitaly Evgenievich Method for generating and receiving gravity waves and device for carrying out said method
WO2009130545A1 (en) * 2008-04-23 2009-10-29 Trotsenko Pavlo Method for creating amplified gravitational radiation
WO2009150552A1 (en) * 2008-04-23 2009-12-17 Trotsenko Pavlo Method 2 for forming gravitational radiation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612518A (en) * 1979-06-29 1981-02-06 Thomson Csf Hydrohoning
JPS59166803A (en) * 1983-03-14 1984-09-20 Sogo Keibi Hoshiyou Kk Abnormality detecting system using optical fiber
JPS63172928A (en) * 1987-01-12 1988-07-16 Sumitomo Electric Ind Ltd Optical fiber hydrophone

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612518A (en) * 1979-06-29 1981-02-06 Thomson Csf Hydrohoning
JPS59166803A (en) * 1983-03-14 1984-09-20 Sogo Keibi Hoshiyou Kk Abnormality detecting system using optical fiber
JPS63172928A (en) * 1987-01-12 1988-07-16 Sumitomo Electric Ind Ltd Optical fiber hydrophone

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002095451A1 (en) * 2001-05-21 2002-11-28 Pilkin, Vitaly Evgenievich Method for generating and receiving gravity waves and device for carrying out said method
WO2009130545A1 (en) * 2008-04-23 2009-10-29 Trotsenko Pavlo Method for creating amplified gravitational radiation
WO2009150552A1 (en) * 2008-04-23 2009-12-17 Trotsenko Pavlo Method 2 for forming gravitational radiation

Similar Documents

Publication Publication Date Title
US4259016A (en) Interferometer with a single-mode waveguide coil
CA1276078C (en) Distributed sensor and method using coherence multiplexing of fiber-optic interferometric sensors
US4929050A (en) Traveling wave fiber optic interferometric sensor and method of polarization poling fiber optic
Tango et al. IV Michelson stellar interferometry
Coudé du Foresto et al. Fluor-a stellar interferometer using single-mode fibers
Su et al. Experimental demonstration of interferometric imaging using photonic integrated circuits
US4325636A (en) Interferometer with a single-mode waveguide coil
US20190349094A1 (en) Method and system for measuring interferometric visibility of telescopic signals having imperfect quantum entanglement
Coudé du Foresto et al. Minimization of fiber dispersion effects in double Fourier stellar interferometers.
Grainger et al. Demonstration of spectral and spatial interferometry at THz frequencies
Flaminio Status and plans of the Virgo gravitational wave detector
US4743113A (en) Optical fiber interferometer network
Mitani et al. Interferometric fiber-optic gyroscope using multi-core fiber
JPH0267989A (en) Gravity-wave measuring apparatus
CN101071057A (en) Interference measuring instrument based on multimode waveguide light field transverse mode
Jovanovic et al. Astronomical applications of multi-core fiber technology
US6023057A (en) Device for determining the phase errors of electromagnetic waves
GB2490497A (en) A stationary waveguide spectrum analyser
US4283144A (en) Method of fiber interferometry zero fringe shift referencing using passive optical couplers
CN201203715Y (en) High-resolution optical imaging device based on virtual synthetic aperture theory
Davis High angular resolution stellar interferometry
US4505588A (en) Fiber stellar interferometer
CN101271202A (en) High-resolution optical imaging method and device based on virtual synthetic aperture theory
CN105157693A (en) Annular resonant cavity and resonant fiber-optic gyroscope
EP0059644B1 (en) Optical gyroscope