JPH0267406A - Valve guide of internal combustion engine and manufacture thereof - Google Patents

Valve guide of internal combustion engine and manufacture thereof

Info

Publication number
JPH0267406A
JPH0267406A JP21974688A JP21974688A JPH0267406A JP H0267406 A JPH0267406 A JP H0267406A JP 21974688 A JP21974688 A JP 21974688A JP 21974688 A JP21974688 A JP 21974688A JP H0267406 A JPH0267406 A JP H0267406A
Authority
JP
Japan
Prior art keywords
intermediate member
end members
valve guide
internal combustion
sintered alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21974688A
Other languages
Japanese (ja)
Inventor
Yoshiki Hirai
佳樹 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP21974688A priority Critical patent/JPH0267406A/en
Publication of JPH0267406A publication Critical patent/JPH0267406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To aim at the reduction of cost and weight and improvement in heat conductivity by forming an intermediate member of a specific metal in comparison with a sintered alloy of both end members, and making the intermediate member occupy a specific ratio in the full length of a valve guide shaft, while making the same engage with a stage-shaped cross section with respect to both the end members. CONSTITUTION:Both end members 1 are formed of a sintered alloy provided with an abrasion resistance property comprising either an iron system or a copper system. On the other hand, an intermediate member 2 is formed with a metal material which is applicable to at least one or more of a member of which ductility is a larger than the sintered alloy, a member of which heat conduction property is a better than it, and a poor composition member. In a valve guide for an internal combustion engine formed with a combined structure like this, the shaft direction length of the intermediate member 2 is set at 30% to 60% in the total length of the valve guide. Further, both the end members 1 and the intermediate member 2 are engaged at a stage-shaped cross surface so as to compactly be fitted each other.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、軸方向が3層からなる複合構造の内燃機関用
バルブガイドおよびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a valve guide for an internal combustion engine having a composite structure consisting of three layers in the axial direction, and a method for manufacturing the same.

(従来の技術) 自動車等の内燃機関用バルブガイドは、通常、焼結合金
が多く使用されており、このバルブガイドは、軸方向長
さが内径寸法の4〜8倍程度であって、素材としては、
全体が同一組成の鉄系または銅系の焼結合金が使用され
、通常の粉末冶金法によって作られ、切削加工して用い
られる。
(Prior art) Valve guides for internal combustion engines such as automobiles usually use a sintered alloy, and the axial length of these valve guides is about 4 to 8 times the inner diameter, and the material as,
An iron-based or copper-based sintered alloy having the same composition as a whole is used, and is made by a normal powder metallurgy method and used by cutting.

(発明が解決しようとする課題) この種内燃機関用バルブガイドは直径の割に軸方向寸法
が長いために、成形用押型の粉末充填深さが大きく、高
密度に成形することが困難で、そのため成形体が運搬中
に倒れ易く、割れを生じる等の問題点が指摘されていた
(Problems to be Solved by the Invention) This type of valve guide for an internal combustion engine has a long axial dimension relative to its diameter, so the powder filling depth of the molding mold is large, making it difficult to mold it with high density. Therefore, problems have been pointed out, such as the molded bodies tend to fall over during transportation and cracks occur.

さらに、内燃機関用のバルブガイドとして低コスト、熱
伝導性がよく放熱し易いこと、および軽量化等種々の要
求がされている。
Furthermore, there are various demands for valve guides for internal combustion engines, such as low cost, good thermal conductivity and easy heat dissipation, and light weight.

本発明はこのような事情に鑑みてなされたもので、本発
明の目的とするところは、低コストでかつ熱伝導がよく
放熱し易く、しかも軽量化に大きく貢献できる内燃機関
用バルブガイドおよびその製造方法を提供することを目
的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a valve guide for an internal combustion engine that is low cost, has good heat conduction, is easy to dissipate heat, and can greatly contribute to weight reduction. The purpose is to provide a manufacturing method.

(課題を解決するための手段) 上記目的を達成するために、本発明に係る内燃機関用バ
ルブガイドは両端部材が鉄系、または銅系のいずれか一
方からなる耐摩耗性を備えた焼結合金で構成され、かつ
、その中間部材は」二記焼結合金よりも、延性が大きい
部材、熱伝導性のよい部材、貧組成部材のうち少なくと
も1つ以上該当する金属材料で構成されている複合構造
の内燃機関用バルブガイドであって、上記中間部材の軸
方向長さがバルブガイドの全長の30〜60%を占め、
両端部材と中間部材とが段形断面で咬合し、締まり嵌め
接合していることを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the valve guide for an internal combustion engine according to the present invention has both end members made of either iron-based or copper-based sintered joints with wear resistance. The intermediate member is made of gold, and the intermediate member is made of a metal material that has at least one of the following: a member with greater ductility, a member with better thermal conductivity, and a member with a poorer composition than the sintered alloy. A valve guide for an internal combustion engine having a composite structure, wherein the axial length of the intermediate member accounts for 30 to 60% of the total length of the valve guide,
It is characterized in that both end members and the intermediate member interlock with each other with stepped cross sections and are joined by an interference fit.

さらに上記内燃機関用バルブガイドの製造方法は両端部
材が鉄系、または銅系のいずれか一方からなる耐摩耗性
を備えた焼結合金で構成され、かつ、その中間部材が上
記焼結合金よりも、延性が大きい部材、熱伝導性のよい
部材、貧組成部制のうち少なくとも1つ以上該当する金
属材料で構成されている複合構造の内燃機関用バルブガ
イドの製造方法において、 上記中間部材は内径または外径を段状に削除し、両端部
材は、接合部外径または内径をテーパ状とし、その軸方
向長さは中間部材の段部長さより短く設定され、両者を
嵌合した状態で、サイジング金型内に挿入し、パンチで
下方に押圧することにより、中間部材の薄肉端面部を塑
性変形させ、両端部材と中間部材との隙間を埋めるとと
もに、径方向は部材が押し下げられ断面積が減少するこ
とにより、両部材の嵌合部が堅く咬合され、軸方向と径
方向から圧縮されて、軸方向に引き伸ばされることを特
徴とする。
Furthermore, in the above method for manufacturing a valve guide for an internal combustion engine, both end members are made of a wear-resistant sintered alloy made of either iron or copper, and the intermediate member is made of the above-mentioned sintered alloy. Also, in the method for manufacturing a valve guide for an internal combustion engine having a composite structure, the intermediate member is made of a metal material that meets at least one of the following: a member with high ductility, a member with good thermal conductivity, and a metal material with poor composition. The inner diameter or outer diameter is removed in a stepped manner, the outer diameter or inner diameter of both end members is tapered, and the axial length thereof is set shorter than the stepped length of the intermediate member, and when both are fitted, By inserting it into the sizing mold and pressing it downward with a punch, the thin end surface of the intermediate member is plastically deformed, filling the gap between both end members and the intermediate member, and the member is pushed down in the radial direction, reducing the cross-sectional area. Due to this reduction, the fitting portions of both members are tightly interlocked, compressed from the axial and radial directions, and stretched in the axial direction.

(作用) 前記手段によれば、中間部材は、両端部の焼結合金に比
べて、延性が大きい部材、熱伝導性のよい部材、貧組成
部祠のうちから1つ以上該当する金属で構成するととも
に、バルブガイド軸方向全長の30〜60%を占め、両
端部材と中間部材が段形断面で咬合し締まり嵌め接合す
るようにしたから、内燃機関用バルブガイドの改善要求
のうち、低コスト、軽量化、熱伝導性の改良を達成する
ことが可能となる。
(Function) According to the above means, the intermediate member is made of one or more of the following metals: a member with greater ductility, a member with good thermal conductivity, and a metal with poor composition than the sintered alloy at both ends. At the same time, it occupies 30 to 60% of the total length of the valve guide in the axial direction, and since both end members and the intermediate member are interlocked with a stepped cross section and are tightly fitted together, it meets the requirements for improving valve guides for internal combustion engines. , it becomes possible to achieve weight reduction and improved thermal conductivity.

さらに上記内燃機関用バルブガイドの製作について、特
殊な型形状を有するサイジング金型を使用することによ
り簡易に製作することを可能とする。
Furthermore, the above valve guide for an internal combustion engine can be manufactured easily by using a sizing mold having a special mold shape.

(実施例) 以下、本発明に係る内燃機関用バルブガイドおよびその
製造方法について添付図面を参照しながら詳細に説明す
る。
(Example) Hereinafter, a valve guide for an internal combustion engine and a method for manufacturing the same according to the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明に係る複合構造の内燃機関用バルブガイ
ドを示す素材断面構造の一例を模式的に示したもので、
両端部材1と中間部材2は断面が2字状の段形で咬合し
た構造をしている。さらにこの素材は、内燃機関に装着
される前に各面を加工する。
FIG. 1 schematically shows an example of the cross-sectional structure of a material showing a valve guide for an internal combustion engine having a composite structure according to the present invention.
The both end members 1 and the intermediate member 2 have a stepped structure in which the cross section is double-shaped and interlocks with each other. Furthermore, each side of this material is processed before it is installed in the internal combustion engine.

ところで、上記バルブガイドは燃焼室に近く温度が高い
環境で使用され、相手バルブとの馴染み性と耐摩耗性が
要求されるため、特に血圧が高くなり易い端部寄りの摺
動面は摩耗し易く、密度の高い材料の使用が要求される
By the way, the above-mentioned valve guide is used in a high-temperature environment close to the combustion chamber, and requires good compatibility with the mating valve and wear resistance, so the sliding surfaces near the ends, where blood pressure tends to be particularly high, are subject to wear. This requires the use of materials that are easy to use and have high density.

本発明において、バルブガイドの両端部材1は焼結合金
を使用する。この焼結合金は上記のような観点から固体
潤滑剤が分散した高密度の焼結合金が好ましく、鉄系焼
結合金の場合は乗用車用内燃機関に多く用いられている
。例えば、銅、錫、リンと、炭素を1.5〜4%含有し
た組成のもの(特公昭55−34858号公報に開示さ
れた組成)、銅系では船外機用等バルブガイドとして使
用されているリン青銅合金系で固体潤滑剤が分散した材
料等が該当する。
In the present invention, both end members 1 of the valve guide are made of a sintered alloy. From the above point of view, this sintered alloy is preferably a high-density sintered alloy in which a solid lubricant is dispersed, and iron-based sintered alloys are often used in internal combustion engines for passenger cars. For example, those with a composition containing copper, tin, phosphorus, and 1.5 to 4% carbon (composition disclosed in Japanese Patent Publication No. 55-34858), copper-based ones are used as valve guides for outboard motors, etc. This applies to materials such as phosphor bronze alloy-based materials in which solid lubricants are dispersed.

また、両端部材1は成形長さが短い分だけ取扱いが容易
で、高密度成形が可能で、後述する各部材を接合すると
きの塑性加工でさらにその密度を高密度なものとするこ
とができる。
In addition, the both end members 1 are easy to handle due to their short molded length, and can be molded with high density, and the density can be further increased by plastic processing when joining each member, which will be described later. .

次に、中間部材2は要求により種々の金属材料の使用が
可能であるが、軽量化には比重の小さい金属またはその
合金が採用される。例えば、両端部材1が鉄系焼結合金
の場合には、中間部材2としてはアルミ合金、両端部材
1が銅系焼結合金の場合には、中間部材2としては鉄鋼
またはアルミ合金が適用される。
Next, the intermediate member 2 can be made of various metal materials depending on requirements, but metals with low specific gravity or alloys thereof are used to reduce the weight. For example, when both end members 1 are made of iron-based sintered alloy, the intermediate member 2 is made of aluminum alloy, and when both end members 1 are made of copper-based sintered alloy, intermediate member 2 is made of steel or aluminum alloy. Ru.

さらにこの中間部材2としては溶製材料でも焼結材料で
もいずれでも差し支えない。
Furthermore, this intermediate member 2 may be made of either a melted material or a sintered material.

次に中間部材2の熱伝導性については、両端部材1とし
て鉄系焼結合金を適用した場合、銅または青銅およびア
ルミ合金を中間部ヰ42として使用すればよく、同様に
溶製材料、焼結材料のどちらでも同様の効果が得られる
Next, regarding the thermal conductivity of the intermediate member 2, when an iron-based sintered alloy is used as the both end members 1, copper or bronze and aluminum alloy may be used as the intermediate part 42; Similar effects can be obtained with either binding material.

さらに、価格面では、汎用の焼結材料または両端部材1
と銅系合金の貧組成の焼結材料が中間部材2として選ば
れてもよく、溶製の材料は筒形状に加工する費用がかさ
み、かえって高価になる傾向があり、両端部材1が前述
した鉄系および銅系焼結合金において、−膜内な鉄−炭
素系または鉄−銅一炭素系の焼結合金、アルミ−珪素−
銅系の焼結合金等が採用できる。
Furthermore, in terms of price, general-purpose sintered materials or both end members 1
A sintered material with a poor composition of a copper-based alloy may be selected as the intermediate member 2, but molten materials tend to be expensive due to the high cost of processing them into a cylindrical shape. In iron-based and copper-based sintered alloys, - iron-carbon-based or iron-copper-carbon-based sintered alloys in the film, aluminum-silicon-
Copper-based sintered alloys, etc. can be used.

また、上述した材料の組合わせのうちで複数の要求に対
応できるものがある。すなわち、両端部材1が鉄系焼結
合金の場合、中間部材2としてアルミ合金を適用すると
、軽量化と熱伝導性と価格の全ての面に対応できる。
Moreover, among the above-mentioned combinations of materials, there are some that can meet a plurality of requirements. That is, when both end members 1 are made of iron-based sintered alloy, if aluminum alloy is used as the intermediate member 2, all aspects of weight reduction, thermal conductivity, and cost can be met.

次に、両端部材1の軸方向長さはほぼ均等であるととも
に、中間部材2の長さはバルブガイドの全長の30〜6
0%の範囲が好ましく、中間部材2の長さが30%より
少ない1と効果がわずかであり、また、各部材を接合す
る際の軸方向接合面が短くなり接合強度が不十分になる
。逆に、中間部材2の寸法長さを全長の60%より長く
設定した場合、その効果は大きくなるが、その分画端部
材1の長さが短くなり、軸方向接合面が短くなるととも
に耐摩耗性が不利となる。
Next, the axial lengths of both end members 1 are approximately equal, and the length of the intermediate member 2 is 30 to 66% of the total length of the valve guide.
A range of 0% is preferable, and if the length of the intermediate member 2 is less than 30%, the effect is slight, and the axial joint surface when joining each member becomes short, resulting in insufficient joint strength. Conversely, if the length of the intermediate member 2 is set longer than 60% of the total length, the effect will be greater, but the length of the end member 1 will be shorter, the axial joint surface will be shorter, and the durability will be reduced. Abrasion resistance is disadvantageous.

次に第2図ならびに第3図を参照しながら本発明に係る
内燃機関用バルブガイドの製造方法について簡単に説明
する。
Next, a method for manufacturing a valve guide for an internal combustion engine according to the present invention will be briefly described with reference to FIGS. 2 and 3.

第2図はサイジング方法を説明するサイジング金型装置
を示したものである。本図において、上下作動するラム
3にはパンチ4とダイガイド6が固設されており、内径
が中つぼみのダイ9はダイガイド6と嵌合しているとと
もに、スプリング8により下方に付勢されている。
FIG. 2 shows a sizing mold device for explaining the sizing method. In this figure, a punch 4 and a die guide 6 are fixed to a ram 3 that moves up and down, and a die 9 with a medium-sized inner diameter is fitted with the die guide 6 and is urged downward by a spring 8. has been done.

一方、コア5は中間部の外径が大きく、ベット7施した
盲孔とパンチ4の内径に嵌合し、固設されてはいない。
On the other hand, the core 5 has a large outer diameter at the middle portion, and fits into the blind hole formed by the bed 7 and the inner diameter of the punch 4, and is not fixed.

なお第2図はラム3が下死点になったときを示している
Note that FIG. 2 shows the ram 3 at the bottom dead center.

第3図は両端部材1と中間部祠2との接合部分の拡大断
面図であり、中間部材2は、内径または外径を段状に削
除した形状をしており、中間部材2より硬さ、靭性が高
い両端部材1は、接合部の外径または内径をテーパ状と
し、その軸方向長さは中間部材2の段部長さより短くし
である。
FIG. 3 is an enlarged cross-sectional view of the joint portion between both end members 1 and the intermediate part 2. The intermediate member 2 has a shape in which the inner diameter or outer diameter is removed in steps, and is harder than the intermediate member 2. Both end members 1 having high toughness have a tapered outer diameter or inner diameter at the joint portion, and have an axial length shorter than the step length of the intermediate member 2.

また、それぞれ嵌合したとき断面三角状の隙間aと端面
部隙間すの体積はほぼ等しくなるように設定されている
Further, the volumes of the gap a having a triangular cross section and the end face gap are set to be approximately equal when they are fitted together.

なお、中間部材2の薄肉端面部2aが第1図のように外
径側でもよいが、両端部材1よりも中間部材2の熱膨張
率が大きい材料の組合わせの場合は接合力が低下するの
で内径側に設定することが肝要である。
Note that the thin end surface portion 2a of the intermediate member 2 may be on the outer diameter side as shown in FIG. 1, but in the case of a combination of materials in which the coefficient of thermal expansion of the intermediate member 2 is larger than that of both end members 1, the bonding force will be reduced. Therefore, it is important to set it on the inner diameter side.

各部材1.2の段付き分を嵌合した状態で、第2図に示
すサイジング金型内に挿入し、パンチ4で下方に押し始
めると、中間部材2の薄肉端面部2aが塑性変形し、隙
間aが減少しつつ隙間すも減少し最後には隙間a、  
bの両者がなくなる。
When the stepped parts of each member 1.2 are inserted into the sizing mold shown in FIG. 2 and pushed downward with the punch 4, the thin end surface 2a of the intermediate member 2 will be plastically deformed. , while the gap a decreases, the gap also decreases, and finally the gap a,
Both b disappear.

一方、径方向は部材1,2が押し下げられ断面積が縮小
されることにより、各部材1,2の嵌合部は堅く咬合さ
れ、また軸方向と径方向から圧縮されて焼結材料の密度
が上昇し、部材1.2は軸方向に引き伸ばされる。
On the other hand, in the radial direction, members 1 and 2 are pushed down and the cross-sectional area is reduced, so that the fitting portions of each member 1 and 2 are tightly interlocked, and the sintered material is compressed from the axial and radial directions, resulting in the density of the sintered material. is raised and the member 1.2 is stretched in the axial direction.

なお、咬合部の軸方向長さは2〜5mmが望ましい。短
すぎると締結が不十分となり、逆に長すぎると加圧中に
薄肉端面部2aが座屈することがある。
In addition, the axial length of the occlusal part is preferably 2 to 5 mm. If it is too short, the fastening will be insufficient, and if it is too long, the thin end surface portion 2a may buckle during pressurization.

断面減少率は、バルブガイドの寸法、採用する材料によ
り多少異なるが、10〜30%であり、通常15%程度
が好ましい。また、接合後の軸方向寸法は、接合前に対
して長くなることを考慮する必要がある。断面減少率が
15%のとき、焼結材料は8〜9%、溶製材料では約1
7%長くなる。
The area reduction rate varies somewhat depending on the dimensions of the valve guide and the material used, but it is 10 to 30%, and usually about 15% is preferable. Further, it is necessary to consider that the axial dimension after joining will be longer than before joining. When the area reduction rate is 15%, sintered material has a reduction of 8 to 9%, and melted material has a reduction of approximately 1.
7% longer.

両端部材1と中間部材2の接合は、銅系組成の焼結材料
であれば、成形のときに原料粉を積層充填して圧扮し、
焼結する方法が採用できるが、焼結寸法の変化量が異な
る場合は段が付いたり、接合部にひび割れを生じること
があり、異種金属の場合は焼結できない。また、ろう付
は接合は量産性に難点があり、これに比べ本発明による
圧縮咬合方法によれば異種の材料であっても強い接合を
得ることができ、量産性も好ましい。
If the sintered material has a copper-based composition, the both end members 1 and the intermediate member 2 can be joined by stacking and filling raw material powder during molding and pressing.
Sintering can be used, but if the amount of change in sintered dimensions is different, steps may be formed or cracks may occur at the joint, and sintering is not possible when dissimilar metals are used. In addition, brazing has the disadvantage of being difficult to mass-produce, whereas the compression interlocking method of the present invention allows a strong joint to be obtained even with dissimilar materials, and is also favorable for mass-productivity.

以下具体的な実施例について実施例1ないし実施例3に
ついて詳細に説明する。
Specific examples 1 to 3 will be described in detail below.

実施例1 この実施例は軽量化であって、両端部材にリン青銅焼結
合金、中間部材に溶製アルミニウム合金を使用している
Example 1 This example is lightweight, and uses a phosphor bronze sintered alloy for both end members and a molten aluminum alloy for the intermediate member.

リン青銅焼結合金は、組成が2.7%Ni−3%P−4
.5%二硫化モリブデンのリン青銅であり、密度が7.
1g/=で、接合部の外径は、軸方向長さ4mmのテー
パ状に切削加工した。
The phosphor bronze sintered alloy has a composition of 2.7%Ni-3%P-4
.. It is phosphor bronze with 5% molybdenum disulfide and has a density of 7.
The outer diameter of the joint was cut into a tapered shape with an axial length of 4 mm at a pressure of 1 g/=.

一方、アルミニウム合金は合金番号2024の棒材を切
削加工したもので、第3図と同様に端面部隙間を設けて
両端部材に嵌合するように内径を嵌合した。各部材の寸
法は内径7mm、外径10mmで、軸方向は接合した後
の全長が50mmで中間部材が25mm(全長の50%
)である。また、押し出し加工時の部材断面減少率は1
5%とした。
On the other hand, the aluminum alloy was made by cutting a bar material of alloy number 2024, and the inner diameter was fitted to both end members with a gap between the end faces as shown in FIG. The dimensions of each member are 7 mm in inner diameter and 10 mm in outer diameter.In the axial direction, the total length after joining is 50 mm, and the intermediate member is 25 mm (50% of the total length).
). In addition, the reduction rate of the member cross section during extrusion processing is 1
It was set at 5%.

得られた複合バルブガイド素材の重量は、全体がリン青
銅焼結合金の場合に比べると約り5%少ない。また、両
端リン青銅焼結合金は密度上昇し7.7g/cJであっ
た。
The weight of the resulting composite valve guide material is about 5% less than that of a case where the entire material is made of phosphor bronze sintered alloy. Further, the density of the double-ended phosphor bronze sintered alloy increased to 7.7 g/cJ.

実施例2 この実施例は高熱伝導率を向上させた実施例であって、
両端部材に遊離黒鉛分散の鉄系焼結合金、中間部材に青
銅焼結合金を使用している。
Example 2 This example is an example in which high thermal conductivity was improved, and
An iron-based sintered alloy containing free graphite is used for both end members, and a bronze sintered alloy is used for the intermediate member.

鉄系焼結合金は、鉄と3%C−3%C1−1%5n−Q
2%Pからなる組成で、密度が6.6g/ai’である
Iron-based sintered alloy is iron and 3%C-3%C1-1%5n-Q
It has a composition of 2% P and a density of 6.6 g/ai'.

青銅焼結合金は5%Snの組成で密度が6.9g/dの
素材を使用している。寸法および接合方法は実施例1と
同様であるが、異なる点は中間部材の薄肉部分を内径側
に設定した点である。
The bronze sintered alloy uses a material with a composition of 5% Sn and a density of 6.9 g/d. The dimensions and joining method are the same as in Example 1, but the difference is that the thin portion of the intermediate member is set on the inner diameter side.

接合されたバルブガイド素材の端部密度は7.1g/c
nf、中間部密度は7.4g/cm’になっており、各
部材の熱伝導率(VLm−’・K−1)は、端部鉄系祠
は80、中間部青銅材は150である。
The end density of the joined valve guide material is 7.1 g/c
nf, the density of the middle part is 7.4 g/cm', and the thermal conductivity (VLm-'・K-1) of each member is 80 for the iron-based shrine at the end and 150 for the bronze material at the middle part. .

実施例3 この実施例はコスト低減をねらったものであり、両端部
材にリン青銅焼結合金を使用し、中間部材に鉄−炭素系
焼結合金を使用している。
Example 3 This example aims at cost reduction, and uses a phosphor bronze sintered alloy for both end members and an iron-carbon based sintered alloy for the intermediate member.

リン青銅焼結合金は実施例1と同じであり、鉄−炭素系
焼結合金は04%C組成で、密度は6.6g/afを採
用している。寸法形状および接合方法は実施例1と同様
である。このように構成するとバルブガイド素材の製造
費用はリン青銅焼結合金だけのものに比べ5%低廉化す
ることが可能となる。
The phosphor bronze sintered alloy is the same as in Example 1, and the iron-carbon based sintered alloy has a composition of 0.4% C and a density of 6.6 g/af. The dimensions, shape and joining method are the same as in Example 1. With this configuration, the manufacturing cost of the valve guide material can be reduced by 5% compared to the case where only phosphor bronze sintered alloy is used.

(発明の効果) 以上説明したように本発明に係る複合構造体の内燃機関
用バルブガイドは内燃機関の諸要求に応じた性能向上(
熱伝導率の向上、軽量化)および価格の低減を可能にす
る等実用的価値の高い内燃機関用バルブガイドが提供で
きる。
(Effects of the Invention) As explained above, the composite structure valve guide for an internal combustion engine according to the present invention has improved performance (
It is possible to provide a valve guide for an internal combustion engine that has high practical value such as improved thermal conductivity, reduced weight) and reduced cost.

さらに、本発明では、両端部材と中間部材との材質を変
えて、結合部を特殊形状とし、特殊形状金型により簡単
に製作できるため、その実用的価値が高いものである。
Furthermore, in the present invention, the materials of both end members and the intermediate member are changed, the joint part is made into a special shape, and it can be easily manufactured using a special-shaped mold, so that it has high practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る内燃機関用バルブガイドの断面図
、第2図は同バルブガイドの両端部材と中間部材とを接
合するための金型装置を示す断面図、第3図はバルブガ
イドの接合部の段付き形状を示す断面図である。 1・・・両端部材 2・・・中間部材 4・・・パンチ 5・・・コア 9・・・ダイ 第1 特許出願人  日立粉末冶金株式会社
Fig. 1 is a sectional view of a valve guide for an internal combustion engine according to the present invention, Fig. 2 is a sectional view showing a mold device for joining both end members and an intermediate member of the valve guide, and Fig. 3 is a sectional view of the valve guide. FIG. 3 is a cross-sectional view showing the stepped shape of the joint portion of FIG. 1...Both end members 2...Intermediate member 4...Punch 5...Core 9...Die 1 Patent applicant Hitachi Powder Metallurgy Co., Ltd.

Claims (1)

【特許請求の範囲】 1、両端部材が鉄系、または銅系のいずれか一方からな
る耐摩耗性を備えた焼結合金で構成され、かつ、その中
間部材は上記焼結合金よりも、延性が大きい部材、熱伝
導性のよい部材、貧組成部材のうち少なくとも1つ以上
該当する金属材料で構成されている複合構造の内燃機関
用バルブガイドであって、上記中間部材の軸方向長さが
バルブガイドの全長の30〜60%を占め、両端部材と
中間部材とが段形断面で咬合し、締まり嵌め接合してい
ることを特徴とする内燃機関用バルブガイド。 2、両端部材が鉄系、または銅系のいずれか一方からな
る耐摩耗性を備えた焼結合金で構成され、かつ、その中
間部材が上記焼結合金よりも、延性が大きい部材、熱伝
導性のよい部材、貧組成部材のうち少なくとも1つ以上
該当する金属材料で構成されている複合構造の内燃機関
用バルブガイドの製造方法において、 上記中間部材は内径または外径を段状に削除し、両端部
材は、接合部外径または内径をテーパ状とし、その軸方
向長さは中間部材の段部長さより短く設定され、両者を
嵌合した状態で、サイジング金型内に挿入し、パンチで
下方に押圧することにより、中間部材の薄肉端面部を塑
性変形させ、両端部材と中間部材との隙間を埋めるとと
もに、径方向は部材が押し下げられ断面積が減少するこ
とにより、両部材の嵌合部が堅く咬合され、軸方向と径
方向から圧縮されて、軸方向に引き伸ばされることを特
徴とする内燃機関用バルブガイドの製造方法。
[Scope of Claims] 1. Both end members are made of a wear-resistant sintered alloy made of either iron or copper, and the intermediate member has a higher ductility than the sintered alloy. A valve guide for an internal combustion engine having a composite structure, which is made of a metal material that corresponds to at least one of a member with a large diameter, a member with good thermal conductivity, and a member with a poor composition, wherein the axial length of the intermediate member is A valve guide for an internal combustion engine, which occupies 30 to 60% of the total length of the valve guide, and wherein both end members and an intermediate member are interlocked with each other in stepped cross sections and are tightly fitted together. 2. Both end members are made of a wear-resistant sintered alloy made of either iron or copper, and the intermediate member is a member with greater ductility than the sintered alloy, and thermal conductivity. In the method for manufacturing a valve guide for an internal combustion engine having a composite structure, which is made of a metal material that meets at least one of the following: a member with good properties and a member with a poor composition, the intermediate member has its inner diameter or outer diameter removed in steps. Both end members have a tapered joint outer diameter or inner diameter, and their axial length is set to be shorter than the step length of the intermediate member. With both end members fitted, they are inserted into a sizing mold and punched. By pressing downward, the thin end face of the intermediate member is plastically deformed to fill the gap between both end members and the intermediate member, and the member is pushed down in the radial direction, reducing the cross-sectional area, thereby making it possible to fit the two members together. A method of manufacturing a valve guide for an internal combustion engine, characterized in that the parts are tightly interlocked, compressed in the axial and radial directions, and stretched in the axial direction.
JP21974688A 1988-09-02 1988-09-02 Valve guide of internal combustion engine and manufacture thereof Pending JPH0267406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21974688A JPH0267406A (en) 1988-09-02 1988-09-02 Valve guide of internal combustion engine and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21974688A JPH0267406A (en) 1988-09-02 1988-09-02 Valve guide of internal combustion engine and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0267406A true JPH0267406A (en) 1990-03-07

Family

ID=16740346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21974688A Pending JPH0267406A (en) 1988-09-02 1988-09-02 Valve guide of internal combustion engine and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0267406A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5564187A (en) * 1994-12-22 1996-10-15 Chrysler Corporation Apparatus and method for an aluminum alloy cylinder head having a valve guide bore with spaced wear resistant integral surfaces
EP3040526A1 (en) * 2014-12-30 2016-07-06 General Electric Company Multi-material valve guide system and method
JP2016532771A (en) * 2013-09-23 2016-10-20 ゲーカーエン シンター メタルズ エンジニアリング ゲーエムベーハー Method for manufacturing sintered parts with high radial accuracy and assembled parts including joined parts to be sintered
WO2016202525A1 (en) * 2015-06-16 2016-12-22 Bleistahl-Produktions Gmbh & Co Kg. Valve guide
EP3084154B1 (en) 2013-12-18 2018-02-21 Bleistahl-Produktions GmbH & Co KG. Double/triple-layer valve guide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5564187A (en) * 1994-12-22 1996-10-15 Chrysler Corporation Apparatus and method for an aluminum alloy cylinder head having a valve guide bore with spaced wear resistant integral surfaces
US5632240A (en) * 1994-12-22 1997-05-27 Chrysler Corporation Apparatus and method for an aluminum alloy cylinder head having a valve guide bore with spaced wear resistant integral surfaces
JP2016532771A (en) * 2013-09-23 2016-10-20 ゲーカーエン シンター メタルズ エンジニアリング ゲーエムベーハー Method for manufacturing sintered parts with high radial accuracy and assembled parts including joined parts to be sintered
EP3084154B1 (en) 2013-12-18 2018-02-21 Bleistahl-Produktions GmbH & Co KG. Double/triple-layer valve guide
EP3040526A1 (en) * 2014-12-30 2016-07-06 General Electric Company Multi-material valve guide system and method
WO2016202525A1 (en) * 2015-06-16 2016-12-22 Bleistahl-Produktions Gmbh & Co Kg. Valve guide

Similar Documents

Publication Publication Date Title
US5878323A (en) Process for producing split type mechanical part
US9211583B2 (en) Sleeved sprocket teeth
US5654106A (en) Sintered articles
JPH0610286B2 (en) Camshaft manufacturing method
EP1907155A1 (en) Composite assemblies including powdered metal components
US6148685A (en) Duplex sprocket/gear construction and method of making same
US5992015A (en) Process for forming composite piston
EP1878521B1 (en) Sliding part and process for producing the same
EP1052435B1 (en) Piston ring carrier with cooling cavity and method of manufacturing the same
GB2122275A (en) Sintered journals
JPH0267406A (en) Valve guide of internal combustion engine and manufacture thereof
JP3389590B2 (en) Manufacturing method of connecting rod
JP2007522410A (en) Sliding bearing element and manufacturing method
JPS5841211A (en) Cam shaft
JPS597324B2 (en) Manufacturing method for copper-based and iron-based composite layer sintered oil-impregnated bearings
JP3786864B2 (en) Manufacturing method of sintered products
JP2805056B2 (en) Synchronizer ring manufacturing method
US20080310777A1 (en) Sliding bearing having sintered layer formed of sintered segments
JPH05105913A (en) Production of composite sintered part
JPH04246210A (en) Manufacture method for engine valve lifter
DE4118040A1 (en) Prodn. of sintered metal or drop forged finished part - by inserting antifriction moulding into blank and then forging
KR100217604B1 (en) Synchronizer ring having double structure and its manufacturing method
JPS61115657A (en) Production of cam shaft
JPH07317512A (en) Valve seat and its manufacture
JPS63194816A (en) Manufacture of composite member