JPS5841211A - Cam shaft - Google Patents

Cam shaft

Info

Publication number
JPS5841211A
JPS5841211A JP13843081A JP13843081A JPS5841211A JP S5841211 A JPS5841211 A JP S5841211A JP 13843081 A JP13843081 A JP 13843081A JP 13843081 A JP13843081 A JP 13843081A JP S5841211 A JPS5841211 A JP S5841211A
Authority
JP
Japan
Prior art keywords
sleeve
sintered
sintered alloy
cam lobe
stem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13843081A
Other languages
Japanese (ja)
Other versions
JPH024763B2 (en
Inventor
Shigeru Urano
浦野 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Piston Ring Co Ltd
Original Assignee
Nippon Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Piston Ring Co Ltd filed Critical Nippon Piston Ring Co Ltd
Priority to JP13843081A priority Critical patent/JPS5841211A/en
Publication of JPS5841211A publication Critical patent/JPS5841211A/en
Publication of JPH024763B2 publication Critical patent/JPH024763B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H53/00Cams ; Non-rotary cams; or cam-followers, e.g. rollers for gearing mechanisms
    • F16H53/02Single-track cams for single-revolution cycles; Camshafts with such cams
    • F16H53/025Single-track cams for single-revolution cycles; Camshafts with such cams characterised by their construction, e.g. assembling or manufacturing features

Abstract

PURPOSE:To improve wear resistance, strength and bonding strength of a cam shaft, by making the cam lobe of a cam shaft with sintered metals and a sleeve. CONSTITUTION:A cam lobe 3 is made by bonding a first and a second sintered alloys 4, 5 to a sleeve 2. Since coupling of the cam lobe 3 and a stem is achieved by coupling a steel sleeve to the stem also made of steel and they are made of the same material, they can be coupled together securely by way of welding or soldering. Further, since the cam lobe is reinforced by the sleeve and a rather great bonding strength can be obtained also by press fitting and quenching, a cam shaft thus manufactured can be used with no trouble in an engine having a relatively low duty. Thus, it is enabled to manufacture a cam shaft having an excellent wear resistance, strength and bonding strength at a high productivity.

Description

【発明の詳細な説明】 本発明は内燃機関の弁開閉用カムシャフトであり、異種
材料を複合した複合カムシャフトに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a camshaft for opening and closing valves of an internal combustion engine, and relates to a composite camshaft made of a composite of different materials.

内燃機関用カムシャフトは従来鋳鉄又は鋼によるものが
用いられていたが近年種々の材料を複合した複合カムシ
ャフトが注目されている。
Conventionally, camshafts for internal combustion engines have been made of cast iron or steel, but in recent years, composite camshafts made of various materials have been attracting attention.

その理由として内燃機関の高速化、高出力化及び軽量化
の要求があげられる。即ち高速化に対応してカムフォロ
ワとの摺動面であるカム表面の耐摩耗性が必要となるが
充分な耐摩耗性を有する材料はチルド化又は焼入れした
鋳鉄でしか得られなかりだ。一方、軽量化しようとした
場合に強度に優れる鋼を用いざるをえないものである。
The reason for this is the demand for higher speed, higher output, and lighter weight of internal combustion engines. That is, in response to higher speeds, the cam surface, which is the sliding surface with the cam follower, needs to have wear resistance, but materials with sufficient wear resistance can only be obtained from chilled or hardened cast iron. On the other hand, when trying to reduce weight, it is necessary to use steel, which has excellent strength.

このため耐摩耗性を要するカムロブと強度を要するステ
ムとを目的に応じた材料で形成し、これを組立てる複合
カムシャフト、例えば実公昭51−7367号に示され
る如き鋼製パイプによりなるステムに焼結合金製カムロ
ブを組付けたカムシャフトが提案されている。この焼結
合金製カムロブを用いたカムシャフトはカムロブとステ
文との結合に問題があり、種々の考案がなされているも
ののそれぞれに欠点がある。
Therefore, the cam lobe, which requires wear resistance, and the stem, which requires strength, are made of materials appropriate for the purpose, and these are assembled into a composite camshaft, for example, a stem made of steel pipe as shown in Japanese Utility Model Publication No. 51-7367. A camshaft with a cam lobe made of bonded metal has been proposed. The camshaft using this sintered metal cam lobe has a problem in the connection between the cam lobe and the stem, and although various ideas have been made, each has its own drawbacks.

例えば特開昭54−102209号の如く、圧粉体又は
予備焼結したカムロブをステムに組付け、これを液相焼
結することにより焼結合金の収縮と拡散を利用し結合す
るものがあるが、かかる方法によればカムロブとステム
の結合は強いものの、焼結炉中にカムシャフト全体を通
さねばならず生産能率が低いばかりか、通常1250℃
前後で焼結されるため大型のカムシャフトではステムに
熱による曲がりや歪を生じ易い。これに対して焼結され
たカムロブをろう付や溶接しようとした場合に、焼結合
金と鋼であるステムとが異種材料である理由により溶接
性やろう付性が低く充分な結合強度が得難いばかりか、
多孔質高硬度であり被剛性の悪い焼結合金のステムとの
嵌合部を加工せねばならず生産性にも劣るものである。
For example, as in JP-A No. 54-102209, there is a method in which a compacted powder or pre-sintered cam lobe is assembled to a stem, and this is liquid-phase sintered to utilize shrinkage and diffusion of the sintered alloy to bond the stem. However, although this method provides a strong bond between the cam lobe and the stem, the entire camshaft must be passed through the sintering furnace, which not only lowers production efficiency, but also reduces the production efficiency at a temperature of usually 1250°C.
Because the front and rear parts are sintered, large camshafts tend to bend or distort the stem due to heat. On the other hand, when trying to braze or weld a sintered cam lobe, it is difficult to obtain sufficient bonding strength due to poor weldability and brazing properties because the sintered alloy and the steel stem are different materials. Not only,
The fitting part with the stem is made of a sintered alloy that is porous and highly hard and has poor rigidity, so the productivity is poor.

本発明はこれら従来のカムシャフトの問題を解決するも
のでアシ、カムロブを3層の複合材料とすることにより
カムロブの耐摩耗性、強度1生産性を向上し、かつカム
シャフトの組付生産性を向上しうるものであり、以下本
発明の詳細な説明する。
The present invention solves these problems with conventional camshafts, and by making the reel and cam lobe made of a three-layer composite material, the wear resistance and strength of the cam lobe are improved, and the productivity of the camshaft assembly is improved. The present invention will be described in detail below.

まず本発明の要旨とするところは特許請求の範囲に記載
した如く下記4つの構成によりなるカムシャフトにある
First, the gist of the present invention resides in a camshaft having the following four configurations as described in the claims.

(1)  カムロブ3が外周側に第一焼結合金材4を配
されるーこと。
(1) The first sintered metal material 4 is arranged on the outer circumferential side of the cam lobe 3.

(2)  カムロブ3が内周側に鋼製スリーブ2を配さ
れること。
(2) The steel sleeve 2 is disposed on the inner circumferential side of the cam lobe 3.

(3)第一焼結合金材4とスリーブ2間に第二焼結合金
材5を配すること。
(3) Arranging the second sintered metal material 5 between the first sintered metal material 4 and the sleeve 2.

(4)スリーブ2とステム1とが結合されること。(4) Sleeve 2 and stem 1 are combined.

かかる本発明カムシャフトを本発明の実施例である第1
図及び第1図の^−A断面である第2図に従りて説明す
る。
The camshaft of the present invention is used in the first embodiment of the present invention.
The explanation will be made with reference to the drawings and FIG. 2, which is a cross section taken along the line A in FIG. 1.

カムシャフトはステム1の軸端に結合された→ブツシュ
11にベルト車8を組付けて回転伝達される。又ステム
1の他の軸端はキャップ12で閉ざされ、ステム1内は
中空にされる。一方ジャーナル6、ギア7、カムロブ3
がステム1に組付けられてカムシャフトが形成される。
The rotation of the camshaft is transmitted by attaching a belt pulley 8 to a bushing 11 connected to the shaft end of the stem 1. The other shaft end of the stem 1 is closed with a cap 12, and the inside of the stem 1 is made hollow. On the other hand, journal 6, gear 7, cam lobe 3
is assembled to the stem 1 to form a camshaft.

この時にカムロブ3は第一、第二焼結合金及びスリーブ
を予め結合してカムロブ単体として形成されており、ジ
ャーナル6、ギア7と同様の手段、例えば圧入、焼ばめ
や溶接、ろう付によってステムへ組付けられる。これは
本発明ではカムロブ3のスリーブ2がステム1と結合さ
れることによシ可能となるものである。即ち焼結合金と
鋼とを直接溶接又はろう付しようとしても異種材料の接
合という制約があるため充分な結合がなし難いものであ
ったのに対して、本発明にあってはカムロブとステムと
が鋼製のスリーブとステムの結合により達成され、かか
る同種材料は溶接性及びろう付性に優れており充分な結
合が可能となるものである。又靭性の劣る焼結合金は圧
入、焼入れによる結合は得難いものであったが本発明で
はカムロブがスリーブによって補強されるため圧入、焼
入れによってもある程度の結合力が得られ、比較的軽負
荷の機関では充分に使用され得る。
At this time, the cam lobe 3 is formed as a single cam lobe by joining the first and second sintered alloys and the sleeve in advance, and is formed by the same means as the journal 6 and gear 7, such as press fitting, shrink fitting, welding, or brazing. Assembled to the stem. This is made possible in the present invention by connecting the sleeve 2 of the cam lobe 3 to the stem 1. That is, even if an attempt was made to directly weld or braze the sintered alloy and the steel, it was difficult to achieve a sufficient bond due to the restriction of joining dissimilar materials, whereas in the present invention, the cam lobe and the stem This is achieved by joining the steel sleeve and stem, and such similar materials have excellent weldability and brazeability, making it possible to achieve a sufficient joint. In addition, it has been difficult to bond sintered alloys with poor toughness by press-fitting or quenching, but in the present invention, since the cam lobe is reinforced with a sleeve, a certain degree of bonding force can be obtained even by press-fitting or quenching, and it can be used in relatively light-load engines. can be fully used.

一方カムロプはカムシャフト以前に予め組立られるが、
これは焼結合金の収縮と拡散による結合が利用される。
On the other hand, Kamrop is pre-assembled before the camshaft,
This utilizes bonding caused by contraction and diffusion of the sintered alloy.

具体的には第一焼結合金、第二焼結合金の圧粉体とスリ
ーブを組付け、これを焼結炉中で一体的に焼結すること
により完全な結合が達成される。これはスリーブと第一
焼結合金間に第二焼結合金が介在することにょる0 即ち単一の焼結合金の圧粉体とスリーブを一体的に焼結
した場合に、圧粉体とスリーブとの組付上不可避的な組
付はクリアランスが焼結完了後にも残るという危険を防
止することによる。
Specifically, complete bonding is achieved by assembling the green compacts of the first sintered alloy and the second sintered alloy and the sleeve and sintering them together in a sintering furnace. This is due to the presence of the second sintered alloy between the sleeve and the first sintered alloy. In other words, when a single sintered alloy compact and sleeve are sintered together, the compact The unavoidable assembly with the sleeve is to prevent the risk that clearances will remain after sintering has been completed.

この焼結による結合が不充分になる理由としてまず耐摩
耗性の効果を要する焼結合金に添加されるCr+ Mo
w Ni、 V* Wl等の作用によって焼結合金自体
のぬれ性が低下しスリーブとの結合が進み難いことと焼
結合金が液相発生時にスリーブとの拡散結合を開始する
ため局所的に焼結合金とスリーブが結合を開始するとあ
る部分にはクリアランスが残存してしまう理由による。
The reason why the bonding caused by sintering is insufficient is that Cr+Mo is added to the sintered alloy, which requires wear resistance.
w Due to the effects of Ni, V*Wl, etc., the wettability of the sintered alloy itself decreases, making it difficult to bond with the sleeve, and the sintered alloy starts diffusion bonding with the sleeve when a liquid phase occurs, resulting in local sintering. This is because when the bonding metal and the sleeve start to bond, a clearance remains in a certain part.

これに対して本発明にあっては耐摩耗性を要する第一焼
結合金材とスリーブ間に、第一焼結合金材より液相発生
温度の低い第二焼結合金を介在させ、第一焼結合金が液
相を発生し大きく収縮する以前に第二焼結合金材が液相
を発生し、スリーブと第一焼結合金間でのろう剤の役割
をはだす。さらに第二焼結合金は当然第一焼結合金より
長時間液相状態にあるためスリーブ、第一焼結合金に対
しての拡散による結合がより進行し厳密な焼結温度、時
間の制約を受ける第一焼結合金より以上の結合を達成す
ることが可能となる。
In contrast, in the present invention, a second sintered alloy whose liquid phase generation temperature is lower than that of the first sintered alloy material is interposed between the first sintered alloy material that requires wear resistance and the sleeve. Before the sintered alloy generates a liquid phase and shrinks significantly, the second sintered alloy material generates a liquid phase and acts as a brazing agent between the sleeve and the first sintered alloy. Furthermore, since the second sintered alloy naturally stays in a liquid phase for a longer period of time than the first sintered alloy, bonding by diffusion to the sleeve and the first sintered alloy progresses more, and strict sintering temperature and time constraints are required. It becomes possible to achieve a bond greater than that of the first sintered alloy that is received.

かかる第二焼結合金としてはまずぬれ性に優れることと
液相発生温度が低いこと、及び焼結条件は第一焼結合金
の焼結条件でなされるためこの条件での強度を必要とす
る。従って具体的には重量%でC1,0〜4.5チ、(
P−% B% Si)のうち一種又は二種以上を合計で
1.0〜5.0%、Cu1.5〜5.0%、残実質的に
Feよりなる焼結合金が望ましいoC量は基地組織のフ
ェライト化を防ぐため1.0チ以上、逆に過剰なセメン
タイト発生を防ぐため4.5チ以下で選択され、(PN
 BM St)は少量添加で液相発生温度を下げる効果
を有するが1.0−未満でその効果に不足し、5,0チ
超では脆化が著しい。又Cuも液相発生温度を下げる効
果を有するが、ぬれ性の向上と焼結収縮率の調整のため
添加され、1.01未満であると効果がな(,5,0チ
以上では脆化が著しい。さらに基地強度を向上する目的
で(Ni、 Cr、 Mo)のうち一種又は二種以上を
0.5〜2.0%添加することも可能である。
Such a second sintered alloy must first have excellent wettability and a low liquid phase generation temperature, and since the sintering conditions are the same as those for the first sintered alloy, it must have strength under these conditions. . Therefore, specifically, C1.0 to 4.5 in weight%, (
The desired oC content is a sintered alloy consisting of a total of 1.0 to 5.0% of one or more of P-% B% Si, Cu 1.5 to 5.0%, and the remainder substantially Fe. In order to prevent the formation of ferrite in the base structure, a value of 1.0 or more is selected, and conversely, to prevent excessive cementite formation, a value of 4.5 or less is selected.
BM St) has the effect of lowering the liquid phase generation temperature when added in a small amount, but if it is less than 1.0, the effect is insufficient, and if it exceeds 5.0, embrittlement is significant. Cu also has the effect of lowering the liquid phase generation temperature, but it is added to improve wettability and adjust the sintering shrinkage rate, and if it is less than 1.01, it is not effective (if it is more than 5.0, it will become brittle). Further, for the purpose of improving base strength, it is also possible to add 0.5 to 2.0% of one or more of (Ni, Cr, Mo).

一方第一焼結合金材は本出願人の先に提案した特開昭5
4−62108号の如き、重量%でC005〜4.0%
、Cr8、O〜30.0%、(PN B% st)のう
ち一種又は二種以上0.1〜5.Ol、Mo 20 %
以下含む液相焼結合金が適する0かかる第一焼結合金は
1240℃付近で液相を生じ約6チ近く収縮するが、前
記第二焼結合金は1220°C付近で液相を生じる。
On the other hand, the first sintered alloy material was previously proposed by the applicant in JP-A No. 5
C005 to 4.0% by weight, such as No. 4-62108
, Cr8, O~30.0%, (PN B% st) or two or more 0.1~5%. Ol, Mo 20%
The liquid phase sintered alloys listed below are suitable.The first sintered alloy forms a liquid phase at around 1240°C and shrinks by about 6 inches, while the second sintered alloy forms a liquid phase at around 1220°C.

この第一焼結合金と第二焼結合金は別々に圧粉成形され
ても良すが、好ましくは第3図の如く一体として成形さ
れる。まず第3区間に示スようにダイB1第二下バンチ
D1コアロットFを上げ第一焼結合金の粉末Jを充填す
る。これは第一下パンチCを降下することによっても達
成されるが、一般にプレス機械のプレス下パンチは固定
されて基台に支承されるため以下は下パンチ固定として
説明する。
Although the first sintered alloy and the second sintered alloy may be powder-formed separately, they are preferably molded as one body as shown in FIG. First, as shown in the third section, the die B1, the second lower bunch D1, and the core lot F are raised and filled with powder J of the first sintered alloy. This can also be achieved by lowering the first lower punch C, but since the lower punch of a press machine is generally fixed and supported on a base, the lower punch will be described as fixed below.

次に第3図(ロ)K示す如く第一上パンチGを降下する
とともにダイB1第二下パンチD、コアロンドFを第一
上バンチGの降下量の約半分はど下降させる。従って粉
末Jは相対的には第一上パンチGと下パンチCとにより
両方から圧縮されることとなり、圧縮方向に均一な密度
の圧粉体が得られる。尚第二下パンチDは第3図(イ)
ではシリンダにより上昇されており第3図(ロ)に示す
如く第一上バンチCより位相をずらせて降下される第二
上パンチHにより下降される。
Next, as shown in FIG. 3(b)K, the first upper punch G is lowered, and the die B1, second lower punch D, and core iron F are lowered by about half the amount of descent of the first upper bunch G. Therefore, the powder J is relatively compressed from both the first upper punch G and the lower punch C, and a green compact having a uniform density in the compression direction is obtained. The second lower punch D is shown in Figure 3 (A).
In this case, it is raised by a cylinder, and is lowered by a second upper punch H which is lowered with a phase shift from the first upper bunch C, as shown in FIG. 3(B).

次に第3図(ハ)に示す如く第一下バンチCをシリンダ
により上昇させると共にコアロッドF1ダイBを上昇さ
せ粉末JとダイBの上面を同一高さにする。一方第二下
パンチDをシリンダにより下降すると同時に第二焼結合
金の粉末Kを充填する。このように粉末Kを吸い込み充
填することが望ましいが、第二下パンチDは第3図(ロ
)の状態からさらに第二上パンチHによりある程度下げ
られているためこの位置から下げることによって粉末K
を充填しても良い。
Next, as shown in FIG. 3(C), the first lower bunch C is raised by a cylinder, and the core rod F1 and the die B are also raised so that the upper surfaces of the powder J and the die B are at the same height. On the other hand, the second lower punch D is lowered by the cylinder and at the same time, the second sintered alloy powder K is filled. It is desirable to suck and fill the powder K in this way, but since the second lower punch D has been lowered to a certain extent by the second upper punch H from the state shown in FIG.
You may also fill it with

次に第3図に)に示す如く第二下バンチDはそのままで
第一下パンチC及び粉末Jを第一上パンチGにより下降
する。この場合に第一下バンチCはシリンダにより浮動
されており第一上下パンチG、Cによシ粉末Jが圧縮さ
れることはない。第3図に)の状態から第一上バンチC
より位相差発達れた第二上パンチHが粉末にの圧縮を開
始すると同時にダイB1コアロッドF1を同速度で下降
する。従って第一第二上パンチ、ダイ、第一下パンチが
同速度で下降することとなり′粉末には相対的には第二
下パンチDにより圧粉される。次に第−上パンチGの下
降限時にダイ、コアロッドの移動を止め第二上パンチH
のみで圧粉成形し、第3図(ホ)の状態となる。かかる
圧粉成形によって粉末には上下方向から同量圧粉され均
一な密度が得られる。次いで第3図(へ)に示す如く第
一、第二上パンチを上昇し、ダイB1コアロッドFをひ
き下げて成形圧粉体りを取り出す。
Next, as shown in FIG. 3), the second lower bunch D remains as it is, and the first lower punch C and powder J are lowered by the first upper punch G. In this case, the first lower bunch C is floated by the cylinder, and the powder J is not compressed by the first upper and lower punches G and C. From the state shown in Figure 3), the first upper bunch C
At the same time as the second upper punch H, which has a more developed phase difference, starts compressing into powder, the die B1 core rod F1 is lowered at the same speed. Therefore, the first and second upper punches, the die, and the first lower punch descend at the same speed, and the powder is relatively compacted by the second lower punch D. Next, the movement of the die and core rod is stopped at the lowering limit of the second upper punch G.
The powder is compacted using a chisel, resulting in the state shown in Figure 3 (E). By this compaction, the powder is compacted in the same amount from above and below, and a uniform density is obtained. Next, as shown in FIG. 3(f), the first and second upper punches are raised, and the core rod F of the die B1 is pulled down to take out the compacted powder body.

かかる製造方法によれば肉厚が薄くかつ圧縮方向が比較
的高い二種の材料による圧粉体も容易に形成されるもの
であり、さらに圧粉成形時には第−第二下パンチが最下
降位置で基台により支承され、上パンチも一つのクラン
クで位相をずらせた2つの上パンチを設けることのみで
よいため、機構的構造的な無理がない。
According to this manufacturing method, a green compact made of two materials with a thin wall thickness and a relatively high compression direction can be easily formed, and furthermore, during compaction, the second and second lower punches are at the lowest position. Since it is only necessary to provide two upper punches that are shifted in phase by one crank, there is no mechanical structural unreasonableness.

以上記した本発明カムシャフトはカムロブを第一、第二
焼結合金材とスリーブにより形成したことによって耐摩
耗性、強度及び結合強度に優れるばか9か、焼結はカム
ロブのみが行なわ尚第二焼結合金はその主たる効果が第
一焼結合金とスリーブとの結合力の向上にあるが、添加
元素が多く高価である第一焼結合金の量を低減し、経済
的な効果もちげうるものであるが、第一第二焼結合金の
配分はそれぞれが圧粉成形できる限界で決定され、通常
0.5zi+以上の肉厚が必要である。
The camshaft of the present invention described above has excellent wear resistance, strength, and bonding strength because the cam lobe is formed of the first and second sintered metal materials and the sleeve. The main effect of the sintered alloy is to improve the bonding strength between the first sintered alloy and the sleeve, but it can also have an economical effect by reducing the amount of the expensive first sintered alloy, which contains many additive elements. However, the distribution of the first and second sintered alloys is determined by the limit of compaction of each, and usually a wall thickness of 0.5zi+ or more is required.

さらに通常のカムシャフトで設けられる油入やギア、カ
ムロブ、ジャーナルの回り止めピン等を設けることはい
うまでもない。
It goes without saying that oil fillers, gears, cam lobes, journal stopper pins, etc., which are provided on a normal camshaft, are also provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図二本発明カムシャフトの実施例断面図。 第2図:第1図A−A断面戦 第3図イルへ:本発明の製造を示す断面図。 付号の説明 1、ステム     2.スリーブ 3、 カムロブ本体  4.第一焼結合金材5、第二焼
結合金材
FIG. 1 is a sectional view of an embodiment of the camshaft of the present invention. Figure 2: Cross-sectional view taken along the line A-A in Figure 1 and Figure 3: Cross-sectional view showing the manufacturing process of the present invention. Explanation of numbers 1, stem 2. Sleeve 3, cam lobe body 4. First sintered alloy material 5, second sintered alloy material

Claims (2)

【特許請求の範囲】[Claims] (1)鋼製パイプによりなるステム1と焼結合金製カム
ロブ3によりなるカムシャフトにおいて、該カムロブ3
が外周側に第一焼結合金材4を配し内周側に鋼製スリー
ブ2を配し、該鋼製スリーブ2と第一焼結合金材4間に
第二焼結合金材4を配してカムロブ3を形成し、前記ス
リーブ2とステム1を結合して形成されるカムシャフト
(1) In a camshaft consisting of a stem 1 made of a steel pipe and a cam lobe 3 made of a sintered metal, the cam lobe 3
A first sintered metal material 4 is arranged on the outer circumference side, a steel sleeve 2 is arranged on the inner circumference side, and a second sintered metal material 4 is arranged between the steel sleeve 2 and the first sintered metal material 4. A camshaft is formed by joining the sleeve 2 and the stem 1 to form a cam lobe 3.
(2)前記第一焼結合金材が液相焼結合金であり前記第
二焼結合金材は液相発生温度が相対的に低い液相焼結合
金であり、前記スリーブ2と第一焼結合金材4、第二焼
結合金材5とが焼結収縮及び拡散により結合されてなる
ことを特徴とする特許 囲第一項記載のカムシャフト0
(2) The first sintered alloy material is a liquid phase sintered alloy, the second sintered alloy material is a liquid phase sintered alloy whose liquid phase generation temperature is relatively low, and the sleeve 2 and the first sintered alloy material are liquid phase sintered alloys. The camshaft 0 described in the first paragraph of the patent encirclement, characterized in that the alloy material 4 and the second sintered alloy material 5 are bonded by sintering shrinkage and diffusion.
JP13843081A 1981-09-04 1981-09-04 Cam shaft Granted JPS5841211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13843081A JPS5841211A (en) 1981-09-04 1981-09-04 Cam shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13843081A JPS5841211A (en) 1981-09-04 1981-09-04 Cam shaft

Publications (2)

Publication Number Publication Date
JPS5841211A true JPS5841211A (en) 1983-03-10
JPH024763B2 JPH024763B2 (en) 1990-01-30

Family

ID=15221781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13843081A Granted JPS5841211A (en) 1981-09-04 1981-09-04 Cam shaft

Country Status (1)

Country Link
JP (1) JPS5841211A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985000865A1 (en) * 1983-08-03 1985-02-28 Nippon Piston Ring Co., Ltd. Cam shaft and method of manufacturing thereof
JPS6043405A (en) * 1983-08-18 1985-03-08 Mitsubishi Metal Corp Production of cam shaft consisting of sintered alloy
JPS6044659A (en) * 1983-08-18 1985-03-09 Mitsubishi Metal Corp Cam shaft
JPS6056856U (en) * 1983-09-28 1985-04-20 日本ピストンリング株式会社 camshaft
JPS60114359U (en) * 1984-01-12 1985-08-02 日本ピストンリング株式会社 camshaft
JPS60121553U (en) * 1984-01-25 1985-08-16 日本ピストンリング株式会社 assembly camshaft
JPS60149556U (en) * 1984-03-16 1985-10-04 日本ピストンリング株式会社 assembly camshaft
DE3907886A1 (en) * 1988-03-17 1989-09-28 Nippon Piston Ring Co Ltd METHOD FOR PRODUCING A CAMSHAFT
DE4201695A1 (en) * 1991-02-13 1992-08-20 Miba Sintermetall Ag METHOD FOR PRODUCING A MOLDED PART BY SINTERING

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985000865A1 (en) * 1983-08-03 1985-02-28 Nippon Piston Ring Co., Ltd. Cam shaft and method of manufacturing thereof
JPS6330962B2 (en) * 1983-08-18 1988-06-21 Mitsubishi Metal Corp
JPS6043405A (en) * 1983-08-18 1985-03-08 Mitsubishi Metal Corp Production of cam shaft consisting of sintered alloy
JPS6044659A (en) * 1983-08-18 1985-03-09 Mitsubishi Metal Corp Cam shaft
JPS6056856U (en) * 1983-09-28 1985-04-20 日本ピストンリング株式会社 camshaft
JPH026291Y2 (en) * 1984-01-12 1990-02-15
JPS60114359U (en) * 1984-01-12 1985-08-02 日本ピストンリング株式会社 camshaft
JPS60121553U (en) * 1984-01-25 1985-08-16 日本ピストンリング株式会社 assembly camshaft
JPH0247799Y2 (en) * 1984-01-25 1990-12-14
JPS60149556U (en) * 1984-03-16 1985-10-04 日本ピストンリング株式会社 assembly camshaft
JPH0242917Y2 (en) * 1984-03-16 1990-11-15
DE3907886A1 (en) * 1988-03-17 1989-09-28 Nippon Piston Ring Co Ltd METHOD FOR PRODUCING A CAMSHAFT
US4969262A (en) * 1988-03-17 1990-11-13 Nippon Piston Ring Co., Ltd. Method of making camshaft
DE4201695A1 (en) * 1991-02-13 1992-08-20 Miba Sintermetall Ag METHOD FOR PRODUCING A MOLDED PART BY SINTERING

Also Published As

Publication number Publication date
JPH024763B2 (en) 1990-01-30

Similar Documents

Publication Publication Date Title
US4969262A (en) Method of making camshaft
JPS60149703A (en) Production of cam shaft
US4556532A (en) Method for manufacturing camshaft
US6148685A (en) Duplex sprocket/gear construction and method of making same
JP6316588B2 (en) Combining valve and valve seat for internal combustion engine
JPS5841211A (en) Cam shaft
EP1052435B1 (en) Piston ring carrier with cooling cavity and method of manufacturing the same
GB2122275A (en) Sintered journals
JPS6039105A (en) Cam shaft and its production
CN104550969B (en) Combined sintering and connecting method of ends of power metallurgy camshaft
JPH025704A (en) Intake/exhaust valve for engine and manufacture thereof
US5016348A (en) Process for the manufacture of a tubular crankshaft
JPS6246803Y2 (en)
JPS631080Y2 (en)
KR100922776B1 (en) Combination Structure Of Light Weight Cam Shaft Using Thermal Expansion Coefficient
JPS6132082Y2 (en)
JPS6229610Y2 (en)
CN112855304B (en) Camshaft signal panel combined structure and preparation method thereof
JPS6132081Y2 (en)
KR101424007B1 (en) A sintered insert ring joined with oil gallery in diesel engine piston, method for manufacturing it, and piston comprising it
JP2001107802A (en) Piston ring composite wear resisting ring with cooling cavity excellent in high temperature wear resistance and thermal conductivity
JPH027331Y2 (en)
JPS5850355A (en) Cam shaft
JPS6132083Y2 (en)
JP2560402B2 (en) Internal combustion engine pistons