JPH0266987A - Flat package type semiconductor laser light - Google Patents

Flat package type semiconductor laser light

Info

Publication number
JPH0266987A
JPH0266987A JP63219372A JP21937288A JPH0266987A JP H0266987 A JPH0266987 A JP H0266987A JP 63219372 A JP63219372 A JP 63219372A JP 21937288 A JP21937288 A JP 21937288A JP H0266987 A JPH0266987 A JP H0266987A
Authority
JP
Japan
Prior art keywords
semiconductor laser
optical
optical fiber
cylindrical unit
flat package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63219372A
Other languages
Japanese (ja)
Other versions
JP2833760B2 (en
Inventor
Yuichi Odagiri
小田切 雄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63219372A priority Critical patent/JP2833760B2/en
Publication of JPH0266987A publication Critical patent/JPH0266987A/en
Application granted granted Critical
Publication of JP2833760B2 publication Critical patent/JP2833760B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To reduce coupling Ioss without deviation of an axis in aligning an optical axis by using a constitution wherein a can-shaped package, a lens holder and the end part of an optical fiber are formed as a cylindrical unit, and a cooling element and the cylindrical unit are tightly fixed with a heat sink block having high heat conductivity. CONSTITUTION:A cylindrical unit 10 is constituted with the following parts: a light source part 30 wherein a semiconductor laser element 11 and a photodetector 12 for detecting monitoring light are housed and a canshaped package 13 is fixed; a coupling part 31 having a scan holder 15 housing a coupling lens; and optical-fiber end part 32 which has a ferrule 17 that protects and reinforces an optical fiber 16 and its end part. The boundary parts of the light source 30 and the coupling part 31 are welded with YAG laser. The cylindrical unit 10 in a flat package 19 is tightly fixed to a cooling element 21 through a heat sink block 20 wherein the surface of a metal having high heat conductivity, e.g., copper without oxygen and aluminum, is plated with gold. A solder 22 is used for fixing both parts. In this way, the temporal deviation of an optical axis can be disregarded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光伝送システムに用いられる光源に関し、特に
周囲温度の影響を受けずに半導体レーザの温度を安定に
保つことが可能なフラットパッケージ形半導体レーザ光
モジュールに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a light source used in an optical transmission system, and in particular to a flat package type light source that can maintain a stable temperature of a semiconductor laser without being affected by ambient temperature. This invention relates to a semiconductor laser optical module.

〔従来の技術〕[Conventional technology]

第4図は従来のフラットパッケージ形半導体レーザ光モ
ジュールの断面図である。図において、101はフラッ
トパッケージ、102はフタ。
FIG. 4 is a sectional view of a conventional flat package type semiconductor laser optical module. In the figure, 101 is a flat package and 102 is a lid.

103は半導体レーザ素子、104はヒートシンク、1
05はモニタ光検出用受光素子、106は半導体レーザ
素子103からの出力光を結合するための光学系である
先球光ファイバ、107は先球光ハアイバ106を固定
するための半田、108は先球光ファイバ保護とフラッ
トパッケージ101内の気密保持のためのスリーブ、1
09はスリーブ108の固定と気密保持のための半田、
110は光ファイバのジャケラ)、111は半導体レー
ザ素子103の温度検出用のサーミスタ素子。
103 is a semiconductor laser element, 104 is a heat sink, 1
05 is a light receiving element for detecting monitor light, 106 is a tip optical fiber which is an optical system for coupling the output light from the semiconductor laser element 103, 107 is solder for fixing the tip optical fiber 106, and 108 is a tip optical fiber. Sleeve for protecting the spherical optical fiber and maintaining airtightness inside the flat package 101, 1
09 is solder for fixing the sleeve 108 and keeping it airtight;
110 is an optical fiber jacket), and 111 is a thermistor element for detecting the temperature of the semiconductor laser element 103.

112は冷却素子、113はヒートシンクブロックであ
る。
112 is a cooling element, and 113 is a heat sink block.

図においては便宜上電気配線を省略した。In the figure, electrical wiring is omitted for convenience.

第4図のように従来のフラットパッケージ形半導体レー
ザ光モジ−−ルは、ヒートシンクブロック113上に光
モジュールの主要部品である半導体レーザ素子103.
受光素子105.先球光ファイバ106および、サーミ
スタ素子111が実装されている。一般にこのような光
モジュールでは半導体レーザ素子103からの光出力、
出力光の中心波長が周囲温度の変化に関係なくほぼ一定
となるように制御されている。光出力の安定化に関して
は、 ■ 半導体レーザ素子103からの出力光を受光素子1
05が検出して、半導体レーザ素子103の駆動電流を
増減させながら光出力を一定に保つ方法と、 ■ 半導体レーザ素子103の温度をサーミスタ素子1
11が電気抵抗として検出し、その抵抗値が一定に保て
るように冷却素子112への電流を変化させる方法 のいづれかが採用されている。中心波長の安定化に関し
ては、■の方法が広く用いられている。これは、半導体
レーザ素子103の中心波長と光ファイバの零分散波長
との拡がりを最小に抑えて伝送距離を一層のばすための
システムニーズに基づいている。
As shown in FIG. 4, a conventional flat package type semiconductor laser optical module has a semiconductor laser element 103, which is a main component of the optical module, mounted on a heat sink block 113.
Light receiving element 105. A tip optical fiber 106 and a thermistor element 111 are mounted. Generally, in such an optical module, the optical output from the semiconductor laser element 103,
The center wavelength of the output light is controlled to be approximately constant regardless of changes in ambient temperature. Regarding the stabilization of the optical output, ■ The output light from the semiconductor laser element 103 is
05 detects the temperature of the semiconductor laser element 103 and keeps the optical output constant while increasing/decreasing the driving current of the semiconductor laser element 103.
11 is detected as an electrical resistance, and the current to the cooling element 112 is changed so that the resistance value is kept constant. Regarding stabilization of the center wavelength, method (2) is widely used. This is based on the system needs to further extend the transmission distance by minimizing the spread between the center wavelength of the semiconductor laser element 103 and the zero dispersion wavelength of the optical fiber.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような構成のフラットパッケージ形光モジュール
では、半導体レーザ素子103と先球光ファイバ106
を光学的に調整したのち、半田107を100℃以上に
加熱して先球光ファイバ106を固定する方法が採用さ
れている。この場合、−時的にせよヒートシンクブロッ
ク113全体を100℃程度にまで予備加熱するため、
温度分布の差により半導体レーザ素子103に構造的な
歪が生ずる。この歪は室温に戻ったときに解除されるが
、このとき半導体レーザ素子103と先球光ファイバ1
06との光学的な調整は最適な状態からずれてしまう。
In the flat package optical module configured as described above, the semiconductor laser element 103 and the tip optical fiber 106
A method is adopted in which the tip optical fiber 106 is fixed by optically adjusting the solder 107 and then heating the solder 107 to 100° C. or higher. In this case, in order to preheat the entire heat sink block 113 to about 100°C,
Structural distortion occurs in the semiconductor laser element 103 due to the difference in temperature distribution. This strain is released when the temperature returns to room temperature, but at this time the semiconductor laser element 103 and the tip optical fiber 1
The optical adjustment with 06 will deviate from the optimum state.

したがって先球光ファイバ106の光学系では例えば単
一モードファイバ系の場合に、調整レベルでは結合効率
を1dB台に出来るにもかかわらず、光軸からのずれに
ともなう光出力劣化が大きいために結合効率を意図的に
劣化させてずれ量に対する光出力劣化の許容範囲を拡く
とれるようにしである。しかしながら、半田107が冷
えて固まったあとに先球光ファイバ106に機械的なス
トレスが加わると、半田107に内部応力に作用してク
リープ現象を生じる。このため半導体レーザ素子103
と先球光ファイバ106との相対位置関係がずれること
となり、経時的には光ファイバからの光出力が徐々に低
下するという問題があった。
Therefore, in the optical system of the optical fiber 106, for example, in the case of a single mode fiber system, although the coupling efficiency can be reduced to the 1 dB level at the adjustment level, the optical output deterioration due to the deviation from the optical axis is large. This is to intentionally degrade the efficiency so that the allowable range of optical output degradation relative to the amount of deviation can be expanded. However, when mechanical stress is applied to the tip optical fiber 106 after the solder 107 has cooled and hardened, internal stress acts on the solder 107, causing a creep phenomenon. Therefore, the semiconductor laser element 103
The relative positional relationship between the optical fiber 106 and the optical fiber 106 becomes deviated, and there is a problem in that the optical output from the optical fiber gradually decreases over time.

この発明は、このような問題を解決するため、光軸固定
時に軸ずれをおこすことなくしかも長期的に光学特性が
安定となる半導体レーザ光モジュールを提供することを
目的としている。
In order to solve these problems, it is an object of the present invention to provide a semiconductor laser optical module that does not cause axis deviation when the optical axis is fixed and has stable optical characteristics over a long period of time.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、半導体レーザ素子とモニタ光検出用受
光素子を内蔵したキャン形パッケージと、光ファイバ結
合用の光学系を実装したレンズホルダと、光ファイバ端
末部とが、光軸に沿って円筒状ユニットとして構成され
ており、しかも冷却素子と円筒状ユニットとの間を熱伝
導性の高いヒートシンクブロックで密着固定したことを
特徴としたフラットパッケージ形半導体レーザ光モジュ
ールが得られる。
According to the present invention, a can-shaped package containing a semiconductor laser element and a light receiving element for detecting monitor light, a lens holder mounting an optical system for coupling optical fibers, and an optical fiber terminal portion are arranged along the optical axis. A flat package type semiconductor laser optical module is obtained, which is configured as a cylindrical unit and is characterized in that the cooling element and the cylindrical unit are closely fixed by a heat sink block with high thermal conductivity.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の縦断面図であり、第2図は
その横断面図、さらに第3図は本発明の主要構成要素で
ある円筒状ユニットの縦断面図である。
FIG. 1 is a longitudinal cross-sectional view of one embodiment of the present invention, FIG. 2 is a cross-sectional view thereof, and FIG. 3 is a vertical cross-sectional view of a cylindrical unit which is a main component of the present invention.

図において、円筒状ユニット10は3つの部分で構成さ
れている。すなわち第3図に示すように半導体レーザ素
子11とモニタ光検出用受光素子12を内蔵してキャン
形パッケージ13を固定している光源部30と、結合用
のレンズ14を内蔵したレンズホルダ15を有する結合
部31と、光ファイバ16と光ファイバ16の端面を保
護し且つ強化するフェルール17を有する光ファイバ端
末部32である。光源部30と結合部31とはその境界
部をYAGレーザで溶接しである。図中に塗りつぶされ
た部分が溶接部33である。レンズ14には半導体レー
ザ素子11側に先球加工された集束性ロッドレンズを使
用した。結合部31と光ファイバ端末部32とはサポー
ト18を介してYAGレーザ溶接をしである。このよう
に円筒状ユニット10はYAGレーザ溶接の可能なステ
ンレス材料やコバール材料でまわりが覆われている。
In the figure, the cylindrical unit 10 is composed of three parts. In other words, as shown in FIG. 3, a light source section 30 containing a semiconductor laser element 11 and a light receiving element 12 for detecting monitor light and fixing a can-shaped package 13, and a lens holder 15 containing a coupling lens 14 are included. and a ferrule 17 that protects and strengthens the optical fiber 16 and the end face of the optical fiber 16. The light source section 30 and the coupling section 31 are welded at their boundary using a YAG laser. The shaded portion in the figure is the welded portion 33. As the lens 14, a focusing rod lens whose tip is rounded on the side of the semiconductor laser element 11 is used. The coupling portion 31 and the optical fiber terminal portion 32 are welded by YAG laser via the support 18. In this way, the cylindrical unit 10 is covered with a stainless steel material or Kovar material that can be welded by YAG laser.

フラットパッケージ19内での円筒状ユニットIOは熱
伝導性の高い金属例えば無酸素銅やアルミニウムに表面
を金メツキしたヒートシンクブロック20を介して冷却
素子21と密着固定されている。双方の固定には半田2
2を用いた。これによりヒートシンクブロック20と半
導体レーザ素子11の温度差は±2℃以内にはおさえる
ことができる。温度検出用にはサーミスタ素子23をヒ
ートシンクブG1−7り20中に挿入し固定した。
The cylindrical unit IO within the flat package 19 is closely fixed to a cooling element 21 via a heat sink block 20 made of a highly thermally conductive metal such as oxygen-free copper or aluminum and plated with gold. Solder 2 to fix both
2 was used. Thereby, the temperature difference between the heat sink block 20 and the semiconductor laser element 11 can be suppressed to within ±2°C. For temperature detection, a thermistor element 23 was inserted into the heat sink G1-7 20 and fixed.

周囲温度が変化すると、サーミスタ素子23が温度を検
出しフラツトパッケージ19外部のATC回路(オート
マチック・テンブリチャ・コントロールの略)によって
サーミスタ素子23の抵抗が設定値からずれないように
冷却素子21に電流を流す。これによって冷却素子21
は発熱冷却を繰り返す。
When the ambient temperature changes, the thermistor element 23 detects the temperature, and an ATC circuit (abbreviation for automatic temperature control) outside the flat package 19 applies current to the cooling element 21 so that the resistance of the thermistor element 23 does not deviate from the set value. flow. As a result, the cooling element 21
repeats exothermic cooling.

以上説明したように本発明の実施例では、外部からの温
度変化に対して光軸ずれの小さい円筒状ユニッ)10内
に光モジュールの主要構成要素を殆んど含んでいるため
経時的な光軸ずれを無視できる。
As explained above, in the embodiment of the present invention, most of the main components of the optical module are contained within the cylindrical unit (10) which has a small optical axis shift with respect to temperature changes from the outside, so that the light changes over time. Axis misalignment can be ignored.

すなわち光源部30.結合部31.光ファイバ端末部3
2が光軸を中心とする同心円構造をしているため、光軸
に垂直な方向の膨張収縮は従来例と違って光軸ずれとは
ならない。さらにレンズ14として集束性ロッドレンズ
を用いているため光軸方向のずれに対しても緩くなって
いる。また各接続部分にYAGレーザ溶接を用いている
ためクリープ量の問題がない。熱伝導性については円筒
状ユニット10を半田20を用いてヒートシンクブロッ
ク20に固定しているため、冷却素子21との熱のやり
とりが速くでき、したがって周囲環境の変化に対して即
座に対応できる。
That is, the light source section 30. Connecting portion 31. Optical fiber terminal section 3
2 has a concentric structure centered on the optical axis, expansion and contraction in the direction perpendicular to the optical axis does not result in optical axis deviation, unlike in the conventional example. Furthermore, since a converging rod lens is used as the lens 14, it is tolerant to deviations in the optical axis direction. Furthermore, since YAG laser welding is used for each connection part, there is no problem with the amount of creep. Regarding thermal conductivity, since the cylindrical unit 10 is fixed to the heat sink block 20 using solder 20, heat can be exchanged quickly with the cooling element 21, and therefore it can respond immediately to changes in the surrounding environment.

本発明は以上の代表的な実施例の他にいくつかの変形が
考えられる。
The present invention may be modified in several ways in addition to the above-described typical embodiments.

冷却素子21上の円筒状ユニット10は熱容量を小さく
できればできる程、冷却素子21の消費電力を低く抑え
ることができる。そこで以上の実施例では外径を同じと
したが、光源部30.結合部31.光ファイバ端末部3
2の外径は任意でよい。YAGレーザ溶接する以外の材
料はステンレスやコバール以外の材料でもよい。
The smaller the heat capacity of the cylindrical unit 10 on the cooling element 21 is, the lower the power consumption of the cooling element 21 can be. Therefore, in the above embodiments, the outer diameters are the same, but the light source section 30. Connecting portion 31. Optical fiber terminal section 3
The outer diameter of 2 may be arbitrary. Materials other than YAG laser welding may be materials other than stainless steel or Kovar.

また以上の実施例ではヒートシンクブロックとして半円
状のものを用いたが、冷却素子21と接する側の面が平
坦であれば形状は任意でよいことは言うまでもない。
Further, in the above embodiments, a semicircular heat sink block was used, but it goes without saying that any shape may be used as long as the surface in contact with the cooling element 21 is flat.

また以上の実施例では、光ファイバ端末部32に光ファ
イバを斜め研磨したものを用いたが、集束性ロッドレン
ズと光ファイバを組合わせたレンズ付光ファイバにした
ものを用いてもよい。この場合には光ファイバ端末部3
2を固定する際の許容光軸ずれ量が拡がるためYAGレ
ーザ溶接時のずれ量が1〜2μmあったとしても光出力
劣化には殆んど問題なくなる。
Further, in the above embodiments, an obliquely polished optical fiber is used as the optical fiber end portion 32, but an optical fiber with a lens, which is a combination of a focusing rod lens and an optical fiber, may also be used. In this case, the optical fiber terminal section 3
Since the allowable amount of optical axis deviation when fixing 2 is expanded, even if the amount of deviation during YAG laser welding is 1 to 2 μm, there is almost no problem with optical output deterioration.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、光軸合わせ時に軸
ずれをおこすことがなく結合損失が小さい光モジュール
が得られる。
As described above, according to the present invention, it is possible to obtain an optical module that does not cause axis misalignment during alignment of optical axes and has low coupling loss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の縦断面図、第2図は第1図
の横断面図、第3図は本発明の主要構成要素である円筒
状ユニットの縦面図、第4図は従来例の断面図である。 10・・・・・・円筒状ユニット、11・・・・・・半
導体装置ザ素子、12・・・・・・モニタ光検出用受光
素子、13・・・・・・キャン形パッケージ、14・・
・・・・レンズ、15・・・・・レンズホルダ、16・
・・・・・光ファイバ、17・・・・・・フェルール、
18・・・・・・サポート、19・・・・・・フラット
パッケージ、20・・・・・・ヒートシンクブロック、
21・・・・・・冷却素子、22・・・・・・半田、2
3・・・・・・サーミスタ素子、30・・・・・・光源
部、31・・・・・・結合部、32・・・・・・光ファ
イバ端末部、33・・・・・・溶接部、101・・・・
・・フラットパッケージ、102・・・・・・フタ、1
03・・・・・・半導体レーザ素子、104・・・・・
・ヒートシンク、105・・・・・・モニタ光検出用受
光素子、106・・・・・・先球光ファイバ、107・
・・・・・半田、108・・・・・・スリーブ、109
・・・・・・半田、110・・・・・・ジャケット、1
11・・・・・・サーミスタ素子、112・・・・・・
冷却素子、113・・・・・・ヒートシンクブロック。 代理人 弁理士  内 原   晋
FIG. 1 is a longitudinal cross-sectional view of one embodiment of the present invention, FIG. 2 is a cross-sectional view of FIG. 1, FIG. 3 is a vertical cross-sectional view of a cylindrical unit that is the main component of the present invention, and FIG. is a sectional view of a conventional example. DESCRIPTION OF SYMBOLS 10... Cylindrical unit, 11... Semiconductor device element, 12... Light receiving element for monitor light detection, 13... Can-shaped package, 14...・
... Lens, 15 ... Lens holder, 16.
...Optical fiber, 17...Ferrule,
18...Support, 19...Flat package, 20...Heat sink block,
21... Cooling element, 22... Solder, 2
3... Thermistor element, 30... Light source section, 31... Coupling section, 32... Optical fiber terminal section, 33... Welding Department, 101...
...Flat package, 102...Lid, 1
03... Semiconductor laser element, 104...
・Heat sink, 105... Light receiving element for monitor light detection, 106... Tip optical fiber, 107...
... Solder, 108 ... Sleeve, 109
...Solder, 110 ...Jacket, 1
11... Thermistor element, 112...
Cooling element, 113...Heat sink block. Agent Patent Attorney Susumu Uchihara

Claims (2)

【特許請求の範囲】[Claims] (1)半導体レーザ素子の温度を制御する冷却素子を有
するフラットパッケージ形光モジュールにおいて、前記
半導体レーザ素子及びモニタ光検出用受光素子を内蔵し
たキャン形のパッケージと、前記半導体レーザ素子から
の出力光を光ファイバに結合するための光学系が実装さ
れたレンズホルダと、前記光学系で集束された前記出力
光が入射する光ファイバを実装した光ファイバ端末部と
が、光軸に沿って円筒状ユニットとして構成され、且つ
前記冷却素子と前記円筒状ユニットとの間を熱伝導性の
高いヒートシンクブロックで密着固定したことを特徴と
したフラットパッケージ形半導体レーザ光モジュール。
(1) A flat package optical module having a cooling element for controlling the temperature of a semiconductor laser element, which includes a can-shaped package containing the semiconductor laser element and a light receiving element for detecting monitor light, and output light from the semiconductor laser element. A lens holder mounted with an optical system for coupling the output light to an optical fiber, and an optical fiber terminal section mounted with an optical fiber into which the output light focused by the optical system enters, are arranged in a cylindrical shape along the optical axis. 1. A flat package type semiconductor laser optical module configured as a unit, and characterized in that the cooling element and the cylindrical unit are tightly fixed by a heat sink block having high thermal conductivity.
(2)上記光ファイバ端末部には前記光学系の一部を組
合わせたレンズ付光ファイバを使用したことを特徴とす
る特許請求の範囲第(1)項記載のフラットパッケージ
形半導体レーザ光モジュール。
(2) The flat package type semiconductor laser optical module according to claim 1, characterized in that the optical fiber terminal part uses an optical fiber with a lens combined with a part of the optical system. .
JP63219372A 1988-08-31 1988-08-31 Flat package type semiconductor laser optical module Expired - Lifetime JP2833760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63219372A JP2833760B2 (en) 1988-08-31 1988-08-31 Flat package type semiconductor laser optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63219372A JP2833760B2 (en) 1988-08-31 1988-08-31 Flat package type semiconductor laser optical module

Publications (2)

Publication Number Publication Date
JPH0266987A true JPH0266987A (en) 1990-03-07
JP2833760B2 JP2833760B2 (en) 1998-12-09

Family

ID=16734385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63219372A Expired - Lifetime JP2833760B2 (en) 1988-08-31 1988-08-31 Flat package type semiconductor laser optical module

Country Status (1)

Country Link
JP (1) JP2833760B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5706302A (en) * 1995-03-14 1998-01-06 Nec Corporation Temperature control type semiconductor laser device
US5960142A (en) * 1996-08-13 1999-09-28 Nec Corporation Peltier cooler and semiconductor laser module using Peltier cooler

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166660U (en) * 1986-03-06 1987-10-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166660U (en) * 1986-03-06 1987-10-22

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5706302A (en) * 1995-03-14 1998-01-06 Nec Corporation Temperature control type semiconductor laser device
US5960142A (en) * 1996-08-13 1999-09-28 Nec Corporation Peltier cooler and semiconductor laser module using Peltier cooler

Also Published As

Publication number Publication date
JP2833760B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
US5026138A (en) Multi-fiber alignment package for tilted facet optoelectronic components
JP3488159B2 (en) Alignment device for light source and optical fiber and light source module having the same
US4752109A (en) Optoelectronics package for a semiconductor laser
KR0171374B1 (en) Laser module with focusing lense and fixing method of the focusing lense
US5706302A (en) Temperature control type semiconductor laser device
US20020009106A1 (en) Semiconductor laser diode module
US5247530A (en) Laser diode module
EP0824281B1 (en) Peltier cooler and use in a semiconductor laser module
JP3518491B2 (en) Optical coupling device
US4818053A (en) Optical bench for a semiconductor laser and method
US6178188B1 (en) Laser assembly platform with silicon base
US4944569A (en) Multi-fiber alignment package for optoelectronic components
JPH0266987A (en) Flat package type semiconductor laser light
JP2001215372A (en) Laser diode module
JPH11295560A (en) Module for optical communication and inspection method therefor
JPS61226989A (en) Dual-in-line package type laser diode module
JPH06105819B2 (en) Semiconductor laser module
JP3720650B2 (en) Optical coupling device
KR200210799Y1 (en) Laser diode module device for optical communication
JP2675927B2 (en) Optical semiconductor element fixing method
JP2003309318A (en) Method for starting semiconductor laser device and optical communication apparatus using semiconductor laser device
JP2864587B2 (en) Semiconductor laser module
JPH01220491A (en) Semiconductor laser device
JPH0812311B2 (en) Optical coupler
JPS61200514A (en) Dual in-line package type laser diode module

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071002

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10

EXPY Cancellation because of completion of term