JPH0266712A - Thin film magnetic head and its manufacture - Google Patents

Thin film magnetic head and its manufacture

Info

Publication number
JPH0266712A
JPH0266712A JP21636688A JP21636688A JPH0266712A JP H0266712 A JPH0266712 A JP H0266712A JP 21636688 A JP21636688 A JP 21636688A JP 21636688 A JP21636688 A JP 21636688A JP H0266712 A JPH0266712 A JP H0266712A
Authority
JP
Japan
Prior art keywords
substrate
film
magnetic layer
layer
bias voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21636688A
Other languages
Japanese (ja)
Inventor
Shinichi Inoue
真一 井上
Toru Matsuda
徹 松田
Norifumi Makino
憲史 牧野
Fujihiro Itou
伊藤 富士弘
Yutaka Kusano
草野 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP21636688A priority Critical patent/JPH0266712A/en
Publication of JPH0266712A publication Critical patent/JPH0266712A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To equally keep the characteristic of a magnetic layer and to prevent the warp and crack of a substrate by impressing a direct current bias voltage through a conductive metallic film to cover the whole surface of the substrate, and controlling the stress between a lower part magnetic layer and a substrate. CONSTITUTION:A metallic film 2 is formed on a substrate 1 and an upper laminating construction from a lower part magnetic layer 3 is formed on the film 2. When a direct current bias voltage is impressed through a jig by a base 10 and a flange 11, it is brought into contact with the flange 11 and both are electrically coupled. Thereafter, together with a jig, the substrate 1 is fitted to a sputter device and a sendust film which goes to the layer 3 is sputtered. At such a time, while a bias voltage is impressed through a jig and the film 2 to the substrate 1, the film is formed. Thereafter, on the layer 3, a coil due to conductive layers 4a and 4b is formed, after the insulating film is formed, a magnetic contact hole 5 and a magnetic gap 6 are provided and continuously, an upper part magnetic layer 7 is formed.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は薄膜磁気ヘッド、特に基板上に磁路を構成する
上部および下部磁性層とコイルを構成する導電層を薄膜
形成して成る薄膜磁気ヘッドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a thin film magnetic head, particularly a thin film magnetic head formed by forming upper and lower magnetic layers constituting a magnetic path and a conductive layer constituting a coil as thin films on a substrate. It is related to the head.

[従来の技術] 薄膜磁気ヘッドは、磁路およびコイルなどの各構成部材
を全て薄膜形成法によって形成するため、大量生産に向
ぎ、また小型軽量化が容易であるという利点を有する。
[Prior Art] Thin-film magnetic heads have the advantage of being suitable for mass production and being easy to reduce in size and weight because all of the constituent members such as magnetic paths and coils are formed by the thin-film forming method.

従来の薄膜磁気ヘッドの構造を第5図に示す。The structure of a conventional thin film magnetic head is shown in FIG.

第5図において符号1はガラスなどから成る基板で、こ
の基板上に図示のような上部構造が薄膜堆積法を用いて
構成される。
In FIG. 5, reference numeral 1 denotes a substrate made of glass or the like, and an upper structure as shown is constructed on this substrate using a thin film deposition method.

まず、基板1上にはセンダスト(Fe−All −Si
合金)などによる下部磁性層3を5〜15μmの厚みに
成膜し、続いて5i02などの絶縁層を介してコイルと
なる導電層4a、4bを形成する。
First, sendust (Fe-All-Si
A lower magnetic layer 3 made of 5i02 or the like is formed to a thickness of 5 to 15 .mu.m, and then conductive layers 4a and 4b, which become coils, are formed with an insulating layer 5i02 or the like interposed therebetween.

導電層4aのコイル部分は、螺旋状のパターンとなるよ
うにエツチングなどの手法により整形され、導電層4b
は導電層4aの螺旋状のパターンの中央の端部をヘッド
後方に導出する。導電層4a、4bの中央の結合部分を
除き、重複部分は少なくとも絶縁層によって電気的に遮
断される。
The coil portion of the conductive layer 4a is shaped into a spiral pattern by a method such as etching, and the coil portion of the conductive layer 4b is shaped into a spiral pattern.
The central end of the spiral pattern of the conductive layer 4a is led out to the rear of the head. Except for the central joint portion of the conductive layers 4a, 4b, the overlapping portions are electrically isolated by at least the insulating layer.

さらにS i O2による絶縁層(不図示)を導電層4
a、4b上に形成し、この絶縁層に上部磁性層7と下部
磁性層3を磁気的に結合するための磁気コンタクトホー
ル5を形成する。また、この時同時に上部磁性層7の形
成位置に磁気ギャップ6を形成する。
Furthermore, an insulating layer (not shown) made of SiO2 is formed as a conductive layer 4.
a and 4b, and a magnetic contact hole 5 for magnetically coupling the upper magnetic layer 7 and the lower magnetic layer 3 is formed in this insulating layer. Furthermore, at the same time, a magnetic gap 6 is formed at the position where the upper magnetic layer 7 is formed.

その後、磁気コンタクトホール5を介して下部磁性層3
に結合され、また磁気ギャップ6を介して下部磁性層3
と対向する上部磁性層7を成膜し、その後以上の積層構
造の上に保護層(不図示)を形成してウェファプロセス
を終了する。第5図は基板1上に2チャンネル分のへラ
ドチップを形成した構造を示している。
After that, the lower magnetic layer 3 is connected to the lower magnetic layer 3 through the magnetic contact hole 5.
is coupled to the lower magnetic layer 3 via the magnetic gap 6.
The upper magnetic layer 7 facing the wafer is formed, and then a protective layer (not shown) is formed on the above laminated structure to complete the wafer process. FIG. 5 shows a structure in which Herad chips for two channels are formed on the substrate 1.

[発明が解決しようとする課題] 上部磁性層7あるいは下部磁性層3としてセンダストな
どの金属材料を用いるのは、高保磁力の磁気記録媒体に
対応するためであるが、第5図のような構造において下
部磁性層3としてのセンダスト膜をrfマグネトロン方
式のスパッタ装置で成膜する場合、センダストの熱膨張
係数が基板1の熱膨張係数よりも大きいため、両者の間
に引張あるいは圧縮応力が発生する。特に膜厚が厚くな
ったり基板温度を300℃程度に保って成膜すると、そ
の傾向が顕著になる。この引張応力によって基板の反り
、割れなどが発生することがあり、これによってヘッド
製造プロセスの歩留りが非常に低くなるという問題があ
った。
[Problems to be Solved by the Invention] The reason why a metal material such as sendust is used as the upper magnetic layer 7 or the lower magnetic layer 3 is to correspond to a magnetic recording medium with a high coercive force. When the sendust film as the lower magnetic layer 3 is formed using an RF magnetron sputtering device, the thermal expansion coefficient of the sendust is larger than that of the substrate 1, so tensile or compressive stress is generated between the two. . This tendency becomes particularly noticeable when the film thickness becomes thick or when the film is formed while maintaining the substrate temperature at about 300°C. This tensile stress may cause warping or cracking of the substrate, which poses a problem of extremely low yield in the head manufacturing process.

基板1の反りを制御する方法の一つとして、バイアスス
パッタ法が知られている。これは基板1に直流バイアス
電圧を印加しながら成膜する方法で、いわゆる杭打ち効
果によって膜に発生する応力制御が可能となっている。
A bias sputtering method is known as one of the methods for controlling the warpage of the substrate 1. This is a method of forming a film while applying a DC bias voltage to the substrate 1, and it is possible to control the stress generated in the film by the so-called piling effect.

この方法によれば、圧縮応力や引張応力を制御しながら
成膜を行なえるため、基板1の反りや割れを防止できる
According to this method, film formation can be performed while controlling compressive stress and tensile stress, so that warping and cracking of the substrate 1 can be prevented.

ところが、基板1としてはガラスなどの誘電体が用いら
れるが、このような材質では成膜の初期段階において所
望のバイアス電圧な印加できない、あるいは成膜中にお
ける接触不良による不均一なバイアス印加により基板の
反り制御が困難になるという問題があった。また、同じ
理由で、成膜中のバイアス電流の変動に起因する磁性材
の組成変化などによって、ヘットの変換特性に問題を生
じたり、ヘッドチップの表面粗さが不均一になるなどの
問題もあった。
However, although a dielectric material such as glass is used as the substrate 1, with such a material, it is not possible to apply the desired bias voltage at the initial stage of film formation, or the substrate may be damaged due to uneven bias application due to poor contact during film formation. There was a problem in that it became difficult to control the warpage. For the same reason, changes in the composition of the magnetic material caused by fluctuations in the bias current during film formation can cause problems with the conversion characteristics of the head and uneven surface roughness of the head chip. there were.

本発明の課題は以上の問題を解決し、ヘッド基板上に成
膜を行なう場合、成膜工程を通して常時均一な直流バイ
アス電圧を印加し、材料の間の応力を所望に制御し、基
板の反りや割れを防止できるようにすることである。
The object of the present invention is to solve the above problems, and when forming a film on a head substrate, apply a uniform DC bias voltage at all times throughout the film forming process, control stress between materials as desired, and prevent warping of the substrate. This is to prevent cracking and cracking.

[課題を解決するための手段コ 以上の課題を解決するために、本発明においては、基板
上に磁路を構成する上部および下部磁性層とコイルを構
成する導電層を薄膜形成して成る薄膜磁気ヘッドおよび
その製造方法において、前記基板上に下部磁性層をスパ
ッタするに先立ち、まず基板上に基板のほぼ全面を覆う
ように導電金属膜を成膜し、前記下部磁性層の成膜工程
においては前記導電金属膜を介して直流バイアス電圧を
印加しつつ下部磁性層および基板間の応力を制御する構
成を採用した。
[Means for Solving the Problems] In order to solve the above problems, the present invention uses a thin film formed by forming upper and lower magnetic layers forming a magnetic path and a conductive layer forming a coil on a substrate. In a magnetic head and a manufacturing method thereof, prior to sputtering a lower magnetic layer on the substrate, a conductive metal film is first formed on the substrate so as to cover almost the entire surface of the substrate, and in the step of forming the lower magnetic layer, adopted a configuration in which the stress between the lower magnetic layer and the substrate is controlled while applying a DC bias voltage through the conductive metal film.

[作 用] 以上の構成によれば、基板のほぼ全面に設けられた導電
膜を介して下部磁性層の成膜中、直流バイアス電圧を均
一に印加することができ、下部磁性層および基板間の応
力調節を確実に行なえる。
[Function] According to the above configuration, a DC bias voltage can be uniformly applied during the film formation of the lower magnetic layer through the conductive film provided on almost the entire surface of the substrate, and the direct current bias voltage can be uniformly applied between the lower magnetic layer and the substrate. The stress can be adjusted reliably.

また、均一な直流バイアス電圧印加により磁性層の特性
を均一に保つことができる。
Further, the characteristics of the magnetic layer can be kept uniform by applying a uniform DC bias voltage.

[実施例] 以下、図面に示す実施例に基づき、本発明の詳細な説明
する。
[Example] Hereinafter, the present invention will be described in detail based on the example shown in the drawings.

第1図は本発明を採用した薄膜磁気ヘッドの構造を示し
ている。第1図の薄膜磁気ヘッドの全体構造は、第5図
の従来構造とほぼ同じである。第1図で第5図と異なっ
ているのは基板1と下部磁性層3の間に導電性の金属I
I@2が設けられている点のみで、その他の構造、すな
わち下部磁性層3より上の上部構造およびその製造工程
は第5図と全く同じである。
FIG. 1 shows the structure of a thin film magnetic head employing the present invention. The overall structure of the thin film magnetic head shown in FIG. 1 is almost the same as the conventional structure shown in FIG. The difference between FIG. 1 and FIG. 5 is that there is a conductive metal I between the substrate 1 and the lower magnetic layer 3.
Except for the provision of I@2, the other structures, ie, the upper structure above the lower magnetic layer 3 and the manufacturing process thereof, are exactly the same as in FIG.

次に第1図の薄膜磁気ヘッドの製造工程につき説明する
Next, the manufacturing process of the thin film magnetic head shown in FIG. 1 will be explained.

まず、基板1上に金属II! 2を形成する。この金属
膜は、蒸着もしくはスパッタによって50〜200nm
程度堆積される。この金属II! 2は基板1の全面に
形成されるが、膜厚は薄いので膜はがれや応力は特に大
きな問題とならない。
First, metal II! form 2. This metal film is formed by vapor deposition or sputtering to a thickness of 50 to 200 nm.
Deposited to a certain extent. This metal II! 2 is formed on the entire surface of the substrate 1, but since the film thickness is thin, film peeling and stress do not pose any particular problems.

続いて、この金属膜2の上に従来と全く同様の工程によ
って下部磁性層3から上の積層構造を形成するが、その
際第2図および第3図に示すように基板1は金属膜2を
上にしてスパッタ装置用の治具に固定される。
Subsequently, a laminated structure starting from the lower magnetic layer 3 is formed on this metal film 2 by the same process as in the conventional method. At this time, as shown in FIGS. 2 and 3, the substrate 1 is It is fixed in a jig for sputtering equipment with the side facing up.

基板1は従来と同様に円板状に構成されており、治具は
基台10と、これとネジ留めなどによって結合されるリ
ング状のフランジ11によって構成される。
The substrate 1 has a disk shape as in the conventional case, and the jig includes a base 10 and a ring-shaped flange 11 that is connected to the base 10 by screwing or the like.

この基台10、フランジ11による治具を介して直流バ
イアス電圧を印加するため、これらの材質は導電性であ
ることが必要である。当然、基板1の取付時には基板1
の表面の金属膜2が第3図の断面に示すようにフランジ
11と接触し、両者が電気的に結合される。
Since a DC bias voltage is applied through the jig made up of the base 10 and the flange 11, these materials need to be electrically conductive. Naturally, when installing board 1,
The metal film 2 on the surface of the flange 11 contacts the flange 11 as shown in the cross section of FIG. 3, and the two are electrically coupled.

その後、治具ごと基板1をスパッタ装置に取り付け、r
fマグネトロン方式のスパッタ装置を用いて第1図の下
部磁性層3となるセンダスト膜を5〜15μmスパッタ
リングする。この際、治具および金属膜2を介して基板
1に一100〜Ovのバイアス電圧(直流)を印加しな
がら成膜を行なう。
After that, attach the substrate 1 together with the jig to a sputtering device, and
A sendust film, which will become the lower magnetic layer 3 in FIG. 1, is sputtered to a thickness of 5 to 15 μm using an f-magnetron type sputtering device. At this time, film formation is performed while applying a bias voltage (DC) of -100 to 100 volts to the substrate 1 via the jig and the metal film 2.

このバイアス電圧の条件は成膜条件、例えば基板材料、
ガス圧力、基板温度、基板−ターゲット間の距離などに
よって異なるが、第4図に直流バイアス電圧とそれによ
って生じる基板1の反り量との関係の一例を示す。
The conditions for this bias voltage depend on the film formation conditions, such as the substrate material,
FIG. 4 shows an example of the relationship between the DC bias voltage and the amount of warping of the substrate 1 caused by the bias voltage, although it varies depending on the gas pressure, substrate temperature, distance between the substrate and the target, etc.

従って、第4図に示されるような特性に基づいて成膜中
直流バイアス電圧を制御することによって、基板の反り
を小さくする、あるいは基板の割れを防止することが可
能となる。なお、第4図において膜面とあるのは第2図
、第3図における金属膜2が設けられる面を示す。
Therefore, by controlling the DC bias voltage during film formation based on the characteristics shown in FIG. 4, it is possible to reduce warping of the substrate or prevent cracking of the substrate. Note that the term "film surface" in FIG. 4 indicates the surface on which the metal film 2 in FIGS. 2 and 3 is provided.

その後の製造工程は従来と全く同様であり、下部磁性層
3上にCuやA、Ilから成る導電層4a、4bによる
コイルを形成し、絶縁層を形成した後これに磁気コンタ
クトホール5、磁気ギャップ6を設け、続いて磁気コン
タクトホール5を介して下部磁性層3と接続され、しか
も磁気ギャップ6を挟んで対向するようにセンダストな
どから成る上部磁性層7を形成する。さらに、保護層で
膜面を覆ってウェファプロセスを終了する。続いて、ヘ
ッドチップの切断工程などを経て薄膜磁気ヘッドの単体
が完成される。
The subsequent manufacturing process is exactly the same as the conventional one, in which a coil is formed by conductive layers 4a and 4b made of Cu, A, and Il on the lower magnetic layer 3, an insulating layer is formed, and then a magnetic contact hole 5 and a magnetic contact hole 5 are formed. A gap 6 is provided, and then an upper magnetic layer 7 made of sendust or the like is formed so as to be connected to the lower magnetic layer 3 via the magnetic contact hole 5 and to face each other with the magnetic gap 6 in between. Furthermore, the wafer process is completed by covering the film surface with a protective layer. Next, a single thin film magnetic head is completed through a process such as cutting the head chip.

以上の実施例によれば、基板1上に成膜を行なう場合、
まず金属膜2を基板1の上面に設け、この金属膜2を介
して直流バイアスを印加しながらスパッタによって下部
磁性層3を成膜するため、下部磁性層3と基板1の間の
応力を所望に制御することができ、基板の反りや基板割
れのない成膜工程を実現することができるため、薄膜磁
気ヘッドの製造における歩留りを著しく向上することが
できる。
According to the above embodiment, when forming a film on the substrate 1,
First, the metal film 2 is provided on the upper surface of the substrate 1, and the lower magnetic layer 3 is deposited by sputtering while applying a DC bias through the metal film 2, so that the stress between the lower magnetic layer 3 and the substrate 1 can be adjusted to the desired level. It is possible to achieve a film forming process without substrate warping or substrate cracking, and therefore the yield in manufacturing thin film magnetic heads can be significantly improved.

なお、基板1上に設ける直流バイアス印加用の金属膜2
の材質としては導電材料を用いることで上記の効果を達
成できるが、この金属膜2としてCrを用いると、上記
の直流バイアス印加が可能である上に、基板1と下部磁
性層3の密着強度を高める効果があることが判明した。
Note that a metal film 2 for applying a DC bias provided on the substrate 1
The above effect can be achieved by using a conductive material as the material of the metal film 2. However, if Cr is used as the metal film 2, the above-mentioned DC bias can be applied, and the adhesion strength between the substrate 1 and the lower magnetic layer 3 can be improved. It was found that it has the effect of increasing

従って、金属膜2としてCrを用いることによって薄膜
磁気ヘッドの強度を増加させ、薄膜磁気ヘッドの信頼性
を高めることができる。
Therefore, by using Cr as the metal film 2, the strength of the thin film magnetic head can be increased and the reliability of the thin film magnetic head can be improved.

[発明の効果] 以上から明らかなように、本発明によれば、基板上に磁
路な構成する上部および下部磁性層とコイルを構成する
導電層を薄膜形成して成る薄膜磁気ヘッドおよびその製
造方法において、前記基板上に下部磁性層をスパッタす
るに先立ち、まず基板上に基板のほぼ全面を覆うように
導電金属膜を成膜し、前記下部磁性層の成膜工程におい
ては前記導電金属膜を介して直流バイアス電圧を印加し
つつ下部磁性層および基板間の応力を制御する構成を採
用しているので、基板のほぼ全面に設けられた導電膜を
介して下部磁性層の成膜中値流バイアス電圧を均一に印
加することができ、下部磁性層および基板間の応力調節
を確実に行なえ、また、均一な直流バイアス印加により
磁性層の特性を均一に保つことができるため、基板の反
りや割れを未然に防止し歩留りよく磁気特性に優れた薄
膜磁気ヘッドおよびその製造方法を提供できる。
[Effects of the Invention] As is clear from the above, the present invention provides a thin film magnetic head in which upper and lower magnetic layers constituting a magnetic path and a conductive layer constituting a coil are formed as thin films on a substrate, and the manufacture thereof. In the method, before sputtering a lower magnetic layer on the substrate, a conductive metal film is first formed on the substrate so as to cover almost the entire surface of the substrate, and in the step of forming the lower magnetic layer, the conductive metal film is This structure controls the stress between the lower magnetic layer and the substrate while applying a DC bias voltage through the conductive film provided on almost the entire surface of the substrate. The DC bias voltage can be applied uniformly, and the stress between the lower magnetic layer and the substrate can be reliably adjusted, and the characteristics of the magnetic layer can be kept uniform by applying a uniform DC bias, so the warping of the substrate can be prevented. It is possible to provide a thin-film magnetic head and a method for manufacturing the same, which can prevent cracking and cracking and have a high yield and excellent magnetic properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による薄膜磁気ヘッドおよびその製造方
法を説明する斜視図、第2図は第1図の基板の治具への
取付を示した分解斜視図、第3図は基板の治具への取付
を示した断面図、第4図は直流バイアス電圧と基板の反
り量の関係を示した説明図、第5図は従来の薄膜磁気へ
・ンドの構造を示す斜視図である。 1・・・基板      2・・・金属膜3・・・下部
磁性層   4a、4b・・・導電層5・・・磁気コン
タクトホール 6・・・磁気ギャップ  7・・・上部磁性層10・・
・基台     11・・・フランジ[田山1番(・百
〇有電
FIG. 1 is a perspective view illustrating a thin film magnetic head and its manufacturing method according to the present invention, FIG. 2 is an exploded perspective view showing how the substrate of FIG. 1 is attached to a jig, and FIG. 3 is a perspective view of the substrate jig. FIG. 4 is an explanatory diagram showing the relationship between the DC bias voltage and the amount of warpage of the substrate, and FIG. 5 is a perspective view showing the structure of a conventional thin film magnetic head. DESCRIPTION OF SYMBOLS 1... Substrate 2... Metal film 3... Lower magnetic layer 4a, 4b... Conductive layer 5... Magnetic contact hole 6... Magnetic gap 7... Upper magnetic layer 10...
・Base 11...Flange [Tayama No. 1 (・100 Electric

Claims (1)

【特許請求の範囲】 1)基板上に磁路を構成する上部および下部磁性層とコ
イルを構成する導電層を薄膜形成して成る薄膜磁気ヘッ
ドにおいて、前記基板上に成膜される下部磁性層と基板
の間に基板のほぼ全面を覆うように成膜された導電金属
膜を有し、前記基板上に下部磁性層をスパッタにより成
膜する場合前記導電金属膜を介して直流バイアス電圧を
印加しつつ下部磁性層および基板間の応力を制御するこ
とを特徴とする薄膜磁気ヘッド。 2)基板上に磁路を構成する上部および下部磁性層とコ
イルを構成する導電層を薄膜形成して成る薄膜磁気ヘッ
ドの製造方法において、前記基板上に下部磁性層をスパ
ッタにより成膜する工程に先立ち、基板上に基板のほぼ
全面を覆うように導電金属膜を成膜する工程を設け、前
記下部磁性層の成膜工程においては前記導電金属膜を介
して直流バイアス電圧を印加しつつ下部磁性層および基
板間の応力を制御することを特徴とする薄膜磁気ヘッド
の製造方法。
[Claims] 1) A thin film magnetic head in which upper and lower magnetic layers forming a magnetic path and a conductive layer forming a coil are formed as thin films on a substrate, the lower magnetic layer being formed on the substrate. A conductive metal film is formed between the substrate and the substrate so as to cover almost the entire surface of the substrate, and when a lower magnetic layer is formed on the substrate by sputtering, a DC bias voltage is applied through the conductive metal film. A thin film magnetic head characterized by controlling stress between a lower magnetic layer and a substrate. 2) In a method for manufacturing a thin film magnetic head in which upper and lower magnetic layers constituting a magnetic path and a conductive layer constituting a coil are formed as thin films on a substrate, a step of forming a lower magnetic layer on the substrate by sputtering. Prior to this, a step of forming a conductive metal film on the substrate so as to cover almost the entire surface of the substrate is provided, and in the step of forming the lower magnetic layer, a DC bias voltage is applied through the conductive metal film while A method for manufacturing a thin-film magnetic head characterized by controlling stress between a magnetic layer and a substrate.
JP21636688A 1988-09-01 1988-09-01 Thin film magnetic head and its manufacture Pending JPH0266712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21636688A JPH0266712A (en) 1988-09-01 1988-09-01 Thin film magnetic head and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21636688A JPH0266712A (en) 1988-09-01 1988-09-01 Thin film magnetic head and its manufacture

Publications (1)

Publication Number Publication Date
JPH0266712A true JPH0266712A (en) 1990-03-06

Family

ID=16687449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21636688A Pending JPH0266712A (en) 1988-09-01 1988-09-01 Thin film magnetic head and its manufacture

Country Status (1)

Country Link
JP (1) JPH0266712A (en)

Similar Documents

Publication Publication Date Title
JPS60119613A (en) Thin film magnetic head and its manufacture
JPH0266712A (en) Thin film magnetic head and its manufacture
US4752344A (en) Magnetic layer and method of manufacture
JP2575097B2 (en) Manufacturing method of magnetic head
JP2707758B2 (en) Method for manufacturing thin-film magnetic head
JP3090014B2 (en) Thin film magnetic head and method of manufacturing the same
JP2714146B2 (en) Method for manufacturing thin-film magnetic head
JPS6233309A (en) Manufacture of layered head piece with azimuth
JPH07331429A (en) Formation of thin film
JP3216252B2 (en) Method for manufacturing thin-film magnetic head
JPS6124007A (en) Thin film magnetic head
JPS6330686B2 (en)
JPH04246805A (en) Thin film forming method
JPH04339306A (en) Thin film magnetic head and manufacture of it
JPH05114117A (en) Formation of thin-film magnetic head and magnetic thin film
JPH0512625A (en) Thin-film magnetic head and production thereof
JPH05128439A (en) Production of thin-film magnetic head
JPH07182624A (en) Thin film magnetic head for hard disc
JPH0320807B2 (en)
JPH01128215A (en) Thin film magnetic head and its manufacture
JPH097118A (en) Thin-film magnetic head
JPH06338032A (en) Thin film magnetic head
JPS63313311A (en) Production of thin film magnetic head
JPS5952421A (en) Thin film magnetic head and its manufacture
JPH05290327A (en) Production of magnetic head