JPH026598A - Method of decreasing nox content in gasified coal fuel - Google Patents

Method of decreasing nox content in gasified coal fuel

Info

Publication number
JPH026598A
JPH026598A JP63156027A JP15602788A JPH026598A JP H026598 A JPH026598 A JP H026598A JP 63156027 A JP63156027 A JP 63156027A JP 15602788 A JP15602788 A JP 15602788A JP H026598 A JPH026598 A JP H026598A
Authority
JP
Japan
Prior art keywords
oxygen
coal
fuel
injected
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63156027A
Other languages
Japanese (ja)
Other versions
JPH0428039B2 (en
Inventor
Mikio Sato
幹夫 佐藤
Toshio Abe
俊夫 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP63156027A priority Critical patent/JPH026598A/en
Publication of JPH026598A publication Critical patent/JPH026598A/en
Publication of JPH0428039B2 publication Critical patent/JPH0428039B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Feeding And Controlling Fuel (AREA)
  • Treating Waste Gases (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PURPOSE:To continuously eliminate NH3 contained as an impurity in a dry process, by supplying oxygen to a gasified coal fuel at temp. above 700 deg.C. CONSTITUTION:The NOx content of a gasified coal fuel (NH3 concn.: several hundreds to several thousands of ppm) is decreased by mixing the fuel homogeneously with oxygen, oxygen-contg. gases (e.g., or air), or compounds with generate oxygen on evaporation (e.g., H2O2), and treating at temp. above 700 deg.C. When nitrogen oxides (e.g., NO, N2O or NO2) are injected simultaneously with oxygen, they reduce the lower limit of decomposition temp. of NH3 and therefore the treating temp. may be above 600 deg.C. The amt. of injected gas is such that the concn. ratio O2/NH3=1-3, or NO/NH3=0.5-1.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は石炭ガス化燃料の低NOx化処理方法に関する
。更に詳述すると、本発明は石炭ガス化燃料に不純物と
して含まれるアンモニアを乾式で連続的に除去する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for reducing NOx in coal gasified fuel. More specifically, the present invention relates to a dry continuous method for removing ammonia contained in coal gasified fuel as an impurity.

(従来の技術) 近年、高効率で環境保全性に優れた石炭利用新技術とし
て石炭ガス化複合発電が国内外において注目されている
0石炭ガス化複合発電とは石炭をガス化炉でガス化し、
これをガス精製装置により説硫、脱塵した後、ガスター
ビン燃焼器で燃焼させることによりガスタービンで発電
すると同時にその排熱で蒸気を発生させて蒸気タービン
でも発電する方式である。
(Conventional technology) In recent years, coal gasification combined cycle power generation has been attracting attention domestically and internationally as a new coal utilization technology that is highly efficient and environmentally friendly.Coal gasification combined cycle power generation is a process in which coal is gasified in a gasifier. ,
This is sulfurized and dedusted using a gas purification device, and then combusted in a gas turbine combustor to generate electricity in the gas turbine. At the same time, the exhaust heat is used to generate steam and the steam turbine also generates electricity.

ところで、このようなガスタービン等の燃焼にあっては
、窒素酸化物NOxの生成を伴うが、窒素酸化物は光化
学スモッグなどの原因となる環境汚染物質であるため、
環境に放出できる量・濃度は厳しく規制されている。
Incidentally, combustion in such gas turbines and the like involves the production of nitrogen oxides (NOx), which are environmental pollutants that cause photochemical smog.
The amount and concentration that can be released into the environment is strictly regulated.

そこで、従来のNOx防止対策としてはNOxの発生を
抑える燃焼技術の採用、燃焼排ガス中のNOxを除去す
る脱硝技術の採用が一般的である。
Therefore, conventional NOx prevention measures generally include the adoption of combustion technology to suppress the generation of NOx, and the adoption of denitrification technology to remove NOx from combustion exhaust gas.

しかし、燃料自体が問題とされることは従来なく、また
燃料自体にNOxの原因となるアンモニアが問題となる
程合まれることもなかった。
However, the fuel itself has never been considered a problem, and the fuel itself has never been contaminated with ammonia, which causes NOx, to the extent that it becomes a problem.

ところが、石炭をガス化炉でガス化する時、石炭中の窒
素分の一部がアンモニア(NH3)に転換するため、石
炭ガス化燃料中にはN H3が不純物として含まれるこ
とになる。NHaは水に吸収されやすいため、ガス精製
をスクラバーなどの湿式方法で行う場合にはNH3は容
易に除去される。
However, when coal is gasified in a gasifier, a portion of the nitrogen in the coal is converted to ammonia (NH3), so NH3 is contained as an impurity in the coal gasified fuel. Since NHa is easily absorbed by water, NH3 is easily removed when gas purification is performed using a wet method such as a scrubber.

しかしながらその場合には石炭ガス化燃料の温度が下が
るため、石炭ガス化複合発電システムにおける熱効率が
低下する。このため、石炭ガス化複合発電システムにお
けるガス精製はドライ(乾式)状態で行う方法が要望さ
れる。しかし、その場合には石炭ガス化炉内で生成され
たNH9はほとんどそのままの濃度でガスタービン燃焼
器に供給されることとなる。そして、この燃料中に含ま
れるNH3は燃焼の過程で容易に窒素酸化物(NOx)
に転換する。
However, in that case, the temperature of the coal gasification fuel decreases, resulting in a decrease in thermal efficiency in the coal gasification combined cycle power generation system. For this reason, there is a demand for a method in which gas purification in a coal gasification combined cycle power generation system is performed in a dry state. However, in that case, the NH9 generated in the coal gasifier will be supplied to the gas turbine combustor at almost the same concentration. The NH3 contained in this fuel easily becomes nitrogen oxides (NOx) during the combustion process.
Convert to

石炭ガス化炉内で生成されるアンモニア濃度は石炭種や
ガス化条件によって異なるが数百pp11から数千pp
+iとされ、ガスタービン燃焼器で発生するNOxのう
ちNH3に起因するNOxの占める割合は高い、このた
め石炭ガス化燃料中のNH9に起因する窒素酸化物を低
減させるための石炭ガス化複合発電シスデムにおける低
NOx化技術が必要とされている。
The ammonia concentration generated in a coal gasifier varies depending on the coal type and gasification conditions, but ranges from several hundred pp11 to several thousand pp1.
+i, and the proportion of NOx caused by NH3 in the NOx generated in the gas turbine combustor is high. Therefore, coal gasification combined cycle power generation is used to reduce nitrogen oxides caused by NH9 in coal gasified fuel. There is a need for technology to reduce NOx in system systems.

(発明が解決しようとする課題) しかしながら、石炭ガス化燃料は通常の気体燃料に比べ
極めて低カロリー(2000kCa I以下)で燃え難
いガスである上にガスタービン燃焼器での燃焼は火炎伝
播速度を上回る速度で燃料が流れるため益々着火し難く
火炎安定性に欠ける燃焼条件にある。このなめ、ガスタ
ービン燃焼器において燃料中のNHaに起因する窒素酸
化物を低減させるための燃焼技術を確立することはとて
も器度が高く現在鋭意研究開発が進められているが未だ
実現するに至っていない、また、燃焼排ガス中のNOX
を除去する方法として一般的なアンモニア注入による触
媒式排煙脱硝装置は既に確立した技術であると言えるが
、高価な触媒を使用すると共に約3万時間毎に触媒を交
換しなければならないことから、石炭ガス化複合発電シ
ステムに設置することはシステムの運転の上からも経済
的にも大きな負担となる。
(Problems to be Solved by the Invention) However, coal gasified fuel has an extremely low calorie (less than 2000 kCa I) and is a difficult to burn gas compared to normal gaseous fuel, and its combustion in a gas turbine combustor has a low flame propagation speed. Because the fuel flows at a faster speed, it becomes increasingly difficult to ignite, resulting in combustion conditions that lack flame stability. Because of this, it is very difficult to establish a combustion technology to reduce nitrogen oxides caused by NHa in the fuel in gas turbine combustors, and research and development is currently underway, but it has not yet been realized. No, NOx in combustion exhaust gas
Catalytic exhaust gas denitrification equipment using ammonia injection is a commonly used method for removing nitrogen oxides, and can be said to be an established technology, but it uses an expensive catalyst and requires replacing the catalyst every 30,000 hours. , installing it in a coal gasification combined cycle power generation system imposes a large burden both in terms of system operation and economically.

そこで本発明は燃料自体の改善、即ち石炭ガス化燃料の
低NOx化処理方法を提供することを目的とする。具体
的には、石炭ガス化燃料中のアンモニアを乾式で連続的
に除去する方法を提供することを目的とする。
Therefore, an object of the present invention is to improve the fuel itself, that is, to provide a method for reducing NOx in coal gasified fuel. Specifically, the purpose of the present invention is to provide a method for continuously removing ammonia from coal gasified fuel in a dry manner.

(課題を解決するための手段) かかる目的を達成するため、本発明の石炭ガス化燃料の
低NOx化処理は、石炭ガス化燃料中に700℃以上の
温度域において酸素あるいは酸素を含む気体若しくは蒸
発して酸素を生ずる化合物を可能な限り均一に混合する
ようにしている。
(Means for Solving the Problems) In order to achieve the above object, the NOx reduction treatment of coal gasified fuel of the present invention involves adding oxygen or oxygen-containing gas or The aim is to mix the compounds that evaporate to produce oxygen as uniformly as possible.

また、本発明の石炭ガス化燃料の低NOx化処理はアン
モニアを含む石炭ガス化燃料中に、600℃以上の温度
域において酸素あるいは酸素を含む気体若しくは蒸発し
て酸素を生ずる化合物と共に窒素酸化物を注入するよう
にしている。
In addition, the NOx reduction treatment of coal gasified fuel of the present invention includes adding nitrogen oxides to the coal gasified fuel containing ammonia together with oxygen, a gas containing oxygen, or a compound that evaporates to produce oxygen in a temperature range of 600°C or higher. I am trying to inject it.

本発明において、酸素を含む気体としては例えば空気が
一般的であるがこれに限定されるものではなく、燃料成
分ないし燃焼に悪影響を与えないものであれば酸素を含
む全ての気体が使用可能である。また、蒸発して酸素を
生ずる化合物としては過酸化水素水などが含まれる。尚
、本明細書において特に断りがない限り、酸素と表現す
る場合には、酸素を含む気体若しくは蒸発して酸素ガス
を生ずる化合物から得られる酸素を含む。
In the present invention, the gas containing oxygen is generally air, but is not limited to this, and any gas containing oxygen can be used as long as it does not adversely affect fuel components or combustion. be. Compounds that evaporate to produce oxygen include hydrogen peroxide and the like. In this specification, unless otherwise specified, when expressed as oxygen, it includes oxygen obtained from a gas containing oxygen or a compound that evaporates to produce oxygen gas.

また窒素酸化物としてはNo、N20.NO2などが好
適である。この窒素酸化物の注入はアンモニアの分解の
下限温度を引下げる。
Also, as nitrogen oxides, No, N20. NO2 etc. are suitable. This nitrogen oxide injection lowers the lower limit temperature for ammonia decomposition.

これら注入気体の量はアンモニアに対する酸素濃度の比
02/NH3において1〜3の範囲であるとが好ましく
、アンモニアに対する窒素酸化物濃度の比はNo/NH
3は0.5〜1の範囲であることが好ましい、02 /
NHa比は1より大きいとアンモニアの分解には効果的
であるが3を越えると生成No量が無視できない程度に
増大し、全体として低NOx化に効果がなくなるからで
ある。また、1未満であると多くのアンモニアが分解さ
れずに残ってしまう。
The amount of these injected gases is preferably in the range of 1 to 3 with a ratio of oxygen concentration to ammonia of 02/NH3, and a ratio of nitrogen oxide concentration to ammonia of No/NH3.
3 is preferably in the range of 0.5 to 1, 02/
This is because when the NHa ratio is larger than 1, it is effective in decomposing ammonia, but when it exceeds 3, the amount of generated NO increases to a non-negligible extent, and it is no longer effective in reducing NOx as a whole. Moreover, if it is less than 1, much ammonia will remain without being decomposed.

また、上述の濃度比の酸素注入と同時にNOxを注入す
るとNH8を分解する下限温度を低下させる効果がある
が、N Ox / N HB比が0.5未満であるとそ
の効果は少なく、1を越えると残存No量が無視できな
い量となる。
In addition, if NOx is injected at the same time as oxygen is injected at the above concentration ratio, it has the effect of lowering the lower limit temperature for decomposing NH8, but if the NOx / NHB ratio is less than 0.5, the effect is small, and 1. If it exceeds this, the amount of remaining No. will become a non-negligible amount.

また、本発明において、酸素及び窒素酸化物は、石炭ガ
ス化複合発電システムの石炭ガス化炉とガス冷却器の間
あるいはガス冷却器内で、好ましくは石炭ガス化複合発
電システムから一部抽気された脱硫脱塵後の石炭ガス化
燃料で希釈してから、最も好ましくは抽気石炭ガス化燃
料希釈された混合ガスを冷却した状態で石炭ガス化燃料
中への注入は行なうことを特徴とする。
Further, in the present invention, oxygen and nitrogen oxides are preferably partially extracted from the coal gasification combined cycle power generation system between the coal gasifier and the gas cooler of the coal gasification combined cycle power generation system or within the gas cooler. The method is characterized in that the mixed gas diluted with the desulfurized and dedusted coal gasified fuel is most preferably diluted with the extracted coal gasified fuel, and then injected into the coal gasified fuel in a cooled state.

(作用) したがって、石炭ガス化燃料中のNH3は酸素および窒
素酸化物と反応して窒素(N2)と水(H20)に分解
される。
(Operation) Therefore, NH3 in the coal gasified fuel reacts with oxygen and nitrogen oxides and is decomposed into nitrogen (N2) and water (H20).

すなわち、燃料中のNH3は02が存在する高温化にお
いてHCNやCNおよびNll i (NH2。
That is, NH3 in the fuel becomes HCN, CN, and Nll i (NH2) at high temperatures where 02 is present.

N Hなと)に分解し、その後一部は02と反応し、N
Oを生成したり、N2に還元される。
N
It produces O or is reduced to N2.

本発明はNH3の02による分解とその反応過程に伴う
NOのNH8との反応を利用して石炭ガス化燃料中のN
H3の分解を図る。この反応は気相で行われるため触媒
を必要としない、 また、02の共存下でのみNH3と
Noの反応がおこなわれるのであるから、窒素酸化物と
共に酸素を混合して石炭ガス化燃料中に注入すればNH
aは02および窒素酸化物によって分解される。また、
注入する酸素および窒素酸化物は石炭ガス化燃料中のN
1−I3濃度の最大数倍程度の微量のため石炭ガス化燃
料の他の組成変化に及ぼす影響は問題にならないほど僅
かである。
The present invention utilizes the decomposition of NH3 by 02 and the reaction of NO with NH8 accompanying the reaction process to reduce the amount of N in coal gasified fuel.
Attempt to decompose H3. This reaction takes place in the gas phase and does not require a catalyst. Also, since the reaction between NH3 and No takes place only in the coexistence of 02, oxygen is mixed with nitrogen oxides and added to the coal gasified fuel. If injected, NH
a is decomposed by 02 and nitrogen oxides. Also,
The oxygen and nitrogen oxides injected are the N in the coal gasified fuel.
Since the amount is so small as to be several times the maximum concentration of 1-I3, the influence on other compositional changes of the coal gasified fuel is so small that it does not pose a problem.

(実施例) 以下、本発明を実施例に基づき詳細に説明する。(Example) Hereinafter, the present invention will be explained in detail based on examples.

まず、第11図に本発明を実施する石炭ガス化複合発電
システムの概要を示す、該図において、11は石炭ガス
化炉、12は石炭ガス化燃料を脱硫・脱塵処理可能な温
度まで冷却する熱交換器のようなガス冷却器熱交換器、
13は石炭ガス化燃料中に含まれるチャー(すず)を捕
集するサイクロン集塵器、14は石炭ガス化燃料中のH
2Sやサイクロン13で捕集しきれなかったチャー等を
除去するクリーンアップ(脱硫・説rm)装置、15は
ガスタービン、16は蒸気タービンである。
First, Fig. 11 shows an outline of a coal gasification combined cycle power generation system that implements the present invention. In the figure, 11 is a coal gasification furnace, and 12 is a coal gasification fuel that cools the coal gasification fuel to a temperature that allows desulfurization and dust removal processing. Gas cooler heat exchanger, like heat exchanger
13 is a cyclone dust collector that collects char (tin) contained in coal gasified fuel, and 14 is a cyclone dust collector that collects H contained in coal gasified fuel.
A cleanup (desulfurization/rm) device removes char and the like that could not be collected by the 2S and the cyclone 13, 15 is a gas turbine, and 16 is a steam turbine.

該システムにおいて、クリーンアップ装置13を経て浄
化された石炭ガス化燃料の一部は抽気され、冷却装置1
7において常温近くまで冷却された後、サイクロン13
で捕集されたチャーをガス化炉に戻すための搬送ガスと
して使用される。同時に抽気石炭ガス化燃料の一部をガ
ス化炉11において生成された直後の石炭ガス化燃料に
注入する酸素あるいは窒素酸化物の希釈用ガスとして使
用される。抽気石炭ガス化燃料と空気とは混合拡散され
た後、好ましくはさらに冷却器18において低温に冷却
されてガス冷却器12の上流ないしガス冷却器12内の
燃料の流れの中に注入される0本実施例の場合、注入酸
素として空気が使用されている。抽気石炭ガス化燃料と
空気の混合ガスは石炭ガス化燃料中に噴射されると同時
に拡散し、均一な混合状態となる。噴射直後の濃度の濃
い領域では温度が低いため反応せず、反応凍結域を形成
する。そして拡散が進むにつれて混合ガスが加熱され反
応温度に達する。従って、石炭ガス化燃料と酸素とは可
能な限り均一に混合された状態において反応を開始する
In this system, a part of the coal gasified fuel purified through the clean-up device 13 is extracted, and the coal gasified fuel is extracted from the clean-up device 13.
After being cooled to near room temperature in 7, cyclone 13
It is used as a carrier gas to return the char collected in the gasifier to the gasifier. At the same time, a part of the extracted coal gasified fuel is used as a gas for diluting oxygen or nitrogen oxides to be injected into the coal gasified fuel just generated in the gasifier 11. After the extracted coal gasified fuel and air are mixed and diffused, the air is preferably further cooled to a low temperature in a cooler 18 and then injected into the fuel flow upstream of the gas cooler 12 or within the gas cooler 12. In this example, air is used as the injected oxygen. The mixed gas of the extracted coal gasified fuel and air is injected into the coal gasified fuel and diffuses at the same time, resulting in a uniform mixed state. Immediately after injection, the high concentration region does not react because the temperature is low, forming a reaction freezing region. As the diffusion progresses, the mixed gas is heated and reaches the reaction temperature. Therefore, the reaction starts when the coal gasified fuel and oxygen are mixed as uniformly as possible.

尚、注入する酸素として過酸化水素水等の液体を使用す
る場合、気化熱によって冷却されるなめ拡散がある程度
進まなければ反応温度に達しない。
Note that when a liquid such as a hydrogen peroxide solution is used as the oxygen to be injected, the reaction temperature will not be reached unless lick diffusion, which is cooled by the heat of vaporization, progresses to a certain extent.

しかも、霧滴状で噴射されるため貫通力が強く拡散性が
良好である。この場合、希釈ガスとしての抽気石炭ガス
化燃料は不要である。
Moreover, since it is sprayed in the form of droplets, it has a strong penetrating force and good dispersion. In this case, extracted coal gasified fuel as diluent gas is not required.

次いで、第10図に本発明の石炭ガス化燃料の低NOx
化処理を実施する装置の一例を示す、鎖国において、工
は02あるいは02を含む気体あるいは蒸発して02を
生ずる化合物を貯蔵する貯槽、2はNo、N20.NO
2などの窒素酸化物あるいは蒸発して窒素酸化物を生ず
る化合物を貯蔵する貯槽、3はNH3濃度監視装置6か
らの制御信号により酸素や窒素酸化物の流量をコントロ
ールする弁、4はガスタービン15に供給される脱硫脱
a後の石炭ガス化燃料の一部を抽気しな抽気燃料とJ?
?槽1あるいは2がら供給される02および/又は窒素
酸化物とを混合させる混合器、5は石炭ガス化燃料の温
度を測定し監視する温度監視装置9からの信号を受けて
酸素及び/又は窒素酸化物と油気ガス化燃そ1との混合
ガスの供給流路を開閉する弁、6は前記混合ガスを石炭
ガス化燃料中に均一に分散させて供給するノズルのよう
な噴射装置、7は石炭ガス化燃料中のNH3濃度を監視
しNH,濃度の測定値から注入すべき02濃度や窒素酸
化物濃度の指示信号をコントロール弁3に出力する装置
、8は流路内の石炭ガス化燃料を採取するガス採取管、
9は熱電対なとガス温度測定装置、10は温度監視装置
および各位置のガス温度の測定結果から最適注入位置を
判断して弁5の開閉信号を出力する装置である。ガス化
炉を出た石炭ガス化燃料は通常1000℃以上の温度を
有すことから、その中に酸素等をそのまま噴射するだけ
でアンモニアを分解できる。
Next, FIG. 10 shows the low NOx of the coal gasification fuel of the present invention.
An example of a device for carrying out the oxidation process is shown in the isolation tank, where 2 is a storage tank for storing 02, a gas containing 02, or a compound that evaporates to produce 02, 2 is No., N20. NO
2 is a storage tank for storing nitrogen oxides or compounds that evaporate to produce nitrogen oxides; 3 is a valve that controls the flow rate of oxygen and nitrogen oxides according to a control signal from the NH3 concentration monitoring device 6; and 4 is a gas turbine 15. J?
? A mixer 5 mixes oxygen and/or nitrogen oxide supplied from the tank 1 or 2, and a mixer 5 mixes oxygen and/or nitrogen in response to a signal from a temperature monitoring device 9 that measures and monitors the temperature of the coal gasified fuel. A valve that opens and closes a supply flow path for a mixed gas of oxides and oil gasification fuel 1; 6 is an injection device such as a nozzle that uniformly disperses and supplies the mixed gas into coal gasified fuel; 7 8 is a device that monitors the NH3 concentration in the coal gasification fuel and outputs an instruction signal for the 02 concentration and nitrogen oxide concentration to be injected from the measured value of NH concentration to the control valve 3; 8 is the coal gasification fuel in the flow path; gas sampling pipe for extracting fuel;
9 is a gas temperature measuring device such as a thermocouple; 10 is a temperature monitoring device and a device that determines the optimum injection position from the measurement results of the gas temperature at each position and outputs an opening/closing signal for the valve 5. Since the coal gasified fuel leaving the gasifier usually has a temperature of 1000° C. or higher, ammonia can be decomposed by simply injecting oxygen or the like into it.

(1)酸素(02)によるNH3の分解第1図は石炭ガ
ス化燃料中のNHBfi度が1000ρp+i−vにお
いてガス温度が1000℃の時の注入する02濃度と反
応時間0.l5eC後のNHg濃度の関係を示す0図よ
り、02濃度が150011111以上あれば石炭ガス
化燃料中のNHg濃度は1000pplから1 ppm
以下に分解されることが理解できる。注入する02濃度
が15001)l)II以下ではNH。
(1) Decomposition of NH3 by oxygen (02) Figure 1 shows the concentration of 02 injected and the reaction time when the NHBfi degree in the coal gasified fuel is 1000ρp+iv and the gas temperature is 1000°C. From the 0 diagram showing the relationship between the NHg concentration after l5eC, if the 02 concentration is 150011111 or more, the NHg concentration in the coal gasified fuel will be from 1000 ppl to 1 ppm.
It can be understood that it is broken down into the following. If the 02 concentration to be injected is less than 15001)l)II, it is NH.

の分解率は悪化し、特に1oooppn以下では急激に
悪化し、例えば5001)l)IIの02濃度に対して
はNHg濃度は600ppn+までしか分解されない、
このときのNH3に対する02の量は濃度比で1.5で
ある。
The decomposition rate deteriorates, especially rapidly below 1oooppn, for example, for the 02 concentration of 5001)l) II, the NHg concentration is decomposed only to 600ppn+.
At this time, the concentration ratio of 02 to NH3 is 1.5.

第2図は反応温度が1000℃、NH3濃度が1100
0ppの石炭ガス化燃料中に1500pplの02を注
入した時の反応時間とNHg濃度等の関係を示したもの
である。鎖国より明らかなようにNH3は0.01秒程
度で分解される。
In Figure 2, the reaction temperature is 1000℃ and the NH3 concentration is 1100℃.
This figure shows the relationship between reaction time and NHg concentration when 1500 ppl of 02 is injected into 0 ppl of coal gasified fuel. As is clear from the national isolation, NH3 is decomposed in about 0.01 seconds.

また、第3図は石炭ガス化燃料中のNH3濃度が100
0111)In−V G::おイテガス温度が1ooo
℃のときの0.1秒後の反応における酸素によるアンモ
ニアの分解と生成窒素酸化物濃度との関係を示すグラフ
である。これによると02/NH3がモル比においてl
を下回るとアンモニア分解率が90%を切り急激に低下
し、4.5を上回ると生成窒素酸化物濃度が許容の一応
の目安ともいえる150 pl)11を越えてしまう、
しかしながら、実際の反応においては、石炭ガス化燃料
中のN1(3と02とが所定のモル比で完全に均一に混
合されるわけではないので、局部的に過剰酸素となって
Noが生成される虞があることから、1〜3の範囲に収
めることが好ましい。
In addition, Figure 3 shows that the NH3 concentration in coal gasified fuel is 100%.
0111) In-V G::Item gas temperature is 1ooo
3 is a graph showing the relationship between the decomposition of ammonia by oxygen and the concentration of produced nitrogen oxides in the reaction after 0.1 seconds at .degree. According to this, the molar ratio of 02/NH3 is l
If it is less than 4.5, the ammonia decomposition rate will drop sharply below 90%, and if it is more than 4.5, the concentration of nitrogen oxides produced will exceed 150 pl (11), which can be said to be a tentative guideline for tolerance.
However, in actual reactions, N1(3 and 02) in the coal gasified fuel are not completely and uniformly mixed at a predetermined molar ratio, so locally excess oxygen is generated and No is produced. Therefore, it is preferable to keep it within the range of 1 to 3.

また、第4図はNH3に対し、モル比で1.5倍の02
を注入する際の0,1秒後の反応温度とアンモニア分解
率との関係を示すグラフである。
In addition, Figure 4 shows that 02 has a molar ratio of 1.5 times that of NH3.
It is a graph showing the relationship between the reaction temperature and the ammonia decomposition rate after 0.1 seconds when injecting the ammonia.

鎖国より明らかなようにアンモニア分解率は700℃以
下になると低下し始め、約670℃以下になると急激に
分解率を悪化させる。
As is clear from the country's national isolation, the ammonia decomposition rate begins to decline when the temperature falls below 700°C, and the decomposition rate rapidly worsens when the temperature falls below approximately 670°C.

以上の結果より、ある温度では02の注入により石炭ガ
ス化燃料中のN H3が分解されることが明らかである
0反応温度を1000℃、石炭ガス化燃料中のNHae
4度を1000pplとするとき、注入すべき02濃度
が1500ppl以上あれば理論的にはNHs濃度は1
 pHl以下に減少する。1500ppl以上の02の
注入に対してはNH3と02の反応によるNOの生成が
みられるようになる。しかし、Noの生成が少々の場合
にはNHaが分解されるメリットの方がはるかに大きい
From the above results, it is clear that NH3 in coal gasified fuel is decomposed by injection of 02 at a certain temperature.
When 4 degrees is 1000 ppl, if the 02 concentration to be injected is 1500 ppl or more, the NHs concentration is theoretically 1.
decreases below pHl. When 1500 ppl or more of 02 is injected, the formation of NO due to the reaction between NH3 and 02 is observed. However, if only a small amount of No is generated, the advantage of decomposing NHa is much greater.

(2)窒素酸化物と02によるN I(3の分解石炭ガ
ス化燃料中に窒素酸化物のみを注入してもガス化燃料中
のN)taは分解されない、NOは02の共存下でのみ
アンモニア分解反応を起しかつNH3を分解する下限温
度を低下させる0例えば第5図は石炭ガス化燃料中にN
H3が11000pp含まれる場合、反応温度が100
0℃において窒素酸化物としてNoを1000ppn注
入した時の反応時間の経過に対する各種化学種の濃度変
化を示したものである4反応時間が1.Qsec後にお
いてもN Haは初期濃度である1000ppnのまま
である。
(2) Decomposition of NI (decomposition of 3) by nitrogen oxides and 02 Even if only nitrogen oxides are injected into the coal gasified fuel, Nta in the gasified fuel is not decomposed, and NO is only decomposed in the coexistence of 02. For example, Figure 5 shows N in coal gasified fuel.
When 11000pp of H3 is included, the reaction temperature is 100pp.
This graph shows the changes in the concentration of various chemical species over the course of reaction time when 1000 ppn of No as a nitrogen oxide was injected at 0°C. 4 Reaction times were 1. Even after Qsec, N Ha remains at the initial concentration of 1000 ppn.

しかしながら、Noを一緒に10001)I)lの02
を注入するとNH3は急激に分解される。第6図は石炭
ガス化燃料中のNT(a濃度が1000ppIlの時に
、NOと02をそれぞれ1000puずつ注入した時の
反応時間0.1sec後のNH9、No、02のそれぞ
れの濃度を反応温度に対して示したものである。図より
、反応温度が770℃以上であればNH3はほとんど分
解されることが明らかである。
However, together with No. 10001) I) l 02
When injected, NH3 is rapidly decomposed. Figure 6 shows the respective concentrations of NH9, No, and 02 at the reaction temperature after a reaction time of 0.1 sec when 1000 pu of each of NO and 02 were injected when the NT(a concentration in coal gasified fuel was 1000 ppIl). It is clear from the figure that most of NH3 is decomposed if the reaction temperature is 770°C or higher.

例えば反応温度が770℃においてはNH3濃度は約0
.O2ppmに低減され、反応温度が1200℃におい
ても0.2ppn程度まで分解される。
For example, when the reaction temperature is 770°C, the NH3 concentration is approximately 0.
.. It is reduced to O2ppm, and decomposed to about 0.2ppn even at a reaction temperature of 1200°C.

但し、この場合は反応温度の増加に伴いNo濃度が増加
し、反応温度が1000℃以上では石炭ガス化燃料中の
No濃度は100pp11以上となる。
However, in this case, the No concentration increases as the reaction temperature increases, and when the reaction temperature is 1000° C. or higher, the No concentration in the coal gasified fuel becomes 100 pp11 or higher.

また、第6図において留意すべきはNH3を含む石炭ガ
ス化燃料中に02とNoを一緒に注入しても、ある温度
以下ではNHaの分解反応の進行が緩かなものとなるい
うことである。第6図の条件においては最も分解に適し
た温度は770℃と判断される。
Also, what should be noted in Figure 6 is that even if 02 and No are injected together into coal gasified fuel containing NH3, the decomposition reaction of NHa will progress slowly below a certain temperature. . Under the conditions shown in FIG. 6, the most suitable temperature for decomposition is judged to be 770°C.

第7図は1000ppnのNH3を含む石炭ガス化燃料
に02のみを1500ppl注入した時と同濃度の02
と共に500ppiのNOを注入した時の反応時間0.
1sac後のNHs 、No、02の各濃度を反応温度
に対して示したものである。第7図においてN 14 
aの分解を最大とする反応温度は02のみの注入時の場
合は840℃であるが、Noを500ppl′1人した
時は750℃に低下している。即ち、o2と共にNoを
注入する効果としてはNH3の分解を有効にする反応温
度域を低減させることにある。尚、反応温度が700℃
程度の場合、500ppmNoが同時に添加されている
と、NHa?a度は2ppn(No添加のない場合、点
線のNH3)となり、NH3の分解率は99.8%であ
り、反応最適温度は850℃であってもNH,の分解効
果の上からは700℃でも十分である。但し、700℃
付近の温度域では温度が少しでも低下すると、NH3の
分解が悪くなるので実用上は反応温度域は700℃以上
とすることが好ましい。
Figure 7 shows the same concentration of 02 as when 1500 ppl of 02 alone was injected into coal gasified fuel containing 1000 ppn of NH3.
The reaction time when 500 ppi of NO was injected together with 0.
The concentrations of NHs, No., and 02 after 1 sac are shown relative to the reaction temperature. In Figure 7, N 14
The reaction temperature at which the decomposition of a is maximized is 840°C when only 02 is injected, but it drops to 750°C when 500 ppl of No is injected. That is, the effect of injecting No together with O2 is to reduce the reaction temperature range in which the decomposition of NH3 becomes effective. In addition, the reaction temperature is 700℃
If 500 ppm No is added at the same time, NHa? The degree of a is 2 ppn (NH3 shown by the dotted line in the case of no addition), the decomposition rate of NH3 is 99.8%, and even if the optimum reaction temperature is 850°C, the decomposition effect of NH is 700°C. But it's enough. However, 700℃
If the temperature is lowered even slightly in the vicinity of the temperature range, the decomposition of NH3 will deteriorate, so it is practically preferable that the reaction temperature range is 700°C or higher.

第8図は1ooOpp+iのNH3を含む石炭ガス化燃
料中に02を1000ppH注入する時、それと同時に
注入するNo濃度と反応時間0.1sec後のNH3濃
度、No濃度の関係を示したものである0反応温度は1
000℃である。Nofi度は700ppi以上あれば
NH3は1 ppIlpHl以下分解する。しがしなが
ら、注入すべきN04度が増加すると石炭ガス化燃料中
に残存するNo濃度も急激に増加する。
Figure 8 shows the relationship between the No concentration injected at the same time and the NH3 concentration and No concentration after a reaction time of 0.1 sec when 02 is injected at 1000 ppH into coal gasified fuel containing NH3 of 1ooOpp+i. The reaction temperature is 1
000℃. If the Nofi degree is 700 ppi or more, NH3 will be decomposed to 1 ppIlpHl or less. However, as the N04 degree to be injected increases, the No concentration remaining in the coal gasified fuel also increases rapidly.

2000ppIlのNOを注入すると第6図においては
石炭ガス化燃料中のNo濃度は約100011111と
なる。
When 2000 ppIl of NO is injected, the No concentration in the coal gasified fuel becomes approximately 100011111 in FIG. 6.

また、第9図は窒素酸化物の添加によるアンモニア分解
促進効果とNo濃度との関係を示すグラフである。鎖国
より明らかなようにN O/N H。
Further, FIG. 9 is a graph showing the relationship between the ammonia decomposition promoting effect due to the addition of nitrogen oxides and the No concentration. As is clear from the national isolation, N O/N H.

がモル比において0.5を下回るとアンモニア分解率が
急激に悪化し、1.0を上回るとNO生成濃度が許容さ
れる濃度を越えてしまうことが理解できる。
It can be seen that when the molar ratio is less than 0.5, the ammonia decomposition rate deteriorates rapidly, and when it exceeds 1.0, the NO production concentration exceeds the allowable concentration.

斯様に、注入すべき02濃度とNo濃度を適切に選択し
、最適な温度域に注入することが生成されるNOや残存
する他の組成物が大きな影響を与えない範囲でアンモニ
アを分解するに重要である。
In this way, by appropriately selecting the 02 concentration and No concentration to be injected and injecting in the optimal temperature range, ammonia can be decomposed within a range where the generated NO and other remaining components do not have a large effect. is important.

例えば、NH3の分解に最適な温度域は石炭ガス化燃料
中に含まれるNH3濃度に対して注入する02m度、N
o濃度によって決定される。また反応温度が決定される
と、NH3の分解率とガス化燃料中に残存するNo濃度
から石炭ガス化燃料中のNH3濃度に対して注入すべき
02濃度及びNo濃度が決定される。
For example, the optimal temperature range for the decomposition of NH3 is 02m degrees, which is injected with respect to the NH3 concentration contained in the coal gasified fuel.
o concentration. When the reaction temperature is determined, the 02 concentration and No concentration to be injected to the NH3 concentration in the coal gasified fuel are determined from the NH3 decomposition rate and the No concentration remaining in the gasified fuel.

尚、本発明によるアンモニアの分解効果を確認するため
の反応計算にあたっては、注入した02および窒素酸化
物は石炭ガス化燃料中に均一に混合しているものとして
、反応温度は設定した初期温度において一定とした。
In the reaction calculation to confirm the ammonia decomposition effect of the present invention, it is assumed that the injected 02 and nitrogen oxides are uniformly mixed in the coal gasified fuel, and the reaction temperature is set at the set initial temperature. It was set as constant.

(発明の効果) 以上の説明より明らかなように、本発明は、石炭ガス化
燃料中に700℃以上の温度域において酸素あるいは酸
素を含む気体若しくは蒸発して酸素を生ずる化合物を注
入するようにしているので、石炭ガス化燃料中のNHa
は02とNH3の02による分解の反応過程に伴うNo
と反応して窒素(N2)と水(H2O)に分解され除去
される。
(Effects of the Invention) As is clear from the above explanation, the present invention involves injecting oxygen, an oxygen-containing gas, or a compound that evaporates to produce oxygen into coal gasified fuel in a temperature range of 700°C or higher. Therefore, NHa in coal gasification fuel
is the No. associated with the reaction process of decomposition of 02 and NH3 by 02.
It is decomposed into nitrogen (N2) and water (H2O) and removed.

また、02と共に窒素酸化物を同時に注入することによ
り、NH3の分解反応温度が低下するなめNHaの分解
がより効果的に促進される。
Furthermore, by simultaneously injecting nitrogen oxides with O2, the decomposition reaction temperature of NH3 is lowered, thereby promoting the decomposition of NHa more effectively.

したがって、本発明によると、石炭ガス化燃料中のNH
3を乾式で除去することができ、システム全体の熱効率
の低下を招かず、しかも、ガスタービン燃焼器内で生成
されるNH3に起因するNOxがなくなるため、NOx
の発生量を著しく低減することが可能となる。加えて、
触媒式排煙脱硝装置が不要となり、設備コストが下がる
と共にシステム運転も容易なものとなる。
Therefore, according to the present invention, NH in coal gasified fuel
3 can be removed dryly, without causing a decrease in the thermal efficiency of the entire system, and because NOx caused by NH3 generated in the gas turbine combustor is eliminated, NOx
This makes it possible to significantly reduce the amount of In addition,
This eliminates the need for a catalytic exhaust gas denitrification device, reducing equipment costs and making the system easier to operate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は添加する02濃度に対するMHI濃度、Nof
i度、02の関係を示すグラフ、第2図は反応時間に対
する各化学種の濃度変化を示すグラフ、第3図は02と
NHaの分解と生成N0vA度との関係を示すグラフ、
第4図は反応温度とNH3分解率との関係を示すグラフ
、第5図はNOだけを添加した時のNH3の挙動を示す
グラフ、第6図は02とNOの添加によるNH3の分解
状態を示すグラフ、第7図は反応温度とNH3、NOの
挙動の関係を示すグラフ、第8図はNH3の分解に及ぼ
すNo添加の影響を示すグラフ、第9図はNo添加によ
るNHa分解促進効果とNo濃度との関係を示すグラフ
、第10図は本発明の石炭ガス化燃料の低NOx化処理
を実施する装置の一実施例を示す概略説明図、第11図
は本発明を実施する石炭ガス化複合発電システムの概要
を示すブロック図である。 11・・・ガス化炉、12・・・ガス冷却器、14・・
・クリーンアップ装置、18・・・冷却器。
Figure 1 shows the MHI concentration versus the added 02 concentration, Nof
A graph showing the relationship between i degree and 02, Figure 2 is a graph showing the change in concentration of each chemical species with respect to reaction time, Figure 3 is a graph showing the relationship between 02 and the decomposition of NHa and the generated N0vA degree.
Figure 4 is a graph showing the relationship between reaction temperature and NH3 decomposition rate, Figure 5 is a graph showing the behavior of NH3 when only NO is added, and Figure 6 is a graph showing the state of NH3 decomposition due to the addition of 02 and NO. Figure 7 is a graph showing the relationship between the reaction temperature and the behavior of NH3 and NO, Figure 8 is a graph showing the influence of No addition on the decomposition of NH3, and Figure 9 is a graph showing the effect of No addition on promoting NHa decomposition. A graph showing the relationship with the No concentration, FIG. 10 is a schematic explanatory diagram showing an embodiment of the apparatus for carrying out the NOx reduction treatment of coal gasified fuel of the present invention, and FIG. 11 is a graph showing the relationship between the NOx concentration and the coal gas 1 is a block diagram showing an overview of a combined cycle power generation system. 11... Gasifier, 12... Gas cooler, 14...
-Cleanup device, 18...Cooler.

Claims (8)

【特許請求の範囲】[Claims] (1)アンモニアを含む石炭ガス化燃料中に、700℃
以上の温度域において酸素あるいは酸素を含む気体若し
くは蒸発して酸素ガスを生ずる化合物を注入することを
特徴とする石炭ガス化燃料低NOx化処理方法。
(1) 700℃ in coal gasified fuel containing ammonia
A coal gasified fuel NOx reduction treatment method characterized by injecting oxygen, a gas containing oxygen, or a compound that evaporates to produce oxygen gas in the above temperature range.
(2)前記酸素の注入量はアンモニアに対し濃度比O_
2/NH_3で1〜3であることを特徴とする請求項1
記載の石炭ガス化燃料低NOx化処理方法。
(2) The amount of oxygen injected is a concentration ratio of O_ to ammonia.
Claim 1 characterized in that 2/NH_3 is 1 to 3.
The coal gasification fuel NOx reduction treatment method described.
(3)アンモニアを含む石炭ガス化燃料中に600℃以
上の温度域において酸素あるいは酸素を含む気体若しく
は蒸発して酸素ガスを生ずる化合物と共に窒素酸化物を
注入することを特徴とする石炭ガス化燃料低NOx化処
理方法。
(3) A coal gasified fuel containing ammonia, which is characterized by injecting nitrogen oxides together with oxygen, a gas containing oxygen, or a compound that evaporates to produce oxygen gas in a temperature range of 600°C or higher. Low NOx treatment method.
(4)前記酸素の注入量はアンモニアに対し濃度比O_
2/NH_3で1〜3であり、かつ窒素酸化物の注入量
はアンモニアに対し濃度比NO/NH_3で0.5〜1
の範囲であることを特徴とする請求項3に記載の石炭ガ
ス化燃料低NOx化処理方法。
(4) The amount of oxygen injected is a concentration ratio of O_ to that of ammonia.
2/NH_3 is 1 to 3, and the injection amount of nitrogen oxide is 0.5 to 1 with a concentration ratio of NO/NH_3 to ammonia.
4. The coal gasification fuel NOx reduction treatment method according to claim 3, wherein the NOx reduction treatment method is within the range of .
(5)前記酸素及び窒素酸化物は石炭ガス化複合発電シ
ステムの石炭ガス化炉とガス冷却器の間あるいはガス冷
却器内で注入することを特徴とする請求項1ないし4の
いずれかに記載の石炭ガス化燃料低NOx化処理方法。
(5) The oxygen and nitrogen oxides are injected between the coal gasifier and the gas cooler of the combined coal gasification combined cycle power generation system or within the gas cooler. Coal gasification fuel NOx reduction treatment method.
(6)前記酸素及び窒素酸化物は石炭ガス化複合発電シ
ステムから抽気された脱硫脱塵後の石炭ガス化燃料で希
釈してから注入することを特徴とする請求項5記載の石
炭ガス化燃料低NOx化処理方法。
(6) The coal gasified fuel according to claim 5, wherein the oxygen and nitrogen oxides are diluted with desulfurized and dedusted coal gasified fuel extracted from a coal gasification combined cycle power generation system, and then injected. Low NOx treatment method.
(7)前記酸素及び窒素酸化物は石炭ガス化複合発電シ
ステムから一部抽気された脱硫脱塵後の石炭ガス化燃料
で希釈し、冷却状態にしてから注入することを特徴とす
る請求項5記載の石炭ガス化燃料低NOx化処理方法。
(7) The oxygen and nitrogen oxides are diluted with desulfurized and dedusted coal gasified fuel partially extracted from the coal gasification combined cycle power generation system, and are cooled before being injected. The coal gasification fuel NOx reduction treatment method described.
(8)蒸発して酸素ガスを生ずる化合物は過酸化水素水
であることを特徴とする請求項1ないし5のいずれかに
記載の石炭ガス化燃料低NOx化処理方法。
(8) The coal gasification fuel NOx reduction treatment method according to any one of claims 1 to 5, wherein the compound that evaporates to produce oxygen gas is a hydrogen peroxide solution.
JP63156027A 1988-06-25 1988-06-25 Method of decreasing nox content in gasified coal fuel Granted JPH026598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63156027A JPH026598A (en) 1988-06-25 1988-06-25 Method of decreasing nox content in gasified coal fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63156027A JPH026598A (en) 1988-06-25 1988-06-25 Method of decreasing nox content in gasified coal fuel

Publications (2)

Publication Number Publication Date
JPH026598A true JPH026598A (en) 1990-01-10
JPH0428039B2 JPH0428039B2 (en) 1992-05-13

Family

ID=15618712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63156027A Granted JPH026598A (en) 1988-06-25 1988-06-25 Method of decreasing nox content in gasified coal fuel

Country Status (1)

Country Link
JP (1) JPH026598A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5489316A (en) * 1994-04-14 1996-02-06 Enichem Synthesis S.P.A. Process for making industrial organic solvents and hydrocarbons used as fuels

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5489316A (en) * 1994-04-14 1996-02-06 Enichem Synthesis S.P.A. Process for making industrial organic solvents and hydrocarbons used as fuels

Also Published As

Publication number Publication date
JPH0428039B2 (en) 1992-05-13

Similar Documents

Publication Publication Date Title
JP3924150B2 (en) Gas combustion treatment method and apparatus
US8691170B2 (en) System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases
US4325924A (en) Urea reduction of NOx in fuel rich combustion effluents
KR101807996B1 (en) Combined De-NOx System using Heterogeneous Reducing agent for Reducing Yellow Plume and NOx
US5120516A (en) Process for removing nox emissions from combustion effluents
BRPI0620195B1 (en) METHOD FOR TREATING A GAS CURRENT RESIDUAL REGENERATOR
EP3647659A1 (en) Gas combustion treatment device, combustion treatment method, and gas purification system provided with gas combustion treatment device
US7462235B2 (en) System and method for decomposing ammonia from fly ash
JP3558737B2 (en) Exhaust gas denitration method and exhaust gas treatment method
KR100437875B1 (en) NOx reduction system by selective catalytic reduction available for urea as reducing agent
JPH026598A (en) Method of decreasing nox content in gasified coal fuel
CN100434142C (en) Process for realizing medium temperature dry-method direct denitration of flue gas by using ethanol
WO2009144931A1 (en) Method of operating hydrolytic separator
JP2013142481A (en) Method and apparatus for denitration in incinerator
CN206463781U (en) A kind of desulfuring and denitrifying apparatus of coke oven flue gas
JPH02105889A (en) Method for reducing nitrogen oxide content of gasified coal fuel
JP3947892B2 (en) Sulfur content recovery method and gasification plant to which the sulfur content recovery method is applied
KR100876161B1 (en) Total nox control process
KR100739124B1 (en) Nox reduction system based on selective catalytic reduction
US6123910A (en) Method of predicting and controlling harmful oxide and apparatus therefor
JP4381881B2 (en) Flue gas denitration device and starting method thereof
JPH11235516A (en) Denitrification device for exhaust gas
JPH11300164A (en) Boiler plant having denitration device, and denitration method
JP2587469B2 (en) NOx reduction treatment method for coal gasified fuel
JPS5858132B2 (en) Method for reducing nitrogen oxides in exhaust gas