JPH026590A - Production of phosphor - Google Patents

Production of phosphor

Info

Publication number
JPH026590A
JPH026590A JP15489788A JP15489788A JPH026590A JP H026590 A JPH026590 A JP H026590A JP 15489788 A JP15489788 A JP 15489788A JP 15489788 A JP15489788 A JP 15489788A JP H026590 A JPH026590 A JP H026590A
Authority
JP
Japan
Prior art keywords
phosphor
mol
rare earth
boron
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15489788A
Other languages
Japanese (ja)
Other versions
JP2625000B2 (en
Inventor
Takamichi Yamada
山田 敞馗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP15489788A priority Critical patent/JP2625000B2/en
Publication of JPH026590A publication Critical patent/JPH026590A/en
Application granted granted Critical
Publication of JP2625000B2 publication Critical patent/JP2625000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conversion Of X-Rays Into Visible Images (AREA)
  • Measurement Of Radiation (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To improve the emission efficiency of a scintillator by adding a boron compd. to a rare earth oxysulfide phosphor, thereby increasing its mean particle diameter during the production of a phosphor useful as a material for the scintillator for X-ray use. CONSTITUTION:Oxides of the formula (where Ln is Y, La or Gd; M is Pr, Eu or Tb; and x is 0.00003-0.1), phosphates of Ln and M (wherein the number of Ln and M atoms of the salts is 3-30% of the total number of Ln and M atoms) (e.g., GDPO4), Ce compds. which generate Ce2O3 when thermally decomposed (e.g., Ce nitrate) compsns. which generate alkali (poly)sulfide when heated, boron compds. (e.g., H3BO4 or B2O3), and fluorine or chlorine compounds (e.g., NH4PF6) are mixed together. The mixture is fired, cooled and washed with water to give a phosphor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えばX線用シンチレータとして優れた特性
を示す、透明度の高い希土類オキシサルファイドセラミ
ックスを得るために好適な大粒径の希土類オキシサルフ
ァイド系の螢光体の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a large particle diameter rare earth oxysulfide ceramic suitable for obtaining highly transparent rare earth oxysulfide ceramics that exhibit excellent properties as, for example, an X-ray scintillator. The present invention relates to a method for producing a type of phosphor.

〔従来の技術〕[Conventional technology]

希土類オキシサルファイド系の螢光体については、米国
特許第3418246号に付活剤で活性化した該螢光体
が開示されている。また、米国特許第3502590号
に、該螢光体の実用的な製造方法についての記載がある
。後者の製造方法は、酸化ガドリニウム(adzoa)
−酸化ランタン(Laioi)および酸化イツトリウム
(y z○3)の中から選ばれる少なくとも1種の酸化
物と、付活剤としての希土類酸化物および加熱によって
硫化アルカリおよびポリ硫化アルカリを生ずる組成物と
からなる混合物を700〜1250℃で加熱する工程と
、次いでその加熱生成物を冷却する工程とからなる方法
で、上記工程を経て得られた試料を水洗して水溶性物質
(硫化アルカリ)を除去することによって、平均粒径1
〜8μmの希土類オキシサルファイド螢光体が得られて
いる。
Regarding rare earth oxysulfide-based phosphors, US Pat. No. 3,418,246 discloses the phosphors activated with an activator. Further, US Pat. No. 3,502,590 describes a practical method for manufacturing the phosphor. The latter manufacturing method uses gadolinium oxide (adzoa)
- at least one oxide selected from lanthanum oxide (Laioi) and yztrium oxide (yz○3), a rare earth oxide as an activator, and a composition that generates alkali sulfide and polyalkali sulfide upon heating; A method consisting of a step of heating a mixture consisting of 700 to 1250 ° C., and then a step of cooling the heated product, and washing the sample obtained through the above steps with water to remove water-soluble substances (alkali sulfide). By doing this, the average particle size 1
~8 μm rare earth oxysulfide phosphors have been obtained.

また、上記製造方法の改良として、希土類酸化物の一部
を希土類リン酸塩で置換する方法が特開昭第55−15
7678号に開示されている。
In addition, as an improvement to the above manufacturing method, a method of substituting a part of the rare earth oxide with a rare earth phosphate was published in Japanese Patent Application Laid-open No. 55-15.
No. 7678.

〔発明が解決しようとする課題〕 X線用シンチレータとして優れた特性を示す希土類オキ
シサルファイドセラミックスについて、透明度の高い高
効率の該セラミックスを得るためには、その原材料とな
る希土類オキシサルファイド螢光体ができるだけ大粒径
であることが望ましいが、上記従来技術の方法によって
得られる螢光体は平均粒径が高々10μmに止まってい
た。
[Problem to be solved by the invention] Regarding rare earth oxysulfide ceramics that exhibit excellent properties as an X-ray scintillator, in order to obtain highly transparent and highly efficient ceramics, it is necessary to Although it is desirable to have as large a particle size as possible, the average particle size of the phosphor obtained by the above-mentioned prior art method was no more than 10 μm.

本発明の目的は、平均粒径が少なくとも20μm以上の
希土類オキシサルファイド螢光体を得ることのできる製
造方法を提供することにある。
An object of the present invention is to provide a manufacturing method capable of obtaining a rare earth oxysulfide phosphor having an average particle size of at least 20 μm or more.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、−数式(Ln、−x Mx )x Oa 
(但し、LnはY、La、Gdの中から選ばれる少なく
とも1種の元素、MはPr、Eu、Tbの中から選ばれ
る少なくとも1種の元素、Xは0.00001〜0.1
の範囲の値)で表わされる酸化物、LnおよびMのリン
酸塩化合物、加熱分解によってCe2o3を生ずるCe
化合物、加熱により硫化アルカリおよびポリ硫化アルカ
リを生ずる組成物、ホウ素化合物およびフッ素化合物か
らなる混合物を900〜1400℃の温度で加熱焼成す
る工程と、次いで、該焼成生成物を冷却した後水洗する
工程とからなる製造方法を適用することによって達成す
ることができる。
The above purpose is - Formula (Ln, -x Mx ) x Oa
(However, Ln is at least one element selected from Y, La, and Gd, M is at least one element selected from Pr, Eu, and Tb, and X is 0.00001 to 0.1
), phosphate compounds of Ln and M, Ce2o3 which is produced by thermal decomposition
A step of heating and baking a mixture consisting of a compound, a composition that produces an alkali sulfide and alkali polysulfide when heated, a boron compound and a fluorine compound at a temperature of 900 to 1400°C, and then a step of cooling the baked product and washing it with water. This can be achieved by applying a manufacturing method consisting of.

〔作  用〕[For production]

本発明方法のもっとも特徴とするところは、希土類オキ
シサルファイド螢光体の製造方法において、従来技術に
おける材料組成に加えて、さらに、ホウ素化合物を用い
たことにある。ここで、該ホウ素化合物としては、H,
BO,、B、O,、Li。
The most distinctive feature of the method of the present invention is that, in addition to the material composition used in the prior art, a boron compound is used in the method for producing a rare earth oxysulfide phosphor. Here, the boron compound includes H,
BO,,B,O,,Li.

B40t、Na、B、O,、x * B2Ot、K、B
、O,、NaBO,およびLiBO,の中から選ばれる
少なくとも1種のホウ素化合物を用いることが望ましく
、平均粒径20μm以上の希土類オキシサルファイド螢
光体を得るための該ホウ素化合物の量は、ホウ素原子に
換算して、希土類元素1グラム原子当り0.02〜0.
4グラム原子の範囲が適当である。0.4グラム原子よ
りも多量に添加した場合には得られる螢光体粒子径はさ
らに大きくなるが、螢光体中に非発光物質が混入してく
るので好ましくない、なお、ホウ素化合物としては、上
記した化合物以外に、加熱によってホウ素化合物を生ず
るような混合物成分を用いてもよい6 フッ素化合物あるいは塩素化合物およびCe化合物を添
加した理由は特公昭第60−4856号に開示されてい
るので割愛する。
B40t, Na, B, O,, x * B2Ot, K, B
It is desirable to use at least one boron compound selected from , O, , NaBO, and LiBO, and the amount of the boron compound to obtain a rare earth oxysulfide phosphor having an average particle size of 20 μm or more is In terms of atoms, 0.02 to 0.0.
A range of 4 gram atoms is suitable. If it is added in an amount larger than 0.4 gram atoms, the resulting phosphor particle size will become even larger, but this is not preferable because non-luminescent substances will be mixed into the phosphor. In addition to the above-mentioned compounds, mixture components that produce boron compounds when heated may also be used.6 The reasons for adding fluorine compounds or chlorine compounds and Ce compounds are disclosed in Japanese Patent Publication No. 60-4856, so we omit the explanation here. do.

また、付活剤としての希土類酸化物としては、酸化プラ
セオジム、酸化テルビウムおよび酸化ユーロピウムの中
から選ばれる少なくとも1種の酸化物を用いることが望
ましいが、他の希土類酸化物を用いてもよい。
Further, as the rare earth oxide as the activator, it is desirable to use at least one oxide selected from praseodymium oxide, terbium oxide, and europium oxide, but other rare earth oxides may be used.

上述の製造方法を用いて作成した平均粒径38μmのG
d、O,S : Pr螢光体を用いてXQCT用固体検
出器を作成して、その特性を調べた。すなわち、まず、
上記Gd、O,S : Pr螢光体に焼結助剤として0
.1重量パーセントのLi、GeF、を加えて混合し、
これを鉄製のカプセルに詰め、真空封止した後、 13
00℃、1000気圧、3時間の条件で熱間静水圧加圧
成形(Hot l5ostatic Pressing
、 HIF)を行った0次いで、鉄容器を除去して焼結
成形体を取り出し、厚さ1.2fflに加工した後、シ
リコンホトダイオードと組合わせて固体検出器を作製し
た。この検出器にX線(管電圧tzokv、電流200
mA)を照射した場合の発光出力は、従来の製造方法で
作成した平均粒径5μmの同一組成の螢光体を用いて上
記と同様の方法で作製した固体検出器の発光出力と比べ
、約1.7倍の値を示した。
G with an average particle size of 38 μm produced using the above manufacturing method
A solid-state detector for XQCT was created using a d, O, S: Pr phosphor, and its characteristics were investigated. That is, first,
The above Gd, O, S: 0 as a sintering aid in the Pr phosphor
.. Add and mix 1 weight percent Li, GeF,
After filling this into an iron capsule and vacuum sealing it, 13
Hot isostatic pressing at 00°C, 1000 atm, and 3 hours.
Then, the iron container was removed, the sintered compact was taken out, processed to a thickness of 1.2 ffl, and combined with a silicon photodiode to fabricate a solid-state detector. X-rays (tube voltage tzokv, current 200
The luminescence output when irradiated with 5 mA) is approximately 100% compared to the luminescence output of a solid-state detector manufactured in the same manner as above using a phosphor of the same composition with an average particle size of 5 μm manufactured by a conventional manufacturing method. The value was 1.7 times higher.

ここで、平均粒径38μmの螢光体を用いて作製した固
体検出器の方が発光出力が高い値を示すのは、焼結体に
おける粒界が少なく、光の散乱や吸収が少なくなるため
と思われる。この焼結体シンチレータはX線CT用とし
て極めて有用である。
Here, the solid-state detector made using a phosphor with an average particle size of 38 μm exhibits a higher luminescence output value because there are fewer grain boundaries in the sintered body, which reduces light scattering and absorption. I think that the. This sintered scintillator is extremely useful for X-ray CT.

〔実施例〕〔Example〕

以下、本発明の螢光体の製造方法について、実施例によ
って具体的に説明する。
Hereinafter, the method for manufacturing a phosphor of the present invention will be specifically explained with reference to Examples.

実施例 1〜8 まず、下記材料をビーカーに秤量採取し、これに水を加
えて十分混合した後乾燥する。
Examples 1 to 8 First, the following materials were weighed and collected in a beaker, water was added thereto, the mixture was thoroughly mixed, and then dried.

G d、 0 、         0.9191モル
GdPO40,1598モル Pr、 O,、0,00033モル Go(N O,)、 ・6 H2O0,0OOOL2モ
ル次いで、上記混合物をアクリル製のびんに入れ。
G d, 0, 0.9191 mol GdPO 40,1598 mol Pr, O,, 0,00033 mol Go (N O,), .6 H2O 0,0 OOOL 2 mol Next, the above mixture was placed in an acrylic bottle.

さらに下記材料を加え、びんを回転して内容物を良く混
合させる。
Add the following ingredients and rotate the bottle to mix the contents well.

8            3.29モルNa、 C0
,0,452モル LL、C0,0,452モル に、 P O40,121モ/l/ N H,P F、         0.030モルホ
ウ素化合物      希土類元素1グラ(第1表第2
欄)    ム原子当り0.12グラム原子のホウ素 を含む量 この混合材料をアルミするつぼに詰め、アルミナのふた
をした後、空気中1250℃で6時間焼成する。
8 3.29 mol Na, C0
, 0,452 mol LL, C 0,0,452 mol, P O 40,121 mol/l/NH, PF, 0.030 mol boron compound 1 gram of rare earth element (Table 1, 2
Column) Amount containing 0.12 g atom of boron per atomic atom This mixed material is packed in an aluminum crucible, covered with an alumina lid, and then calcined in air at 1250° C. for 6 hours.

焼成物をるつぼから取り出し、純水を加えてスタージー
で攪拌する。このとき、N a 2 S xが純水に溶
出するため溶液が黄色となるが、これが無色となるまで
水洗を繰り返す1次いで、0.15規定のH(11で処
理した後、再び水洗し、得られた螢光体を140℃で乾
燥する。
Remove the fired product from the crucible, add pure water, and stir with a stargie. At this time, the solution becomes yellow because the Na 2 S The obtained phosphor is dried at 140°C.

このようにして得られた螢光体はいずれも(Gdo 5
ssPro lllllcem to−b)zozs 
: (F)の組成からなるものであり、その平均粒径(
顕微鏡写真から求めた)を、添加したホウ素化合物の種
類とともに、第1表に示した。なお、表中で、Lnは配
合したすべての希土類元素を示すものである。
All of the phosphors obtained in this way (Gdo 5
ssPro llllllcem to-b) zozs
: It consists of the composition of (F), and its average particle size (
(determined from micrographs) are shown in Table 1 along with the type of boron compound added. In addition, in the table, Ln indicates all the rare earth elements blended.

表の結果かられかるように、螢光体製造の材料成分とし
てホウ素化合物を加えることによって。
As can be seen from the results in the table, by adding boron compounds as material components for phosphor production.

添加しないものに比べて、非常に大きな平均粒径を有す
る螢光体を得ることができる。
It is possible to obtain a phosphor having a much larger average particle size than that without the addition.

第   1   表 実施例 9 下記材料をビーカーに秤量採取し、これに水を加えて十
分混合した後乾燥する。
Table 1 Example 9 The following materials were weighed into a beaker, water was added thereto, mixed thoroughly, and then dried.

Lato、          0.9191モルLa
P 0.         0.1598モルPr、0
1□0.00033モル C6(N 03)3 ・6 Hz OO,000012
モ)t/次いで、上記混合物をアクリル製のびんに入れ
、さらに下記材料を加え、びんを回転して内容物を良く
混合させる。
Lato, 0.9191 mol La
P0. 0.1598 mol Pr, 0
1□0.00033 mol C6(N 03)3 ・6 Hz OO,000012
M) Next, put the above mixture into an acrylic bottle, add the following materials, and rotate the bottle to mix the contents well.

S             3.29モルNa、 C
0,0,452モル Li2C0,0,452モル に3PO40,121モル NH4PF、        0.030モルLi、B
2O,0,060モル この後の工程は実施例1〜8の場合と同様にして焼成、
水洗、酸洗処理等を行った。
S 3.29 mol Na, C
0,0,452 mol Li2C0,0,452 mol 3PO40,121 mol NH4PF, 0.030 mol Li,B
2O, 0,060 mol The subsequent steps were the same as in Examples 1 to 8, calcination,
Washing with water, pickling, etc. were performed.

得られた螢光体は(L 861gg P rg、 61
)ICeGx、、−4)、 o2S : (F )の組
成を有するものであり、その平均粒径は38μmであっ
た。
The obtained phosphor was (L 861gg P rg, 61
) ICeGx, -4), o2S: (F), and its average particle size was 38 μm.

実施例 10 実施例9におけるLa20.およびLaPO4の代りに
それぞれY、O,およびypo、を用い、他は実施例9
の場合と同様にして螢光体を製造した。
Example 10 La20 in Example 9. and Y, O, and ypo were used in place of LaPO4, and the others were Example 9.
A phosphor was produced in the same manner as in the case of .

得られた螢光体は(Y、、 、、、 Pr、、、。1C
atx1o−6)、 Ox S : (F )の組成を
有するものであり、その平均粒径は36μmであった。
The obtained phosphor is (Y, , , , Pr, , .1C
atx1o-6), OxS: (F), and its average particle size was 36 μm.

実施例 11 実施例3におけるホウ素化合物Li2B、O,の量を0
.01モル(希土類元素1グラム原子に対して0.02
グラム原子のホウ素を含む)とし、他は実施例1〜8の
場合と同様条件で処理して螢光体を製造した。
Example 11 The amount of boron compound Li2B, O, in Example 3 was reduced to 0.
.. 01 mole (0.02 per gram atom of rare earth element)
(containing gram atom boron), and other conditions were the same as in Examples 1 to 8 to produce phosphors.

得られた螢光体は(Gd、、sss p r、、 aa
xCe、xl、−6)202S:(F)の組成を有する
ものであり、その平均粒径は25μmであった。
The obtained phosphor is (Gd,, sss pr,, aa
xCe, xl, -6) 202S:(F), and its average particle size was 25 μm.

実施例 12 実施例3におけるホウ素化合物Li、B、07の量を0
.2モル(希土類元素1グラム原子に対して0.4ダラ
ム原子のホウ素を含む)とし、他は実施例1〜8の場合
と同様条件で処理して螢光体を製造した。
Example 12 The amount of boron compound Li, B, 07 in Example 3 was reduced to 0.
.. 2 mol (contains 0.4 Durham atoms of boron per gram atom of the rare earth element), and otherwise processed under the same conditions as in Examples 1 to 8 to produce phosphors.

得られた螢光体は(Gd、、 sss P r、、 o
。、CeGXl、−6)、 o、 S : (F )の
組成を有するものであり、その平均粒径は45μmであ
った。
The obtained phosphor is (Gd,, sss P r,, o
. , CeGXl, -6), o, S: (F), and its average particle size was 45 μm.

実施例 13 下記材料をビーカーに秤量採取し、これに水を加えて十
分混合した後乾燥する。
Example 13 The following materials were weighed into a beaker, water was added thereto, thoroughly mixed, and then dried.

G d、 030.4196モル L a、 0 、         0.4995モル
GdP O40,1598モル Pr、Ol、          0.00033モル
Ce(NO3)3 ” 6 Hz○  0,00001
2モル次いで、上記混合物をアクリル製のびんに入れ、
さらに下記材料を加え、びんを回転して内容物を良く混
合させる。
G d, 0.4196 mole La, 0, 0.4995 mole GdP O40,1598 mole Pr, Ol, 0.00033 mole Ce(NO3)3'' 6 Hz○ 0,00001
2 mol Then, put the above mixture into an acrylic bottle,
Add the following ingredients and rotate the bottle to mix the contents well.

S             3.29モルNa、 G
 O30,452モル Li、 G O,0,452モ/L/ に、 P O40,121モル NH4PF、         0.030モルLL、
B40.        0.060モルこの混合材料
をアルミするつぼに詰め、アルミナのふたをした後、空
気中1250℃で6時間の焼成を行った。その後の工程
は実施例1〜8の場合と同様の条件で処理して螢光体の
作製を行った。
S 3.29 mol Na, G
O30,452 mol Li, GO, 0,452 mo/L/, PO40,121 mol NH4PF, 0.030 mol LL,
B40. 0.060 mol of this mixed material was packed in an aluminum crucible, covered with an alumina lid, and then fired in air at 1250° C. for 6 hours. The subsequent steps were carried out under the same conditions as in Examples 1 to 8 to produce a phosphor.

得られた螢光体は(Gd0.4に9MG La、、 4
sssPrl、、、、、CeBlo−リ、02S:(F
)の組成を有するものであり、その平均粒径は36μm
であった。
The obtained phosphor was (Gd0.4 to 9MG La, 4
sssPrl, , , CeBlo-ri, 02S: (F
), and its average particle size is 36 μm.
Met.

実施例 14 実施例13におけるLa、0,0.4995モルの代り
にY2O,0,4995モルを用い、他は実施例13の
場合と同様条件で螢光体を製造した。
Example 14 A phosphor was produced under the same conditions as in Example 13 except that 0.4995 mol of Y2O was used in place of 0.4995 mol of La in Example 13.

得られた螢光体は(Gdo、sss y、、4sssP
 ro、 oo、Ce、Xi、−6)2o2S : (
F )の組成を有するものであり、その平均粒径は35
μmであった。
The obtained phosphor was (Gdo, sss y, 4sssP
ro, oo, Ce, Xi, -6)2o2S: (
F), and its average particle size is 35
It was μm.

上記の諸実施例においては材料成分の一つとしてフッ素
化合物NH4PF、を用いた場合について説明してきた
が、この代りにKCQ等の塩素化合物を用いても同様の
結果が得られている。
In the above examples, the case where the fluorine compound NH4PF is used as one of the material components has been described, but similar results have been obtained when a chlorine compound such as KCQ is used instead.

また、ホウ素化合物の混合形態として上記諸実施例にお
イテはH2BO3、B、O,、Li、B4O7、K、B
40.、に、B、04.NaBO2およびLiB O。
In addition, as the mixed form of the boron compound, H2BO3, B, O,, Li, B4O7, K, B
40. , to, B, 04. NaBO2 and LiBO.

の中から選ばれる少なくとも1種の化合物を用いた場合
について説明したが、混合形態としてはこれに限定する
ものではなく、例えばLi、B、O□の代りにLi、G
o、とB2O3との混合物。
Although the case where at least one compound selected from among these is used has been described, the mixed form is not limited to this. For example, Li, G instead of Li, B, and O□ are used.
o, and a mixture of B2O3.

Na、B40.の代りにNa、Go、とB20.との混
合物など反応によって容易に上記化合物を生ずるような
原材料を用いても同様の結果が得られることは言うまで
もない。
Na, B40. Instead of Na, Go, and B20. It goes without saying that similar results can be obtained by using raw materials that easily produce the above-mentioned compounds by reaction, such as mixtures with .

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように、シンチレータ用希土類オキシサ
ルファイドセラミックス製造用材料としての希土類オキ
シサルファイド螢光体の製造において、本発明の製造方
法、特に焼成材料成分の一つとしてホウ素化合物を希土
類元素1グラム原子当り0.02〜0.4グラム原子の
範囲の量で用いること、によって、従来技術の有してい
た課題を解決して、平均粒径の大きな希土類オキシサル
ファイド螢光体を得ることができた。
As described above, in the production of a rare earth oxysulfide phosphor as a material for producing rare earth oxysulfide ceramics for scintillators, the production method of the present invention is used, particularly when a boron compound is added as one of the components of the fired material to 1 gram atom of the rare earth element. By using an amount in the range of 0.02 to 0.4 gram atom per gram atom, it was possible to solve the problems of the prior art and obtain a rare earth oxysulfide phosphor with a large average particle size. .

また、この螢光体を用いて熱間静水圧加圧法でセラミッ
クシンチレータを作製することによって、極めて発光効
率の高いX1iCT用検出器を得ることができた。
In addition, by producing a ceramic scintillator using this phosphor by hot isostatic pressing, it was possible to obtain a detector for X1iCT with extremely high luminous efficiency.

Claims (2)

【特許請求の範囲】[Claims] 1. 下記(A)、(B)、(C)、(D)、(E)、
(F)の成分からなる混合物を加熱焼成する工程と、次
いで、該焼成物を冷却後水洗する工程とからなることを
特徴とする螢光体の製造方法。 (A) 一般式(Ln_1_−_x M_x)_2O_
3で表わされる酸化物。但し、LnはY、La、Gdの
中から選ばれる少なくとも1種の元素、MはPr、Eu
、Tbの中から選ばれる少なくとも1種の元素、xは0
.00003〜0.1の範囲の値。 (B) 元素LnおよびMのリン酸塩化合物。量はLn
とMとの総原子数の3〜30原子パーセントの範囲。 (C) 加熱分解によってCe_2O_3を生ずるCe
化合物。 (D) 加熱により硫化アルカリおよびポリ硫化アルカ
リを生ずる組成物。 (E) ホウ素化合物。 (F) フッ素化合物あるいは塩素化合物。
1. The following (A), (B), (C), (D), (E),
A method for producing a phosphor, comprising the steps of heating and baking a mixture consisting of the components (F), and then washing the baked product with water after cooling. (A) General formula (Ln_1_-_x M_x)_2O_
Oxide represented by 3. However, Ln is at least one element selected from Y, La, and Gd, and M is Pr and Eu.
, at least one element selected from Tb, x is 0
.. Values in the range 00003 to 0.1. (B) Phosphate compounds of elements Ln and M. The amount is Ln
and M in the range of 3 to 30 atomic percent of the total number of atoms. (C) Ce that produces Ce_2O_3 by thermal decomposition
Compound. (D) A composition that produces alkali sulfide and alkali polysulfide upon heating. (E) Boron compound. (F) Fluorine compounds or chlorine compounds.
2. 上記ホウ素化合物がH_3BO_3、B_2O_
3、Li_2B_4O_7、Na_8B_4O_7、K
_2B_4O_7、K_2B_2O_4、NaBO_2
およびLiBO_2の中から選ばれる少なくとも1種の
ホウ素化合物であることを特徴とする特許請求の範囲第
1項記載の螢光体の製造方法。
2. The above boron compounds are H_3BO_3, B_2O_
3, Li_2B_4O_7, Na_8B_4O_7, K
_2B_4O_7, K_2B_2O_4, NaBO_2
2. The method for producing a phosphor according to claim 1, wherein the phosphor is at least one boron compound selected from LiBO_2 and LiBO_2.
JP15489788A 1988-06-24 1988-06-24 Phosphor manufacturing method Expired - Fee Related JP2625000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15489788A JP2625000B2 (en) 1988-06-24 1988-06-24 Phosphor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15489788A JP2625000B2 (en) 1988-06-24 1988-06-24 Phosphor manufacturing method

Publications (2)

Publication Number Publication Date
JPH026590A true JPH026590A (en) 1990-01-10
JP2625000B2 JP2625000B2 (en) 1997-06-25

Family

ID=15594349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15489788A Expired - Fee Related JP2625000B2 (en) 1988-06-24 1988-06-24 Phosphor manufacturing method

Country Status (1)

Country Link
JP (1) JP2625000B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178554A (en) * 1998-10-28 2000-06-27 General Electric Co <Ge> Rare earth x-ray scintillator composition
JP2004238583A (en) * 2003-02-10 2004-08-26 Toshiba Corp Scintillator and radiation testing apparatus using the same
US7230248B2 (en) * 2003-09-24 2007-06-12 Kabushiki Kaisha Toshiba Ceramic scintillator, and radiation detector and radiographic examination apparatus using same
EP1816241A1 (en) * 2004-11-08 2007-08-08 Tohoku University Pr-CONTAINING SINGLE CRYSTAL FOR SCINTILLATOR, PROCESS FOR PRODUCING THE SAME, RADIATION DETECTOR AND INSPECTION APPARATUS

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178554A (en) * 1998-10-28 2000-06-27 General Electric Co <Ge> Rare earth x-ray scintillator composition
JP2004238583A (en) * 2003-02-10 2004-08-26 Toshiba Corp Scintillator and radiation testing apparatus using the same
US7230248B2 (en) * 2003-09-24 2007-06-12 Kabushiki Kaisha Toshiba Ceramic scintillator, and radiation detector and radiographic examination apparatus using same
EP1816241A1 (en) * 2004-11-08 2007-08-08 Tohoku University Pr-CONTAINING SINGLE CRYSTAL FOR SCINTILLATOR, PROCESS FOR PRODUCING THE SAME, RADIATION DETECTOR AND INSPECTION APPARATUS
JPWO2006049284A1 (en) * 2004-11-08 2008-08-07 株式会社 東北テクノアーチ Single crystal for scintillator containing Pr, manufacturing method thereof, radiation detector and inspection apparatus
EP1816241A4 (en) * 2004-11-08 2010-04-28 Tohoku Techno Arch Co Ltd Pr-CONTAINING SINGLE CRYSTAL FOR SCINTILLATOR, PROCESS FOR PRODUCING THE SAME, RADIATION DETECTOR AND INSPECTION APPARATUS
CN102888652A (en) * 2004-11-08 2013-01-23 东北泰克诺亚奇股份有限公司 Pr-containing single crystal for scintillator, process for producing the same, radiation detector and inspection apparatus
JP5389328B2 (en) * 2004-11-08 2014-01-15 株式会社 東北テクノアーチ Single crystal for scintillator containing Pr, its manufacturing method, radiation detector and inspection apparatus
US9834858B2 (en) 2004-11-08 2017-12-05 Tohoku Techno Arch Co., Ltd. Pr-containing scintillator single crystal, method of manufacturing the same, radiation detector, and inspection apparatus

Also Published As

Publication number Publication date
JP2625000B2 (en) 1997-06-25

Similar Documents

Publication Publication Date Title
CA1082877A (en) (hf in1-x xxzr.sub.x).sub.3p.sub.2o in11 xx luminescent material
CA1094288A (en) Hexagonal hafnium zirconium phosphate luminescent material
EP0095741B1 (en) Phosphor
JPS627958B2 (en)
JP3194828B2 (en) Sintered phosphor, method of manufacturing the same, radiation detector and X-ray tomography apparatus using the sintered phosphor
JPH0355517B2 (en)
JP2001348273A (en) Ceramics, method of producing ceramics powder, and method of producing ceramics
US3577350A (en) Europium and manganese activated sodium or potassium aluminate phosphors
JPH026590A (en) Production of phosphor
JP3260541B2 (en) Phosphor powder, ceramic scintillator and method for producing the same
US3562175A (en) Gadolinium oxide particle growth in lithium oxide flux
JPH03243686A (en) Ceramic scintillator
CN112745840B (en) Near-infrared silicate germanate long-afterglow luminescent material and preparation method thereof
Mbarek et al. Vacuum ultraviolet excited luminescence properties of sol–gel derived GdP5O14: Eu3+ powders
US5560867A (en) Phosphor with an additive for reducing afterglow
KR0133524B1 (en) Phosphor
JP2851006B2 (en) Phosphor
JPH0152432B2 (en)
US5783106A (en) Lithium doped terbium activated gadolinium oxysulfide phosphor
CA1096158A (en) Yitrium indium phosphate x-ray phosphors
KR101565910B1 (en) Method of strontium aluminate phosphor with long after-glow property
RU2787472C1 (en) Complex tantalate of rare earth elements in the nanoamorphous state
JPS6121183A (en) Fluorescent substance and its preparation
Li et al. Synthesis and characterization of cerium-doped lutetium aluminum garnet phosphors by nitrate-citrate sol-gel combustion process
JPS5947289A (en) Fluophor and its preparation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees