JPH026568B2 - - Google Patents
Info
- Publication number
- JPH026568B2 JPH026568B2 JP16125580A JP16125580A JPH026568B2 JP H026568 B2 JPH026568 B2 JP H026568B2 JP 16125580 A JP16125580 A JP 16125580A JP 16125580 A JP16125580 A JP 16125580A JP H026568 B2 JPH026568 B2 JP H026568B2
- Authority
- JP
- Japan
- Prior art keywords
- concentration
- circuit
- pump
- concentrator
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007788 liquid Substances 0.000 claims description 33
- 238000001514 detection method Methods 0.000 claims description 12
- 239000012141 concentrate Substances 0.000 claims 1
- 239000000126 substance Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 238000005070 sampling Methods 0.000 description 4
- 238000009499 grossing Methods 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000012460 protein solution Substances 0.000 description 2
- 206010003445 Ascites Diseases 0.000 description 1
- 208000002151 Pleural effusion Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 239000005862 Whey Substances 0.000 description 1
- 102000007544 Whey Proteins Human genes 0.000 description 1
- 108010046377 Whey Proteins Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Description
【発明の詳細な説明】
この発明はタンパク質溶液(以下、被濃縮液体
という)を限外濾過膜を内蔵した濃縮器で低分子
量物質と高分子量物質とに分離する用に供される
限外濾過によるタンパク質溶液の濃縮装置の駆動
制御装置に関し、構成が簡単であつて、濃縮され
た液体の濃度の検出信号を利用して濃縮液を所望
の濃度に自動濃縮できるようにしたものである。Detailed Description of the Invention The present invention provides an ultrafiltration method for separating a protein solution (hereinafter referred to as a liquid to be concentrated) into a low molecular weight substance and a high molecular weight substance using a concentrator equipped with an ultrafiltration membrane. A drive control device for a protein solution concentrator according to the present invention has a simple configuration and is capable of automatically concentrating a concentrated liquid to a desired concentration using a detection signal of the concentration of the concentrated liquid.
以下、この発明の一実施例を図面にしたがつて
説明する。 An embodiment of the present invention will be described below with reference to the drawings.
第1図は陰圧式濃縮装置の駆動制御装置の一例
を示すブロツク図で、同図において、1は低分子
量物質と高分子量物質を分離する限外濾過膜を内
蔵した濃縮器、2は濃縮器1に、たとえば腹水、
胸水、血製、デンプン液、ホエーなどのような被
濃縮液体を定流量で送給する送給ポンプ、3は上
記濃縮器1に接続された濃縮ポンプである。 Figure 1 is a block diagram showing an example of a drive control device for a negative pressure concentrator. In the figure, 1 is a concentrator with a built-in ultrafiltration membrane that separates low-molecular weight substances and high-molecular weight substances, and 2 is a concentrator. 1. For example, ascites,
A feeding pump 3 is a concentrating pump connected to the concentrator 1, which feeds a liquid to be concentrated such as pleural effusion, blood, starch liquid, whey, etc. at a constant flow rate.
4は上記濃縮器1の出力側に設けられた濃度セ
ンサであり、これは光の屈折率変化を応用した公
知の濃度計や超音波密度計などを利用することが
できる。5は上記濃度センサ4に接続されて濃度
値を短周期的に測定するサンプリング回路、6は
サンプリング回路5の出力であるデジタル信号を
アナログ信号に変換するD/A変換器、7はD/
A変換器6の出力端に接続されてD/A変換器6
からの出力信号を平滑化する平滑回路であり、こ
れら濃度センサ4、サンプリング回路5、D/A
変換器6および平滑回路7で濃度検出回路8が構
成されている。 Reference numeral 4 denotes a concentration sensor provided on the output side of the concentrator 1, which can be a known concentration meter or ultrasonic density meter that utilizes changes in the refractive index of light. 5 is a sampling circuit that is connected to the concentration sensor 4 and measures the concentration value in short cycles; 6 is a D/A converter that converts the digital signal output from the sampling circuit 5 into an analog signal; 7 is a D/A converter;
The D/A converter 6 is connected to the output end of the A converter 6.
This is a smoothing circuit that smoothes the output signal from the concentration sensor 4, sampling circuit 5, D/A
The converter 6 and the smoothing circuit 7 constitute a concentration detection circuit 8.
9は濃度設定回路、10は演算回路である。演
算回路10は上記濃度設定回路9からの濃度設定
電圧信号と上記濃度検出回路8からの濃度アナロ
グ電圧信号とを比較し、その偏差値が零となるよ
うに比例積分微分演算するものである。11はリ
ミツト回路であり、上記演算回路10からの演算
出力に対して上記濃縮ポンプ3の上限および下限
回転数に対応する電圧内に制限して受け入れて濃
縮ポンプ速度制御回路12に回転数指令信号を送
出するように設定されている。13は濃縮ポンプ
3に対する速度設定回路で任意時に濃縮ポンプ3
の回転数を変更させるためのものであり、上記速
度制御回路12に信号選択用切替スイツチ14を
介して接続されている。15は濃縮ポンプ3の回
転数を検出する第1の回転数検知器、16は送液
ポンプ2の回転数を検出する第2の回転数検知
器、17は上記第1および第2の回転数検知器1
5,16と上記リミツタ回路11との間に介挿接
続された比較回路であり、上記両回転検知器1
5,16からの出力信号を受けて上記リミツタ回
路11のリミツト値の制御信号を送出するように
構成されている。18は上記濃縮ポンプ3の駆動
モータである。 9 is a density setting circuit, and 10 is an arithmetic circuit. The arithmetic circuit 10 compares the concentration setting voltage signal from the concentration setting circuit 9 with the concentration analog voltage signal from the concentration detection circuit 8, and performs proportional-integral-differential calculations so that the deviation value becomes zero. Reference numeral 11 denotes a limit circuit, which accepts the calculation output from the calculation circuit 10 within a voltage corresponding to the upper and lower limit rotation speeds of the concentration pump 3 and sends a rotation speed command signal to the concentration pump speed control circuit 12. is set to send out. 13 is a speed setting circuit for the concentration pump 3, and the concentration pump 3 is activated at any time.
It is connected to the speed control circuit 12 via a signal selection changeover switch 14. 15 is a first rotation speed detector that detects the rotation speed of the concentration pump 3; 16 is a second rotation speed detector that detects the rotation speed of the liquid feeding pump 2; and 17 is the first and second rotation speed. Detector 1
5, 16 and the limiter circuit 11, and is a comparison circuit inserted and connected between the limiter circuit 11 and the rotation detector 1.
It is configured to receive the output signals from the limiter circuits 5 and 16 and send out a control signal for the limit value of the limiter circuit 11. 18 is a drive motor for the concentration pump 3.
つぎに、上記構成の作動について説明する。 Next, the operation of the above configuration will be explained.
被濃縮液体は送液ポンプ2により定流量で濃縮
器1に送り込まれる。濃縮器1では高分子量物質
と低分子量物質が分離され、低分子量物質は濃縮
ポンプ3により引き出されて排出される。濃縮ポ
ンプ3の回転数が速い程、低分子量物質が多量に
排出されて濃縮器1を出た液体中の高分子量物質
濃度が上昇し、逆に濃縮ポンプ3の回転数が低い
程、低分子量物質が少量排出されて濃縮器1の出
口を出た液体の高分子量物質濃度は低下する。 The liquid to be concentrated is sent to the concentrator 1 at a constant flow rate by a liquid sending pump 2. In the concentrator 1, high molecular weight substances and low molecular weight substances are separated, and the low molecular weight substances are drawn out and discharged by a concentrating pump 3. The faster the rotation speed of the concentration pump 3 is, the more low-molecular weight substances are discharged and the concentration of high-molecular weight substances in the liquid that exits the concentrator 1 increases; A small amount of material is discharged and the high molecular weight material concentration of the liquid leaving the outlet of the concentrator 1 is reduced.
上記濃縮器1を出た濃縮液の濃度が時間の変化
とともに、たとえば第2図Aに示すような波形で
描かれるとすると、この濃度は濃度センサ4で検
出される。この濃度センサ4からの上記濃度に対
応する電気信号はサンプリング回路5により第2
図Bに示すようにデジタル信号に変換され、さら
にこのデジタル信号は測定される度毎に、D/A
変換器6で第2図CのようにD/A変換されたの
ち、平滑回路7を経ることにより、第2図Dに示
すように平滑された濃度検出信号となつて演算回
路10に印加される。 Assuming that the concentration of the concentrated liquid exiting the concentrator 1 is depicted as a waveform as shown in FIG. 2A over time, this concentration is detected by the concentration sensor 4. The electrical signal corresponding to the concentration from the concentration sensor 4 is sent to a second sampling circuit 5.
As shown in Figure B, the digital signal is converted into a digital signal, and each time this digital signal is measured, the D/A
After being D/A converted by the converter 6 as shown in FIG. 2C, it passes through the smoothing circuit 7 and is applied to the arithmetic circuit 10 as a smoothed concentration detection signal as shown in FIG. 2D. Ru.
演算回路10では上記濃度検出信号と濃度設定
回路9からの濃度検出信号とを比較するととも
に、両者の偏差値が零となるように比例積分微分
演算を行なう。この演算回路10からの演算出力
がリミツタ回路11に送られると、リミツタ回路
11では、上記濃縮ポンプ3の最低および最高回
転数に対応する各電圧内に上記演算出力を規制し
たうえで、濃縮ポンプ3の回転数指令信号を出力
する。 The arithmetic circuit 10 compares the concentration detection signal with the concentration detection signal from the concentration setting circuit 9, and performs proportional-integral-differential calculation so that the deviation value between the two becomes zero. When the calculation output from the calculation circuit 10 is sent to the limiter circuit 11, the limiter circuit 11 regulates the calculation output to within each voltage corresponding to the minimum and maximum rotational speed of the concentration pump 3, and then controls the calculation output to the concentration pump 3. 3 rotation speed command signal is output.
この時、信号選択用切替スイツチ14をA側に
投入させてあれば、上記回転数指令信号が選択さ
れて濃縮ポンプ速度制御回路12に印加される。 At this time, if the signal selection switch 14 is turned to the A side, the rotation speed command signal is selected and applied to the concentration pump speed control circuit 12.
濃縮ポンプ速度制御回路12は、駆動モータ1
8をたとえば位相制御によつて回転数調節する機
能を有し、第1の回転検知器15から速度信号が
フイードパツクされており、上記回転数指令信号
を受け入れるとその電圧にしたがつて上記モータ
18、つまり濃縮ポンプ3の回転数を変化させ、
これにより、濃縮液の濃度が濃度設定値に追従す
ることになる。なお、信号選択用切替スイツチ1
4をM側に投入させておけば、速度設定回路13
のポテンシヨメータによる回転数指令電圧が選択
され、これにより、手動操作で単独に濃縮ポンプ
3の回転数を変更することができる。 The concentration pump speed control circuit 12 is connected to the drive motor 1
The motor 18 has a function of adjusting the rotation speed of the motor 18 by phase control, for example, and has a speed signal feed-packed from the first rotation detector 15, and when the rotation speed command signal is received, the motor 18 is adjusted according to the voltage. , that is, change the rotation speed of the concentration pump 3,
This causes the concentration of the concentrated liquid to follow the concentration setting value. In addition, signal selection switch 1
4 to the M side, the speed setting circuit 13
The rotation speed command voltage by the potentiometer is selected, and thereby the rotation speed of the concentration pump 3 can be changed independently by manual operation.
ここで、陰圧式濃縮装置では、被濃縮液の送液
量を濃縮液量よりも大なる関係を満足させておか
なければ、濃度センサ4に通液がなされなかつた
り、あるいは逆流してしまうおそれがあり、とく
に上述の信号選択用切替スイツチ14がA側に投
入されている場合にその可能性が大である。 Here, in the negative pressure type concentrator, unless the relationship is satisfied in which the amount of the liquid to be concentrated is larger than the amount of the concentrated liquid, there is a risk that the liquid will not be passed through the concentration sensor 4 or that it will flow backwards. This possibility is particularly high when the signal selection changeover switch 14 described above is turned to the A side.
しかるに、上記構成では、濃縮ポンプ3の回転
数と送液ポンプ2の回転数が第1および第2の回
転数検知器15,16で検出され比較回路17で
送液量>濃縮液量の状態にあるか比較されてお
り、仮に送液量<濃縮液量の状態が発生すれば、
リミツタ回路11のハイリミツト値を低下させる
制御信号を送出して濃縮ポンプ3の回転数を低下
させる。このため、常時、送液量>濃縮液量の状
態を確実に維持することができる。 However, in the above configuration, the rotation speed of the concentration pump 3 and the rotation speed of the liquid feeding pump 2 are detected by the first and second rotation speed detectors 15 and 16, and the comparison circuit 17 determines the state of liquid feeding amount>concentrated liquid amount. If a situation where the amount of liquid sent < amount of concentrated liquid occurs,
A control signal is sent to lower the high limit value of the limiter circuit 11 to lower the rotational speed of the concentration pump 3. Therefore, the state of liquid feeding amount>concentrated liquid amount can always be maintained reliably.
第3図は陽圧式濃縮装置の駆動制御装置の一例
を示すブロツク図で、第1図と同一部所には同一
番号を付して詳しい説明を省略する。 FIG. 3 is a block diagram showing an example of a drive control device for a positive pressure concentrator, and the same parts as in FIG. 1 are given the same numbers and detailed explanations will be omitted.
この陽圧式のものにおいては、濃縮ポンプ3の
回転数が零の状態になるのを避ける必要がある。 In this positive pressure type, it is necessary to prevent the rotation speed of the concentration pump 3 from reaching zero.
つまり、回転数零の状態では濃度センサへ濃縮
液が流通せず、濃縮された液体の濃度が測定され
なくなる。このため濃縮ポンプ3の最低回転数を
リミツタ回路11のローリミツト値で規制するよ
うにすれば、濃縮液の最低流量が保証されて上記
の問題を解消することができるものである。 In other words, when the number of revolutions is zero, the concentrated liquid does not flow to the concentration sensor, and the concentration of the concentrated liquid is not measured. Therefore, if the minimum rotational speed of the concentration pump 3 is regulated by the low limit value of the limiter circuit 11, the minimum flow rate of the concentrated liquid can be guaranteed and the above problem can be solved.
なお、各実施例において、濃縮器1に対して異
常耐圧が発生した場合のために、圧力検知器や圧
力警報器などを必要個所に付設するとともに、異
常時には濃縮ポンプ3や送液ポンプ2の駆動を即
刻停止させる手段を導入しておくのは当然であ
る。 In addition, in each embodiment, pressure detectors, pressure alarms, etc. are installed at necessary locations in case an abnormal withstand pressure occurs in the concentrator 1, and in the event of an abnormality, the concentration pump 3 and the liquid transfer pump 2 are It is natural to introduce a means to immediately stop the drive.
以上のように、この発明は、濃縮器からの濃縮
液の濃度の検出信号を利用して濃縮ポンプの駆動
を制御する簡単な回路構成により、濃縮液を所望
の濃度に自動的に追従させることができ、他の制
御系との接続も容易な濃縮装置の駆動制御装置を
提供することができる。 As described above, the present invention allows the concentrated liquid to automatically follow the desired concentration using a simple circuit configuration that controls the driving of the concentration pump using the detection signal of the concentrated liquid concentration from the concentrator. It is possible to provide a drive control device for a concentrator that can be easily connected to other control systems.
第1図はこの発明に係る濃縮装置の駆動制御装
置の一例を示すブロツク図、第2図A〜Dは同装
置における濃度検出回路の各部の信号波形図、第
3図は他の実施例を示すブロツク図である。
1……濃縮器、2……送液ポンプ、3……濃縮
ポンプ、8……濃度検出回路、9……濃度設定回
路、10……演算回路、11……リミツタ回路、
12……濃縮ポンプ速度制御回路、15……第1
の回転数検知器、16……第2の回転数検知器、
17……比較回路。
FIG. 1 is a block diagram showing an example of a drive control device for a concentrator according to the present invention, FIGS. 2A to 2D are signal waveform diagrams of various parts of the concentration detection circuit in the same device, and FIG. 3 is a diagram showing another embodiment. FIG. DESCRIPTION OF SYMBOLS 1...Concentrator, 2...Liquid sending pump, 3...Concentration pump, 8...Concentration detection circuit, 9...Concentration setting circuit, 10...Arithmetic circuit, 11...Limiter circuit,
12...Concentration pump speed control circuit, 15...First
rotation speed detector, 16... second rotation speed detector,
17... Comparison circuit.
Claims (1)
定流量で送給される被濃縮液体を濃縮排液する濃
縮器と、この濃縮器からの濃縮液体の濃度を検出
してその濃度値に対応する濃度検出信号を出力す
る濃度検出回路と、濃度設定回路からの濃度設定
信号と上記濃度検出信号とを比較してその偏差値
が零になるように演算する演算回路と、上記演算
回路からの出力信号を、上記濃縮ポンプの上限お
よび下限回転数に対応する電圧内に規制して受け
入れて濃縮ポンプ速度制御回路に回転数指令信号
を送出するリミツト回路と、濃縮および送液ポン
プの各回転数をそれぞれ検出する第1および第2
の回転数検知器と、これら両検出器からの出力信
号を受けて上記リミツタ回路にリミツト値の制御
信号を送出する比較回路とを具備した濃縮装置の
駆動制御装置。1 A concentrator that is connected to a concentrator pump and concentrates and drains the liquid to be concentrated, which is fed at a constant flow rate by a liquid pump, and a concentrator that detects the concentration of the concentrated liquid from this concentrator and responds to the concentration value. A concentration detection circuit that outputs a concentration detection signal, an arithmetic circuit that compares the concentration setting signal from the concentration setting circuit with the concentration detection signal and calculates the deviation value to zero, and an output from the arithmetic circuit. A limit circuit accepts the signal within a voltage corresponding to the upper and lower limit rotation speeds of the concentration pump and sends a rotation speed command signal to the concentration pump speed control circuit, and a limit circuit that controls the rotation speeds of the concentration pump and the liquid delivery pump. 1st and 2nd to detect respectively
A drive control device for a concentrator, comprising: a rotation speed detector; and a comparison circuit that receives output signals from these detectors and sends a limit value control signal to the limiter circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16125580A JPS5784712A (en) | 1980-11-14 | 1980-11-14 | Driving controller for concentrator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16125580A JPS5784712A (en) | 1980-11-14 | 1980-11-14 | Driving controller for concentrator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5784712A JPS5784712A (en) | 1982-05-27 |
JPH026568B2 true JPH026568B2 (en) | 1990-02-09 |
Family
ID=15731606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16125580A Granted JPS5784712A (en) | 1980-11-14 | 1980-11-14 | Driving controller for concentrator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5784712A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH066999U (en) * | 1992-06-18 | 1994-01-28 | 丸紅株式会社 | Band with hanging band |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8425200B2 (en) | 2009-04-21 | 2013-04-23 | Xylem IP Holdings LLC. | Pump controller |
-
1980
- 1980-11-14 JP JP16125580A patent/JPS5784712A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH066999U (en) * | 1992-06-18 | 1994-01-28 | 丸紅株式会社 | Band with hanging band |
Also Published As
Publication number | Publication date |
---|---|
JPS5784712A (en) | 1982-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1323312C (en) | Fluid flow apparatus control and monitoring | |
US4324662A (en) | Flow reversal in a dialyzer | |
JP4832683B2 (en) | Platelet collection device | |
JP2574326B2 (en) | Blood component separation device | |
US5431811A (en) | Artificial kidney with device for filtering dialysis liquid | |
US3979284A (en) | Artificial haemodialysis kidneys | |
US4762618A (en) | Apparatus and method for controlling fluid flow in dialysis and the like | |
EP0104895B1 (en) | Dual phase blood/flow system and method of operation | |
JPH05508584A (en) | Adaptive filter flow control system and method | |
CN106794298A (en) | Blood circulation system | |
JP2516928B2 (en) | Dialysis machine | |
SE456967B (en) | dialyzer | |
JPH026568B2 (en) | ||
EP1283064B1 (en) | Blood processing system | |
EP0033222B2 (en) | Dialysate supply circuit | |
JPS60129103A (en) | Apparatus for preparing extremely pure water | |
SE512243C2 (en) | Method and apparatus for monitoring rotary speed sensors, in particular rotary speed sensors for determination of wheel speed | |
JPH0350573B2 (en) | ||
EP3243561B1 (en) | Method for controlling fouling during a spinning membrane filtration procedure | |
JPS6226804B2 (en) | ||
JPH0366928B2 (en) | ||
JPS5839720Y2 (en) | blood purification device | |
JPH01115363A (en) | Blood treating method and apparatus | |
JPH0156035B2 (en) | ||
JPS595304B2 (en) | blood purification device |