JPH026557A - Light-diffusing plastic and fine particle suitable therefor - Google Patents

Light-diffusing plastic and fine particle suitable therefor

Info

Publication number
JPH026557A
JPH026557A JP15639788A JP15639788A JPH026557A JP H026557 A JPH026557 A JP H026557A JP 15639788 A JP15639788 A JP 15639788A JP 15639788 A JP15639788 A JP 15639788A JP H026557 A JPH026557 A JP H026557A
Authority
JP
Japan
Prior art keywords
light
fine particles
refractive index
particles
diffusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15639788A
Other languages
Japanese (ja)
Other versions
JP2667878B2 (en
Inventor
Kozo Nakao
中尾 公三
Kenji Imai
今井 健治
Kiyoshi Takahashi
清 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Gas Chemical Industry Co Ltd
Original Assignee
Kyowa Gas Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Gas Chemical Industry Co Ltd filed Critical Kyowa Gas Chemical Industry Co Ltd
Priority to JP63156397A priority Critical patent/JP2667878B2/en
Publication of JPH026557A publication Critical patent/JPH026557A/en
Application granted granted Critical
Publication of JP2667878B2 publication Critical patent/JP2667878B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To form a light-diffusing plastic having excellent light diffusion properties by dispersing fine spherical transparent particles having a specified refractive index and a specified particle diameter in a transparent plastic base. CONSTITUTION:This light-diffusing plastic is formed in the following way. Namely, fine spherical, substantially transparent particles having a refractive index NP and a mean particle diameter d (mum) satisfying formula I: 0.02<=INPNSI<=0.04 and formula II: 7<=d<=30 and having a content of particles having voids in its inside <=3wt.% are dispersed in a substantially transparent plastic of a refractive index NS. It is desirable that the content of fine nonspherical particles in the fine transparent particles is at most 10wt.% based on the total fine particles. It is more desirable that fine particles of a polymer, especially, a crosslinked polymer are used as the fine transparent particles.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は照明カバー、照明看板、グレージング、各種デ
イスプレィあるいは透過型スクリーン等光の拡散を目的
とした部材に好適な光拡散性プラスチックおよびそれに
用いるに適した微粒子に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is a light-diffusing plastic suitable for members intended to diffuse light, such as lighting covers, illuminated signboards, glazing, various displays, or transmission screens, and its use therein. It concerns fine particles suitable for.

(従来の技術) 従来、照明カバー、ディスグレー用スクリーン等の光拡
散性材料としては、無機または有機の透明微粒子をアク
リル樹脂、スチレン樹脂等の透明プラスチックに分散さ
せた材料、あるいは透明プラスチックの表面を何らかの
方法で粗面化した材料等が知られており、これらを併用
することも公知である。近年特にリアグロジエクシゴン
テレビ用のスクリーン等の高度の性能を要求される光拡
散性プラスチックの必要性の増大に伴ないより高性能の
材料を求めて多くの努力がなされてきた。
(Prior art) Conventionally, light-diffusing materials for lighting covers, display gray screens, etc. have been made using materials in which inorganic or organic transparent fine particles are dispersed in transparent plastics such as acrylic resin or styrene resin, or on the surface of transparent plastics. Materials whose surfaces are roughened by some method are known, and it is also known to use these in combination. In recent years, with the increasing need for light-diffusing plastics that require high performance, particularly for screens for rear-view televisions, much effort has been made to find materials with higher performance.

これら光拡散性材料に望まれる性能は、■できるだけ広
い範囲に、均一に、しがら■明るく、光を拡散させる事
である。しがし光源からでる光の量は一定であるので、
これら■と■の要求は互いに相反する要求である。した
がって実際には必要に応じて、拡散材の濃度を変える等
の方法で、最も好ましい輝度と広がりとなるように選択
して用いている。透明プラスチックに光拡散材を分散さ
せて光拡散性材料を得る方法において、好適な光拡散材
と透明プラスチックの組み合わせを得るための指陣とし
ては、主として光拡散材微粒子の粒径および光拡散材微
粒子と透明プラスチックの屈折率差が用いられてきた。
The desired performance of these light-diffusing materials is to (1) diffuse light uniformly and brightly over as wide a range as possible. Since the amount of light emitted from a light source is constant,
These requirements (1) and (2) are mutually contradictory requirements. Therefore, in practice, the most preferable brightness and spread are selected and used by changing the concentration of the diffusing material as necessary. In the method of obtaining a light diffusing material by dispersing a light diffusing material in transparent plastic, the key points for obtaining a suitable combination of light diffusing material and transparent plastic are mainly the particle size of the light diffusing material fine particles and the light diffusing material. The difference in refractive index between microparticles and transparent plastics has been used.

たとえば特公昭39−10515号には基体透明樹脂と
の屈折率差が0゜05〜0.3であり、平均直径が0.
5〜5μである架?!微粒子を光拡散材とする方法が述
べられており、また特開昭48−44333号には基体
樹脂よりも0.05〜0.5だけ大きい屈折率を有する
粒径10μ以下の結晶粉を配合する方法が記載されてお
り、さらにまた特開昭60−139758号においては
屈折率差が0.02〜0.1で粒径が10〜50μ、特
Un昭60−184559号では屈折率差0.02〜0
.1で粒径が4〜10μのものが提案されているほか、
特開昭61−4762号の如く、粒径が4〜50μで屈
折率が基体樹脂よりも0.02〜0.1大きい微粒子と
粒径が4〜50μで屈折率が0.02〜0.1小さい微
粒子を併用する方法も記載されている。
For example, in Japanese Patent Publication No. 39-10515, the refractive index difference with the base transparent resin is 0.05 to 0.3, and the average diameter is 0.05 to 0.3.
A rack that is 5-5μ? ! A method of using fine particles as a light diffusing material is described, and in JP-A-48-44333, crystal powder with a particle size of 10 μm or less and having a refractive index 0.05 to 0.5 larger than that of the base resin is blended. Further, in JP-A-60-139758, the refractive index difference is 0.02-0.1 and the particle size is 10-50μ, and in JP-A-60-184559, the refractive index difference is 0. .02~0
.. 1 with a particle size of 4 to 10μ has been proposed, as well as
As disclosed in JP-A No. 61-4762, fine particles with a particle size of 4 to 50 μm and a refractive index of 0.02 to 0.1 larger than the base resin, and fine particles with a particle size of 4 to 50 μm and a refractive index of 0.02 to 0.1 μm are used. A method of using small microparticles in combination is also described.

その他特公昭60−21662号または特開昭62−1
74261号においては基体樹脂よりも屈折率が0.0
1〜0.1小さく平均粒径が1〜10μの微粒子を分散
する方法も提案されている。
Others JP-A-60-21662 or JP-A-62-1
In No. 74261, the refractive index is 0.0 than that of the base resin.
A method of dispersing fine particles with an average particle size of 1 to 10 microns has also been proposed.

その他、具体的記述のある基体樹脂および光拡散材の組
み合わせは極めて多岐にのぼり、すべてを記述すること
は困難であるが、たとえばメタクリル樹脂(屈折率1.
492>を基体樹脂とする場合において結晶性シリカ(
屈折率1.54)、無定形シリカ(屈折率1.46)、
炭酸カルシウム(屈折率1.58)、水酸化アルミニウ
ム(屈折率1.57)、ガラスピーズGB−210(屈
折率1.521)、ガラス球(屈折率1.46)、フッ
化カルシウム(屈折率1.43>、フッ化リチウム(屈
折率1.39)、硫酸バリウム(屈折率1.64)、ア
ルミナ粉末(1,7)の曲屈折率は不明であるが酸化マ
グネシウム、酸化チタン、タルクや架橋ポリマー等が用
いられており、ポリスチレン樹脂(屈折率1.59)、
ポリ塩化ビニルv!4脂(屈折率1.55>またはポリ
カーボネートvJ脂(屈折率1.59)を基体樹脂とす
る場合においても種々の無am粒子が用いられている。
In addition, there are a wide variety of combinations of base resins and light diffusing materials that have specific descriptions, and it is difficult to describe them all, but for example, methacrylic resin (refractive index 1.
492> as the base resin, crystalline silica (
refractive index 1.54), amorphous silica (refractive index 1.46),
Calcium carbonate (refractive index 1.58), aluminum hydroxide (refractive index 1.57), glass beads GB-210 (refractive index 1.521), glass spheres (refractive index 1.46), calcium fluoride (refractive index 1.43>, the bending refractive index of lithium fluoride (refractive index 1.39), barium sulfate (refractive index 1.64), and alumina powder (1,7) is unknown, but magnesium oxide, titanium oxide, talc, etc. Crosslinked polymers are used, including polystyrene resin (refractive index 1.59),
PVC v! Various am-free particles are also used when the base resin is 4 resin (refractive index 1.55>) or polycarbonate vJ resin (refractive index 1.59).

このように従来開示されてきた技術を整理してみると、
屈折率差、粒径について多くの方法が提案されているも
のの、それらは非常に広い範囲のものが、まちまちに提
案されており、どのような組合せが好ましいのか、判断
に苦しむのが現状である。事実近年のリアグロジエクシ
ョンテレビ用のスクリーン等に関しますます高まる要求
に対しては、これら既存の技術では、未だ不十分である
ことが追試験の結果判明した。
When we organize the technologies that have been disclosed so far, we find that
Although many methods have been proposed for refractive index difference and particle size, they range widely and are proposed in various ways, making it difficult to judge which combination is preferable. . In fact, additional tests have revealed that these existing technologies are still insufficient to meet the ever-increasing demands for screens for rear projection televisions in recent years.

(発明が解決しようとする課題) 本発明は、このように雑然とした技術の流れの中で、す
ぐれた光拡散性能を有する、すなわち最大輝度G0がで
きるだけ大きく、かつ半値角(輝度がμまで低下する角
度)のできるだけ大きい、しかも透過光が赤味を帯びる
ことのない光拡散材料を提供することを目的とするもの
である。また、メタクリル樹脂中に分散することにより
良好な拡散性能をもたらし得る球状微粒子を提供するこ
とを目的とするものである。
(Problems to be Solved by the Invention) The present invention has excellent light diffusion performance in this chaotic flow of technology, that is, the maximum luminance G0 is as large as possible, and the half-value angle (luminance is up to μ). The object of the present invention is to provide a light diffusing material that has as large a reduction angle as possible and that does not give transmitted light a reddish tinge. Another object of the present invention is to provide spherical fine particles that can provide good diffusion performance when dispersed in a methacrylic resin.

(課題を解決するための手段) 本発明は、屈折率Nsからなる実質的に透明(以下「実
質的に透明」を単に「透明」と略記する)なプラスチッ
ク中に、下記式(工)、および式(I) 0.02≦|Np−Ns|≦0.04  ・−−−−・
・・−(I)7≦d≦30             
 ・・・・・・・・・ (II)を満足する平均粒子径
d(ミクロン)、屈折率NPを有し、かつ内部に空孔を
有する粒子の全微粒子中に占める割合が3重量%以下で
ある透明球状微粒子を分散させることにより、また上記
透明微粒子のうち非球状の粒子が全透明微粒子中に占め
る割合を10重量%以下とすることにより好ましく達成
される。また上記諸条件を達成するために、透明微粒子
としてポリマー、特に架橋ポリマーを用いることにより
好ましく目的が達成でき、透明プラスチックとしてメタ
クリル樹脂を用いる場合、透明微粒子として、メチルメ
タクリレート(以下MMAと記す)、スチレンおよび多
官能性(メタ)アクリレートを構成成分とする架橋共重
合体を用いることによって、また透明プラスチックとし
てMMAとスチレンの共重合体樹脂を用いる場合、MM
Aおよび多官能性(メタ)アクリレートを構成成分とす
る架橋共重合体微粒子あるいはMMA、スチレンおよび
多官能性(メタ)アクリレートを構成成分とする架橋共
重合体微粒子を用いることによって上記目的を達成する
ことができる。さらにまた、メタクリル系樹脂からなる
光拡散性プラスチックの光拡散性能を向上するためにM
MA、スチレンおよび多官能性(メタ)アクリレートか
らなる架橋共重合体で構成され、下記−数式(I[>お
よび式(IV )を満足し、かつ重量メジアン径が7〜
30μmであり、実質的に内部に空孔を有さない、実質
的に球状の透明微粒子により本発明の目的が達成される
(Means for Solving the Problems) The present invention provides a substantially transparent (hereinafter "substantially transparent" is simply abbreviated as "transparent") plastic made of a refractive index Ns, which contains the following formula (technique), and formula (I) 0.02≦|Np-Ns|≦0.04 ・----・
...-(I)7≦d≦30
...... Particles that have an average particle diameter d (microns) that satisfies (II), a refractive index NP, and have pores inside account for 3% by weight or less in the total fine particles This is preferably achieved by dispersing transparent spherical fine particles having the following properties, and by controlling the proportion of non-spherical particles among all the transparent fine particles to 10% by weight or less. In addition, in order to achieve the above conditions, the purpose can be preferably achieved by using a polymer, especially a crosslinked polymer, as the transparent fine particles. When using methacrylic resin as the transparent plastic, methyl methacrylate (hereinafter referred to as MMA), By using a crosslinked copolymer containing styrene and polyfunctional (meth)acrylate as constituent components, or when using a copolymer resin of MMA and styrene as a transparent plastic, MM
The above objective is achieved by using crosslinked copolymer fine particles containing A and a polyfunctional (meth)acrylate as constituent components, or crosslinked copolymer fine particles containing MMA, styrene, and a polyfunctional (meth)acrylate as constituent components. be able to. Furthermore, M
It is composed of a crosslinked copolymer consisting of MA, styrene, and polyfunctional (meth)acrylate, and satisfies the following formula (I[> and formula (IV)), and has a weight median diameter of 7 to 7.
The object of the present invention is achieved by substantially spherical transparent fine particles having a diameter of 30 μm and having substantially no internal pores.

4.54W2−0.94≦W+ <6.66W2+0.
36  (III)0.98≦W、 +W2≦0.4 
         (IV)(ただし、WlはMMAの
重量分率、W2はスチレンの重量分率を表わす、) (作用) 本発明者等は基本透明樹脂と透明微粒子の屈折率差、透
明微粒子の粒径と拡散性能の関係を総合的に検討して、
本発明に到達した。すなわち、本発明においては、基体
透明樹脂の屈折率Nsと透明微粒子の屈折率Npの絶対
差1Np−Nslが0.02以上、0.04以下である
ことが必要である0本発明者らは基体樹脂と透明微粒子
の屈折率差および透明微粒子の粒子径を変えた平板を種
々作成し、平板の後方より平行光線を入射し、前方に出
てくる光の輝度の角度分布を測定し、平板面における照
度と各々の輝度からゲインGを次式により計算した。
4.54W2-0.94≦W+ <6.66W2+0.
36 (III) 0.98≦W, +W2≦0.4
(IV) (However, Wl represents the weight fraction of MMA, and W2 represents the weight fraction of styrene.) (Function) The present inventors have determined that the refractive index difference between the basic transparent resin and the transparent fine particles, the particle size of the transparent fine particles, After comprehensively considering the relationship between diffusion performance,
We have arrived at the present invention. That is, in the present invention, it is necessary that the absolute difference 1Np-Nsl between the refractive index Ns of the base transparent resin and the refractive index Np of the transparent fine particles is 0.02 or more and 0.04 or less. We created various flat plates with different refractive index differences between the base resin and the transparent fine particles and the particle diameter of the transparent fine particles, and parallel light rays were incident on the flat plates from the rear, and the angular distribution of the brightness of the light coming out in front of the flat plates was measured. The gain G was calculated from the illuminance on the surface and each brightness using the following formula.

ゲインは拡散板の正面において最高値を示し、拡散板の
法線となす角が大きくなるにつれて、第1図に示すよう
に、徐々に値が小さくなる。ゲインの最高値をピークゲ
インと呼びGoで表わすこととし、ゲインがピークゲイ
ンの牲になる角度を半値角と呼びαで表わすこととする
と、本発明の目的はGoおよびαをいずれも大きくする
ことにある。ただし、一般には光拡散板は単なる平板状
で用いられるとは限らず、種々のレンズ形状を賦与した
り、表面処理等の別の光拡散性賦与手段との併用により
目的を達成することが多く、G0.α等はそれらの種類
、程度によっても変動するので、本発明の目的の性能は
このような測定手段によるG、およびαの値で表現する
ことは適当ではない。
The gain has a maximum value in front of the diffuser plate, and as the angle between the gain and the normal line of the diffuser plate increases, the value gradually decreases as shown in FIG. The highest value of the gain is called the peak gain and is expressed by Go, and the angle at which the gain sacrifices the peak gain is called the half-value angle and is expressed by α.The purpose of the present invention is to increase both Go and α. It is in. However, in general, light diffusing plates are not always used in the form of a simple flat plate; the purpose is often achieved by giving them various lens shapes or using them in combination with other means of imparting light diffusivity, such as surface treatment. , G0. Since α etc. vary depending on their type and degree, it is not appropriate to express the performance aimed at by the present invention by the values of G and α measured by such measuring means.

しかしながら、このようにして平板状の光拡散板で測定
したGoおよびαの大きい組みあわせを採用すると、曲
の形状においても優れた性能を示すことが、実験的に確
認できるので、本発明においては、光拡散材による光拡
散性能を比較評価しやすい平板による方法を主として採
用した。一定の基板樹脂と光拡散材の組みあわせにおい
て、光拡散材の濃度を変えると、第2図のように濃度の
増加に件って00は減少し、αは増大する。そこで良好
な光拡散材を選択する手段として、光拡散材の濃度を変
えて、一定のGoが得られる濃度を選定し、その濃度に
おける半値角αが大きいものが好ましい光拡散性プラス
チックであると考えた。
However, it has been experimentally confirmed that when a combination of large Go and α measured using a flat light diffusing plate is adopted, excellent performance is exhibited even in the shape of a song. We mainly adopted the flat plate method, which makes it easy to compare and evaluate the light diffusion performance of light diffusion materials. For a given combination of substrate resin and light diffusing material, if the concentration of the light diffusing material is changed, 00 decreases and α increases as the concentration increases, as shown in FIG. Therefore, as a means of selecting a good light-diffusing material, the concentration of the light-diffusing material is changed and a concentration that provides a constant Go is selected, and the one with a large half-value angle α at that concentration is a preferable light-diffusing plastic. Thought.

実験の結果、屈折率差が0,02以上0.04以下の場
合に一定の00においてαが著しく高い光拡散性プラス
チックを得ることを見い出した。さらに本発明において
は光拡散性透明微粒子の平均粒子径が7〜30μmであ
ることが必要である。
As a result of experiments, it has been found that a light-diffusing plastic with a significantly high α at a constant 00 can be obtained when the refractive index difference is 0.02 or more and 0.04 or less. Furthermore, in the present invention, it is necessary that the average particle diameter of the light-diffusing transparent fine particles is 7 to 30 μm.

その平均粒子径がこの範囲外の場合には一定の00にお
けるαが小さくなる。とくに平均粒子径が7μmG″−
達しない場合には微粒子濃度が低い時、直進方向の限ら
れた立体角に進行する光が多く、しかもこの光が赤味を
帯びている。微粒子濃度を増してゆくと、直進性の赤味
を帯びた光は低減されるが、Goが非常に低い値となる
までこの異常な光はなくならない、この光は人間の目で
rjA察する時いわゆるスゲとして認識される。
When the average particle diameter is outside this range, α at a constant 00 becomes small. Especially when the average particle diameter is 7μmG″-
If the particle concentration is low, a lot of light travels in a limited solid angle in the straight direction, and this light has a reddish tinge. As the particle concentration increases, the reddish light that travels in a straight line is reduced, but this abnormal light does not disappear until Go reaches a very low value. It is recognized as a so-called sedge.

人間の目は通常視野角1分(=1/60度)で見分ける
ことが可能であり、このスゲの現象を光学測定機器(輝
度計)によって測定するには人間の目が見分けるのと同
程度の視野角を有する機器を使用することが必要である
。従来、文献等で輝度の角度分布のデータとスゲとの間
に相関性がないものが見受けられるが、それは人間の目
と輝度計との視野角の差によると思われる。現在市販の
輝度計の視野角は2度、1度、’/3度、0.2度等が
あり、いずれも1/60度に比べて大きい、視野角がで
きるだけ小さく、かつ安定した測定ができることを考慮
し、本発明者等は視野角が6°のミノルタ社製のミノル
タ輝度計口tV3°Pを用いて測定を行った。その結果
、スゲの現象に対応して極めてせまい角度範囲に集中し
た強い光を測定することができ、Goとαの値にある程
度反映されることがわかった。微粒子の平均粒子径が7
μmを下まわると、スゲを防止するためには最大輝度が
極めて低くなるまで光拡散材の濃度を増す必要があり、
スゲがなく、かつゲインの大きい光拡散板を得るには適
当ではない。平均粒子径が30μmを上まわると、使用
する微粒子の濃度が大きくなりすぎるため、経済上、生
産技術上、不利となるばかりでなく、本発明の範囲内の
粒径の場合に比べて半値角が小さくなる。
The human eye can normally distinguish one minute of viewing angle (= 1/60 degree), and measuring this sedge phenomenon with an optical measurement device (luminance meter) takes about the same amount of time as the human eye can distinguish. It is necessary to use equipment with a viewing angle of . Conventionally, there has been found in literature that there is no correlation between data on the angular distribution of luminance and sedge, but this is thought to be due to the difference in viewing angle between the human eye and the luminance meter. Currently, the viewing angle of commercially available luminance meters is 2 degrees, 1 degree, '/3 degrees, 0.2 degrees, etc. All of them are larger than 1/60 degree, and the viewing angle is as small as possible and stable measurement is required. In consideration of what could be done, the present inventors conducted measurements using a Minolta luminance meter tV3°P manufactured by Minolta, which has a viewing angle of 6°. As a result, it was found that it was possible to measure strong light concentrated in an extremely narrow angular range in response to the sedge phenomenon, and that this was reflected to some extent in the values of Go and α. The average particle diameter of fine particles is 7
Below μm, in order to prevent sedges, it is necessary to increase the concentration of the light diffusing material until the maximum brightness becomes extremely low.
It is not suitable for obtaining a light diffusing plate with no ridges and a large gain. If the average particle size exceeds 30 μm, the concentration of the fine particles used becomes too large, which is not only disadvantageous from an economic and production technology perspective, but also reduces the half-value angle compared to the case of a particle size within the range of the present invention. becomes smaller.

平均粒子径には種々の定義があるが、本発明にいう平均
粒子径とは、重量メ、シアン径すなわち重量累積曲線に
おいて累積重量分率が50%となる粒子径でもって表わ
す0粒度分布を測定するには、コールタ−カウンター法
、沈降法、顕微鏡写真または電子顕微鏡写真による計数
法等の方法があり、いずれの方法でしよい。
There are various definitions for the average particle size, but the average particle size as used in the present invention refers to the zero particle size distribution expressed by the weight and cyan diameter, that is, the particle size at which the cumulative weight fraction is 50% in the weight accumulation curve. For measurement, there are methods such as Coulter counter method, sedimentation method, counting method using micrographs or electron micrographs, and any method may be used.

本発明において、光拡散性微粒子の形状に関する因子は
非常に重要な事項である。すなわち光拡散性微粒子は、
微粒子中に占める中空状微粒子の割合が3重量%以下、
好ましくは実質的に中空状微粒子を含まずかつ実質的に
球状の微粒子であることが必要である。一般によく知ら
れている球状の透明微粒子としてガラスピーズがあるが
、本発明者らの検討しなところによると、前述の如き屈
折率差および粒径範囲を適用することにより、ガラスピ
ーズを用いても性能を向上させることができるが同様の
粒径および屈折率を有する後述の如き架橋プラスチック
ビーズに比べて、性能が劣ることが判明した。また中空
部を実質的に含まない微粒子として種々の破砕無機粉が
あり、これらも前記諸条件を満たす範囲で用いることに
より、優れた光拡散性プラスチックとすることができる
が球状の形状を有する微粒子の方が、このような不定形
の微粒子に比べて、同一のピークゲインG。
In the present invention, factors related to the shape of the light-diffusing fine particles are very important. In other words, light-diffusing fine particles are
The proportion of hollow fine particles in the fine particles is 3% by weight or less,
Preferably, the particles need to be substantially spherical and not contain substantially hollow particles. Glass beads are generally well-known spherical transparent fine particles, but according to the present inventors, by applying the refractive index difference and particle size range as described above, glass beads can be used. It has been found that although the performance can be improved, the performance is inferior to that of cross-linked plastic beads of similar particle size and refractive index, such as those described below. In addition, there are various crushed inorganic powders as fine particles that do not substantially contain hollow parts, and if these are used within the range that satisfies the above conditions, they can be made into excellent light-diffusing plastics. has the same peak gain G compared to such irregularly shaped particles.

を与える濃度の拡散板において半値角αが大きくなるの
で、さらに好ましい、ガラスピーズ等の場合には破砕状
微粒子と球状微粒子が混在しているのが一般であり、ま
た中空ビーズの比率を減少させる目的で、通常のガラス
ピーズに破砕状微粒子を混入して性能を向上させる方法
も可能であり、事実有効であるが、好ましくは上述の如
く球状微粒子の比率が高い方が好ましい、非球状微粒子
は好ましくは30%以下、さらに好ましくは10%以下
、最も好ましくは実質的に含まないのがよい。
It is more preferable because the half-value angle α becomes large in a diffuser plate with a concentration that gives For this purpose, it is possible and in fact effective to improve the performance by mixing crushed fine particles into ordinary glass beads, but as mentioned above, it is preferable to have a high proportion of spherical fine particles, and non-spherical fine particles are It is preferably 30% or less, more preferably 10% or less, and most preferably substantially free.

上記の屈折率差、粒径、形状の諸条件を満足するには透
明微粒子として、ポリマー、殊に架橋ポリマーを用いる
のが有利であり好ましい、架碑重合体微粒子の場合には
そのポリマー組成により屈折率を調整することが可能で
あり、適切な重合方法により、実質的に中空部を含まず
、かつ実質的に球状の微粒子を得ることができる。一般
に光拡散性プラスチックは、光拡散性微粒子と基板1脂
を溶融混練して押し出し、あるいはプレス法により、ま
たは場合によっては光拡散性微粒子を重合性モノマーま
たは部分重合した重合性モノマージラッグ中に分散させ
て重合する方法によって作られる。したがって光拡散性
微粒子は光拡散性プラスチックを作る工程中において、
溶融、溶解等により好ましくない形状に変化しないこと
が必要である。そのためには、ポリマーの分子量を十分
高くしておく方法も可能であるが、より好ましくは適度
な架橋を与えておくのがよい。
In order to satisfy the conditions of refractive index difference, particle size, and shape mentioned above, it is advantageous and preferable to use a polymer, especially a crosslinked polymer, as the transparent fine particles.In the case of crosslinked polymer fine particles, depending on the polymer composition. It is possible to adjust the refractive index, and by using an appropriate polymerization method, it is possible to obtain substantially spherical fine particles that are substantially free of hollow parts. In general, light-diffusing plastics are produced by melt-kneading light-diffusing fine particles and substrate 1 resin and extruding them, or by a pressing method, or in some cases, by adding light-diffusing fine particles to a polymerizable monomer or partially polymerized polymerizable monomer dilug. It is made by a method of dispersion and polymerization. Therefore, light-diffusing fine particles are used during the process of making light-diffusing plastic.
It is necessary that the material does not change into an undesirable shape due to melting, melting, etc. For this purpose, it is possible to make the molecular weight of the polymer sufficiently high, but it is more preferable to provide it with appropriate crosslinking.

光拡散性プラスチックの基体樹脂としては透明で光線透
過率の高い樹脂すなわちメタクリル樹脂、ポリスチレン
樹脂、ポリカーボネート樹脂の他エポキシ樹脂、ポリ塩
化ビニル樹脂等が使用される。
As the base resin of the light-diffusing plastic, transparent resins with high light transmittance, such as methacrylic resin, polystyrene resin, polycarbonate resin, as well as epoxy resin and polyvinyl chloride resin, are used.

中でもメタクリルVIj脂は、透明性、耐久性および物
性が優れているので好ましい樹脂である0通常メタクリ
ル樹脂は耐熱性、成型性、耐久性等を改良する目的でM
MAの他にアルキルアクリレートを共重合したり、滑剤
、紫外線吸収剤を添加したりするが、ここでいうメタク
リル樹脂はそのようなMMAを主体とする樹脂全般をい
う.基体樹脂をメタクリル樹脂とする場合、MMAとス
チレンおよび多官能性(メタ)アクリレートを構成成分
とする架橋樹脂である微粒子を光拡散剤とするのが好適
である.通常のメタクリル樹脂は屈折率が1、49前後
であるので、光拡散剤微粒子の屈折率は1.51〜1.
53程度であることが好ましい.もちろん基体樹脂であ
るメタクリル樹脂の種類によって若干高いまたは低い屈
折率であってもよい.本発明において多官能性(メタ)
アクリル樹脂とは一分子中に二個以上のアクリル基また
はメタクリル基を有する化合物であり、たとえばエチレ
ングリコールジ(メタ)アクリレート、ジエチレングリ
コールジ(メタ)アクリレート、テトラエチレングリコ
ールジ(メタ)アクリレート、ノナエチレングリコール
ジ(メタ)アクリレート等の(ポリ)エチレングリコー
ルジ(メタ)アクリレート、グロビレングリコールジ(
メタ)アクリレート、1.3−プチレングリコールジ(
メタ)アクリレート、テトラメチレングリコールジ(メ
タ)アクリレート、ヘキサメチレンジ(メタ)アクリレ
ート、ネオペンチルグリコールジ(メタ)アクリレート
等のグリコールジ(メタ)アクリレートの他トリメチロ
ールグロパントリ(メタ)アクリレート、ペンタエリス
リトニルテトラ(メタ)アクリレート等の多価アルコー
ルの多価(メタ)の製造過程においてその微粒子の形状
を損なうのを防止する役割を担うものであり、透明微粒
子を構成する全モノマーの2%〜60%の範囲で適宜選
択される.前記屈折率を実現するための参考範囲をエチ
レングリコールジメタクリレート、MMA、スチレンの
三元共重合体を例にとって示すと、MMAの重量分率を
Wl、スチレンのt量分率をW2とする時、下記式(I
II)および式(IV)を満足する範囲である。
Among them, methacrylic VIJ resin is a preferred resin because it has excellent transparency, durability, and physical properties.Methacrylic resin is usually used to improve heat resistance, moldability, durability, etc.
In addition to MA, alkyl acrylate may be copolymerized, and lubricants and ultraviolet absorbers may be added, and the term methacrylic resin here refers to all resins that are mainly composed of MMA. When the base resin is a methacrylic resin, it is preferable to use fine particles of a crosslinked resin containing MMA, styrene, and polyfunctional (meth)acrylate as the light diffusing agent. Since the refractive index of ordinary methacrylic resin is around 1.49, the refractive index of the light diffusing agent particles is 1.51 to 1.49.
It is preferably about 53. Of course, the refractive index may be slightly higher or lower depending on the type of methacrylic resin that is the base resin. In the present invention, polyfunctionality (meta)
Acrylic resin is a compound having two or more acrylic or methacrylic groups in one molecule, such as ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, nonaethylene (Poly)ethylene glycol di(meth)acrylate such as glycoldi(meth)acrylate, globylene glycol di(meth)acrylate, etc.
meth)acrylate, 1,3-butylene glycol di(
In addition to glycol di(meth)acrylates such as meth)acrylate, tetramethylene glycol di(meth)acrylate, hexamethylene di(meth)acrylate, and neopentylglycol di(meth)acrylate, trimethylolgropane tri(meth)acrylate, penta It plays a role in preventing damage to the shape of fine particles during the production process of polyhydric (meth) polyhydric alcohols such as erythritonyl tetra(meth)acrylate, and accounts for 2% of the total monomers that make up transparent fine particles. Appropriately selected within the range of ~60%. To illustrate the reference range for achieving the above refractive index using a terpolymer of ethylene glycol dimethacrylate, MMA, and styrene as an example, when the weight fraction of MMA is Wl and the t amount fraction of styrene is W2. , the following formula (I
II) and formula (IV).

4、 54W2  0. 94≦W+ <6. 66W
2+0. 36  (1)0、99≦W+ +W2≦0
. 4          (IV)本発明の共重合体
には熱安定性の改良等の目的で前記モノマーの他にメチ
ルアクリレート、エチルアクリレート、ブチルアクリレ
ート等のアルキルアクリレートを共重合してもよい。
4, 54W2 0. 94≦W+ <6. 66W
2+0. 36 (1) 0, 99≦W+ +W2≦0
.. 4 (IV) In addition to the above monomers, alkyl acrylates such as methyl acrylate, ethyl acrylate, butyl acrylate, etc. may be copolymerized with the copolymer of the present invention for the purpose of improving thermal stability.

その場合前記の式(I[[)および(IV)においてW
lをW+ +W3  (Wl  :アルキルアクリレー
トの重量分率を示す)とおきかえればよい。アルキルア
クリレートは通常MMAの偽以下でよい。
In that case, in the above formulas (I[[) and (IV), W
It is sufficient to replace l with W+ +W3 (Wl: indicates the weight fraction of alkyl acrylate). The alkyl acrylate is usually less than MMA.

基体樹脂としてスチレンとMMAの共重合体を用いると
屈折率が高くなるため、レンズとしての効果が高まり、
有利となる場合がある。このような場合にも、前記のメ
タクリル樹脂に用いた透明微粒子に類似の架橋共重合体
を用いることが望ましい。ただし、スチレン−M M 
A V!1脂の屈折率に応じて適当な屈折率に調整すれ
ばよい0以上述べたポリマービーズは、懸濁重合法によ
り合成する事ができる。例えば、ポリビニルアルコール
を分散剤とし、モノマーをディスパーザ−等により、微
細に分散した後、重合、−過、洗浄、乾燥することによ
り、製造することができる。
When a copolymer of styrene and MMA is used as the base resin, the refractive index increases, which increases the effectiveness of the lens.
It may be advantageous. Even in such cases, it is desirable to use a crosslinked copolymer similar to the transparent fine particles used in the methacrylic resin described above. However, styrene-M M
AV! The above-mentioned polymer beads can be synthesized by a suspension polymerization method. For example, it can be produced by using polyvinyl alcohol as a dispersant and finely dispersing monomers with a disperser or the like, followed by polymerization, filtering, washing, and drying.

(実施例) 以下、実施例を挙げて本発明をさらに具体的に説明する
(Example) Hereinafter, the present invention will be described in more detail with reference to Examples.

実施例I MMA34部、スチレン16部、エチレングリコールジ
メタクリレート50部、ラウロイルパーオキサイド0.
2部をポリビニルアルコール(■クラレ製PVA−42
0)0.4%含む水300部と混合し、ラボディスパー
ザ−により分散を行なった。この液を撹拌しなからN2
雰囲気で70℃で20分、95℃で50分加熱した。得
られた分散液を一過および水による繰りかえし洗浄を行
ない最後にメタノールで洗浄後、乾燥した。
Example I MMA 34 parts, styrene 16 parts, ethylene glycol dimethacrylate 50 parts, lauroyl peroxide 0.
2 parts of polyvinyl alcohol (PVA-42 manufactured by Kuraray)
0) and 300 parts of water containing 0.4%, and dispersed using a lab body spazer. Do not stir this liquid and use N2
The mixture was heated in an atmosphere at 70°C for 20 minutes and at 95°C for 50 minutes. The resulting dispersion was passed through and washed repeatedly with water, finally washed with methanol, and then dried.

このようにして得られた架橋微粒子の粒度分布を粒度分
布計(セイシン企業製ミクロンフォトサイザー5KA−
5000)で測定しなところ、重量メジアン径は10.
58μmであった。この際の比重は別途同一組成の重合
物を作って測定した値(1,1891)を用イタ、屈折
率は顕ri a c;:よりベツゲ線の移動挙動を見る
方法で測定し、1゜5174であった。
The particle size distribution of the crosslinked fine particles thus obtained was measured using a particle size distribution meter (Micron Photosizer 5KA-manufactured by Seishin Enterprises).
5000), the weight median diameter was 10.
It was 58 μm. In this case, the specific gravity was measured using a value (1,1891) obtained by separately preparing a polymer with the same composition, and the refractive index was measured using a method that observed the movement behavior of the Bessge line from 1°. It was 5174.

またこのビーズは実質的にすべて球状でかつ中空粒子を
含んでいなかった。
Also, the beads were substantially all spherical and did not contain hollow particles.

この架橋ビーズを用い、以下の方法により、種々の重量
分率でビーズを含有する、厚さ1鵡のメタクリル樹脂板
を作った。
Using these crosslinked beads, methacrylic resin plates having a thickness of 1 mm and containing beads in various weight fractions were made by the following method.

アクリル酸エチル11.9重量部、MMA 128.1
部の混合液中にアクリル酸エチル8.5%を共重合した
アクリル樹脂ビーズ(協和ガス化学工業製F−1000
B屈折率1.4920)60fJ、置部を溶解して、ア
クリル樹脂シラツブを作った。このシラツブに前記の架
橋ビーズを必要量、凝集しないように注意しながら、分
散させた。この中にアゾビスイソブチロニトリル0.0
21E量部を溶解せしめ、ガスゲットを装着した2枚の
ガラ各板中に入れ、脱気した後、80℃で2時間、さら
に120℃で2時間加熱して重合した。なお板厚は1闇
となるように調整した0重量終了後ガラス板より微粒子
ビーズ入りアクリル板を取り出した。 このようにして
得られた微粒子含有アクリル樹脂板(光拡散板)にコリ
メートされたハロゲンランプの光を後方より入射した。
Ethyl acrylate 11.9 parts by weight, MMA 128.1
Acrylic resin beads (Kyowa Gas Chemical Co., Ltd. F-1000) copolymerized with 8.5% ethyl acrylate in a mixed solution of
B refractive index: 1.4920) 60 fJ, and an acrylic resin sill was melted. The required amount of the cross-linked beads described above was dispersed in this sill, taking care not to aggregate them. In this, azobisisobutyronitrile 0.0
21 parts of 21E was dissolved, placed in two glass plates each equipped with a gas get, degassed, and then heated at 80° C. for 2 hours and then at 120° C. for 2 hours to polymerize. The thickness of the acrylic plate containing microbeads was adjusted to 1 mm, and the acrylic plate containing microbeads was taken out from the glass plate after zero weight. Collimated light from a halogen lamp was incident on the thus obtained fine particle-containing acrylic resin plate (light diffusion plate) from behind.

光拡散板から1.5mの前方に、輝度計(ミノルタ輝度
計nth″P)を設置し、輝度を測定した。輝度計の位
置をずらし、角度を変えて、同一部分を測定する操作を
くりかえし、輝度の角度分布を測定した。
A brightness meter (Minolta brightness meter nth''P) was installed 1.5 m in front of the light diffusion plate to measure the brightness.The operation of measuring the same area was repeated by shifting the position of the brightness meter and changing the angle. , the angular distribution of brightness was measured.

一方、別途光拡散板の位置の照度を照度計により測定し
ておき、輝度と照度の比から式(Vl)によりゲインを
計算した。正面のゲインを00、ゲインが00の吟とな
る時の角度をαとして、各濃度の値を第1表に示す。
On the other hand, the illuminance at the position of the light diffusing plate was separately measured using an illuminance meter, and the gain was calculated from the ratio of luminance and illuminance using equation (Vl). The values of each density are shown in Table 1, where the front gain is 00 and the angle when the gain is 00 is α.

第1表 この結果を縦軸をG0.横軸をαとする両対数グラフに
プロットすると、第2図のようになる。
Table 1 shows the results with the vertical axis being G0. When plotted on a logarithmic graph with α on the horizontal axis, it becomes as shown in Figure 2.

この図より00が20となる濃度ににおいてはαは7.
8゛となる。この値は後述の比較例に示される値に比べ
て大きな値であり、この光拡散板は一定のピークゲイン
とした時の拡散半値角の大きいすぐれた材料である。
From this figure, at the concentration where 00 becomes 20, α is 7.
It becomes 8゛. This value is larger than the value shown in the comparative example described below, and this light diffusing plate is an excellent material with a large diffusion half-value angle when a constant peak gain is set.

実施例2〜4および比較例1.2 実施例1と同様(こして、第2表に示すような各種の微
粒子ならびに基体樹脂を用いて光拡散性プラスチックを
作成し、光拡散性能を測定した。i1′!I定結果も第
2表に示す。
Examples 2 to 4 and Comparative Example 1.2 Same as Example 1 (light diffusing plastics were created using various fine particles and base resin as shown in Table 2, and light diffusing performance was measured. .i1'!I constant results are also shown in Table 2.

以下余白。Margin below.

実施例5 比較例1において用いたものと同一のガラスピーズGB
−210(東芝バロティー二社製)を1゜1.2.2−
テトラプロモニエタンとモノクロルベンゼンの混合液か
らなる比12.424の液中に浸漬し遠心分離したとこ
ろ、ガラスピーズが液の上層に浮上するものと下部に沈
降するものに分離した。各々の相を分離、洗浄、乾燥し
、ヨウ化メチレンと四塩化炭素の混合液からなる屈折率
が約1.521の液中に入れ、光学5g1I微鏡にて観
察したところ、沈降部分のガラスピーズは液とビーズの
境界がうずくすき透って見えたが、浮上部分のガラスピ
ーズは芯の部分が黒くくっきりとltl!察され、別途
中空ビーズについて同様に観察した場合と似ていた。こ
のようにして得た浮上部分のビーズの重量は分離前のビ
ーズの重量の4.7%であった。この方法で得た沈降部
分のガラスピーズを光拡散剤として用い実施例1と同様
の方法によって得た光拡散板の結果を第2表に示す、比
較例1の場合に比ベピークゲインが20となる時のαが
大きく光拡散剤としての性能が向上していた。
Example 5 Same glass beads GB as used in Comparative Example 1
-210 (manufactured by Toshiba Barotini) at 1°1.2.2-
When the glass beads were immersed in a mixture of tetrapromoniethane and monochlorobenzene with a ratio of 12.424 and centrifuged, the glass beads were separated into those that floated to the top of the liquid and those that settled to the bottom. Each phase was separated, washed, dried, and placed in a liquid mixture of methylene iodide and carbon tetrachloride with a refractive index of approximately 1.521, and observed with an optical 5g1I microscope. For the peas, the boundary between the liquid and the beads was clearly visible, but the floating part of the glass peas had a black core that was clearly visible! The results were similar to those observed separately for hollow beads. The weight of the beads in the floating portion thus obtained was 4.7% of the weight of the beads before separation. Table 2 shows the results of a light diffusing plate obtained in the same manner as in Example 1 using the glass beads of the sedimented part obtained by this method as a light diffusing agent.In the case of Comparative Example 1, the relative peak gain was 20. The α of time was large, and the performance as a light diffusing agent was improved.

(発明の効果) 本発明の条件を満たす実質的に透明なプラスチックと微
粒子の組み合わせにより、正面の輝度が高く、かつ拡散
半値角の大きな光拡散性プラスチックを得ることが可能
となった。
(Effects of the Invention) By combining a substantially transparent plastic that satisfies the conditions of the present invention and fine particles, it has become possible to obtain a light-diffusing plastic that has high front brightness and a large diffusion half-value angle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1における各架橋ビーズ濃度でのゲイ
ンの角度分布を表わす図であり、縦軸は対数目盛、横軸
は等間隔目盛で示している。第2図は実施例1〜5およ
び比較例1〜2のピークゲインと半値角を示すグラフで
あり、縦軸、横軸ともに対数目盛で示している。 特許出願人 協和ガス化学工業株式会社第1図 第2図 半値角α(度) 角   度 (度) 手続主甫正書(自発) 昭和63年9月7日
FIG. 1 is a diagram showing the angular distribution of gain at each crosslinked bead concentration in Example 1, with the vertical axis shown on a logarithmic scale and the horizontal axis shown on an equally spaced scale. FIG. 2 is a graph showing the peak gain and half-value angle of Examples 1 to 5 and Comparative Examples 1 to 2, and both the vertical and horizontal axes are shown on a logarithmic scale. Patent applicant: Kyowa Gas Chemical Industry Co., Ltd. Figure 1 Figure 2 Half-value angle α (degrees) Angle (degrees) Procedural author's letter (spontaneous) September 7, 1988

Claims (7)

【特許請求の範囲】[Claims] (1)屈折率Nsからなる実質的に透明なプラスチック
中に、下記式( I )、および式(II)0.02≦|N
p−Ns|≦0.04……( I ) 7≦d≦30…………………………(II) を満足する屈折率Npおよび平均微粒子径d(μm)を
有し、かつ内部に空孔を有するものの割合が3重量%で
あるような、実質的に透明な球状微粒子を分散させてな
る光拡散性プラスチック。
(1) The following formula (I) and formula (II) 0.02≦|N
p-Ns|≦0.04……(I) 7≦d≦30………………………………(II) Having a refractive index Np and an average particle diameter d (μm) that satisfy the following, and A light-diffusing plastic made of dispersed substantially transparent spherical fine particles having 3% by weight of particles having pores inside.
(2)微粒子がポリマーの微粒子である特許請求の範囲
第1項に記載の光拡散性プラスチック。
(2) The light-diffusing plastic according to claim 1, wherein the fine particles are polymer fine particles.
(3)微粒子が架橋ポリマーの微粒子である特許請求の
範囲第1項に記載の光拡散性プラスチック。
(3) The light-diffusing plastic according to claim 1, wherein the fine particles are crosslinked polymer fine particles.
(4)微粒子のうち、非球状微粒子の全微粒子中に占め
る割合が10重量%以下であることを特徴とする特許請
求の範囲第1〜3項記載の光拡散性プラスチック。
(4) The light-diffusing plastic according to any one of claims 1 to 3, wherein the proportion of non-spherical fine particles in the total fine particles is 10% by weight or less.
(5)実質的に透明なプラスチックがメタクリル樹脂で
あり、微粒子がメチルメタクリレート、スチレンおよび
多官能(メタ)アクリレートの共重合体である特許請求
の範囲第1〜4項記載の光拡散性プラスチック。
(5) The light-diffusing plastic according to any one of claims 1 to 4, wherein the substantially transparent plastic is a methacrylic resin, and the fine particles are a copolymer of methyl methacrylate, styrene, and polyfunctional (meth)acrylate.
(6)実質的に透明なプラスチックがメチルメタクリレ
ートとスチレンの共重合樹脂であり、微粒子がメチルメ
タクリレートおよび多官能性(メタ)アクリレートの共
重合体あるいはメチルメタクリレート、スチレンおよび
多官能(メタ)アクリレートの共重合体である、特許請
求の範囲第1〜4項記載の光拡散性プラスチック。
(6) The substantially transparent plastic is a copolymer resin of methyl methacrylate and styrene, and the fine particles are a copolymer of methyl methacrylate and a polyfunctional (meth)acrylate or a copolymer of methyl methacrylate, styrene, and a polyfunctional (meth)acrylate. The light-diffusing plastic according to claims 1 to 4, which is a copolymer.
(7)メチルメタクリレート、スチレンおよび多官能性
(メタ)アクリレートからなる架橋共重合体で構成され
、下記一般式(III)および式(IV)を満足し、かつ重
量メジアン径が7〜30μmであり、実質的に内部に空
孔を有さない、実質的に透明な球状微粒子。4、54W
_2−0.94≦W_1≦6.66W_2−0.36(
III)0.99≦W_1+W_2≦0.4(IV) (ただし、W_1はメチルメタクリレートの重量分率、
W_2はスチレンの重量分率を表わす。)
(7) It is composed of a crosslinked copolymer consisting of methyl methacrylate, styrene, and polyfunctional (meth)acrylate, satisfies the following general formula (III) and formula (IV), and has a weight median diameter of 7 to 30 μm. , substantially transparent spherical fine particles having substantially no internal pores. 4, 54W
_2-0.94≦W_1≦6.66W_2-0.36(
III) 0.99≦W_1+W_2≦0.4 (IV) (where W_1 is the weight fraction of methyl methacrylate,
W_2 represents the weight fraction of styrene. )
JP63156397A 1988-06-24 1988-06-24 Light diffusing plastic Expired - Lifetime JP2667878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63156397A JP2667878B2 (en) 1988-06-24 1988-06-24 Light diffusing plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63156397A JP2667878B2 (en) 1988-06-24 1988-06-24 Light diffusing plastic

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9103841A Division JPH1067828A (en) 1997-04-07 1997-04-07 Microparticle suitable for light-diffusing plastic

Publications (2)

Publication Number Publication Date
JPH026557A true JPH026557A (en) 1990-01-10
JP2667878B2 JP2667878B2 (en) 1997-10-27

Family

ID=15626845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63156397A Expired - Lifetime JP2667878B2 (en) 1988-06-24 1988-06-24 Light diffusing plastic

Country Status (1)

Country Link
JP (1) JP2667878B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03143950A (en) * 1989-10-30 1991-06-19 Nippon G Ii Plast Kk Light-scattering polycarbonate resin
CN1064374C (en) * 1997-01-24 2001-04-11 华南理工大学 High-scattering light-conducting organic glass and its preparation
EP1127090B1 (en) * 1998-11-06 2003-04-09 General Electric Company Thermoplastic article having low clarity and low haze
WO2006068198A1 (en) * 2004-12-22 2006-06-29 Denki Kagaku Kogyo Kabushiki Kaisha Styrene resin composition, molded body thereof, and diffusion plate
JP2008116725A (en) * 2006-11-06 2008-05-22 Sumitomo Chemical Co Ltd Liquid crystal display device
WO2009142153A1 (en) * 2008-05-19 2009-11-26 Toto株式会社 Washing counter
JP2011190404A (en) * 2010-03-16 2011-09-29 Sekisui Plastics Co Ltd Crosslinked (meth)acrylic resin particle and optical sheet
JP2012108547A (en) * 2012-02-16 2012-06-07 Sumitomo Chemical Co Ltd Liquid crystal display device
JP2012188553A (en) * 2011-03-10 2012-10-04 Nippon Shokubai Co Ltd Polymer particle
US9323487B2 (en) 2014-01-14 2016-04-26 Ricoh Company, Ltd. Providing an integrated, feature oriented ad-hoc printing device selection system for mobile client devices
CN112538226A (en) * 2020-12-03 2021-03-23 安徽新涛光电科技有限公司 Flame-retardant PMMA light diffusion plate and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248089A (en) * 2007-03-30 2008-10-16 Sumitomo Chemical Co Ltd Light diffusive resin composition and light diffusive resin plate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159440A (en) * 1985-01-07 1986-07-19 Asahi Chem Ind Co Ltd Light-scattering acrylic resin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159440A (en) * 1985-01-07 1986-07-19 Asahi Chem Ind Co Ltd Light-scattering acrylic resin composition

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03143950A (en) * 1989-10-30 1991-06-19 Nippon G Ii Plast Kk Light-scattering polycarbonate resin
CN1064374C (en) * 1997-01-24 2001-04-11 华南理工大学 High-scattering light-conducting organic glass and its preparation
EP1127090B1 (en) * 1998-11-06 2003-04-09 General Electric Company Thermoplastic article having low clarity and low haze
WO2006068198A1 (en) * 2004-12-22 2006-06-29 Denki Kagaku Kogyo Kabushiki Kaisha Styrene resin composition, molded body thereof, and diffusion plate
JP2008116725A (en) * 2006-11-06 2008-05-22 Sumitomo Chemical Co Ltd Liquid crystal display device
JP2010000338A (en) * 2008-05-19 2010-01-07 Toto Ltd Wash basin counter
WO2009142153A1 (en) * 2008-05-19 2009-11-26 Toto株式会社 Washing counter
US8337033B2 (en) 2008-05-19 2012-12-25 Toto Ltd Washing counter
JP2011190404A (en) * 2010-03-16 2011-09-29 Sekisui Plastics Co Ltd Crosslinked (meth)acrylic resin particle and optical sheet
JP2012188553A (en) * 2011-03-10 2012-10-04 Nippon Shokubai Co Ltd Polymer particle
JP2012108547A (en) * 2012-02-16 2012-06-07 Sumitomo Chemical Co Ltd Liquid crystal display device
US9323487B2 (en) 2014-01-14 2016-04-26 Ricoh Company, Ltd. Providing an integrated, feature oriented ad-hoc printing device selection system for mobile client devices
CN112538226A (en) * 2020-12-03 2021-03-23 安徽新涛光电科技有限公司 Flame-retardant PMMA light diffusion plate and preparation method thereof

Also Published As

Publication number Publication date
JP2667878B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
JP4002320B2 (en) Silica composite resin particles and production method thereof
JPH0737579B2 (en) Light-diffusing thermoplastic polymer composition
US5004785A (en) Light-diffusing methacrylic resin and process for production thereof
JPH026557A (en) Light-diffusing plastic and fine particle suitable therefor
JPH07234304A (en) Light diffusion plate
JP2005527842A (en) Transparent thermoplastic composition comprising hollow glass spheres
TW200523645A (en) Diffuser sheet for lcd applications, process for its production, and use
JP2667876B2 (en) Light diffusing plastic
KR20210040277A (en) Light scattering polymeric composition with improved scattering efficiency and improved mechanical properties
JPH04279668A (en) Light diffusing resin
JPH1067829A (en) Microparticle suitable for light-diffusing plastic
JP2000169658A (en) Light-dispersing resin composition
JPH1160966A (en) Light diffusing resin composition
JPH1067828A (en) Microparticle suitable for light-diffusing plastic
JPH01269902A (en) Light diffusion plate for transmission type screen
JP2011094119A (en) Light diffusible composite resin particle, method for producing the same, light diffusible resin composition, and illumination cover
US4963624A (en) Process for producing light-diffusing methacrylic resin article
JPH05302006A (en) Light-diffusing methacrylate resin
JPH09281339A (en) Light-diffusing agent and light-diffusing plate
JPH01236257A (en) Light-diffusing methacrylic resin and its production
JPH04328148A (en) Light-diffusing sheet-like article
JP3531668B2 (en) Light diffusion sheet
JPS614762A (en) Light-diffusing plastic
JP3374316B2 (en) Light diffusing laminated resin plate
JP2667878C (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term