JPH0265073A - Manufacture of electrode for metal-halogen battery - Google Patents

Manufacture of electrode for metal-halogen battery

Info

Publication number
JPH0265073A
JPH0265073A JP63214630A JP21463088A JPH0265073A JP H0265073 A JPH0265073 A JP H0265073A JP 63214630 A JP63214630 A JP 63214630A JP 21463088 A JP21463088 A JP 21463088A JP H0265073 A JPH0265073 A JP H0265073A
Authority
JP
Japan
Prior art keywords
electrode
carbon
carbon plastic
extrusion
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63214630A
Other languages
Japanese (ja)
Inventor
Koji Nakamura
好志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63214630A priority Critical patent/JPH0265073A/en
Publication of JPH0265073A publication Critical patent/JPH0265073A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To obtain an electrode plate with no directivity for warpage resistance by laminating carbon plastic plates so that their extrusion directions cross each other to obtain the electrode plate. CONSTITUTION:A reinforcing material such as glass fibers or carbon fibers is mixed with carbon plastic, this carbon plastic is extrusion-molded to form a conducting plate 44, and multiple carbon plastic plates 44 are manufactured. The carbon plastic plates 44-1 and 44-2 are stacked so that their extrusion directions 200 cross each other, e.g., at right angles, and they are stuck by heat pressing or the like to form an electrode plate 46. The reinforcement directions of the carbon plastic plate 44 are set at right angles, for example, and the directivity for warpage resistance can be eliminated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は金属−ハロゲン電池用電極の製造方法、特に金
属−臭素電池において充放電反応を行う反応槽(反応セ
ル)内に設けられている電極製造方法の改良に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an electrode for a metal-halogen battery, and in particular to a method for manufacturing an electrode for a metal-bromine battery. This invention relates to improvements in electrode manufacturing methods.

[従来の技術] 電解液循環式の金属−ハロゲン電池が蓄積エネルギの大
きい二次電池として電気自動車の電源用などに用いられ
ている。
[Prior Art] A metal-halogen battery with an electrolyte circulation type is used as a secondary battery with a large amount of stored energy, for example, as a power source for an electric vehicle.

第2図には、従来の金属−臭素電池の概要が示されてお
り、反応セル10には負極12a及び正極12bが、こ
の両極の間にはセパレータ14が設けられ、このセパレ
ータ14により負極室16と正極室18とが分離形成さ
れている。
FIG. 2 shows an outline of a conventional metal-bromine battery, in which a reaction cell 10 has a negative electrode 12a and a positive electrode 12b, and a separator 14 is provided between these two electrodes. 16 and a positive electrode chamber 18 are formed separately.

そして、この負極室16には負極液貯蔵槽20から負極
液がポンプ24により循環され、正極室18には正極液
貯蔵槽22から正極液がポンプ26により循環されてい
る。また、正極液貯蔵槽22内には、臭素錯化合物貯蔵
槽28が設けられており、この臭素錯化合物はバルブ3
0により必要な時期に正極電解液に混合される。
The negative electrode liquid is circulated into the negative electrode chamber 16 from the negative electrode liquid storage tank 20 by a pump 24, and the positive electrode liquid is circulated into the positive electrode chamber 18 from the positive electrode liquid storage tank 22 by a pump 26. Further, a bromine complex compound storage tank 28 is provided in the positive electrode liquid storage tank 22, and this bromine complex compound is stored in the valve 3.
0, it is mixed into the positive electrode electrolyte at the required time.

このような金属−臭素電池として、例えば亜鉛(Z n
)−臭素(B r)が用いられ、正極電解液にはメチル
・エチル・モリホリニウム・ブロマイド等の四級アンモ
ニウム塩の錯化剤が加えられており、この錯化剤は臭素
と反応して電解液に不溶でかつ電解液よりも比重の大き
い臭素錯化合物を形成する役割をする。また、電解液の
導電率を増加させるために、必要に応じて、例えばKC
j!。
As such a metal-bromine battery, for example, zinc (Z n
)-bromine (Br) is used, and a quaternary ammonium salt complexing agent such as methyl, ethyl, morifolinium, bromide, etc. is added to the positive electrode electrolyte, and this complexing agent reacts with bromine to cause electrolysis. It plays the role of forming a bromine complex compound that is insoluble in the electrolyte and has a higher specific gravity than the electrolyte. Additionally, in order to increase the conductivity of the electrolyte, for example, KC
j! .

N H4Cf等の支持電解質を加えることもできる。A supporting electrolyte such as N H4Cf can also be added.

このような構成によれば、充電時には図中の負極12a
にZnが、正極12bにBrが生成し、次のような反応
が行われる。
According to such a configuration, during charging, the negative electrode 12a in the figure
Zn is produced at the positive electrode 12b, and Br is produced at the positive electrode 12b, and the following reaction takes place.

正極 2Br    −+  Br2+2e負極 Zn
”+2e−*  Zn そして、正極12bで生成された臭素は前記錯化剤と反
応して臭素錯化合物を形成し、この臭素錯化合物は図示
100のように反応セル10から臭素錯化合物貯蔵槽2
8に供給され沈澱することになる。一方、負極12aで
生成した亜鉛は負極12Hの電極板上に電解析出(電析
)することになる。
Positive electrode 2Br −+ Br2+2e Negative electrode Zn
"+2e-*Zn Then, the bromine generated at the positive electrode 12b reacts with the complexing agent to form a bromine complex compound, and this bromine complex compound is transferred from the reaction cell 10 to the bromine complex compound storage tank 2 as shown in the figure 100.
8 and will be precipitated. On the other hand, the zinc produced at the negative electrode 12a is electrolytically deposited on the electrode plate of the negative electrode 12H.

従って、放電時には各電極において前記反応式と逆の反
応が行われ、これにより電極間から所定の電流が取り出
される。
Therefore, during discharge, a reaction opposite to the reaction formula described above takes place at each electrode, and a predetermined current is thereby extracted from between the electrodes.

このような電解液循環式電池は、例えば特開昭57−1
99167号公報に示されるバイポーラ型電池として用
いられており、これを第3図に基づいて説明する。
Such an electrolyte circulation type battery is disclosed in, for example, Japanese Patent Application Laid-Open No. 57-1
This is used as a bipolar type battery shown in Japanese Patent No. 99167, and this will be explained based on FIG.

バイポーラ型電池は、電極ユニット34とセパレータユ
ニット38を交互に積層配置することにより構成され、
前記電極ユニット34はカーボン含qの導電性プラスチ
ックから成る電極12を絶縁プラスチックから成る外枠
34aで保持する。
A bipolar battery is constructed by alternately stacking electrode units 34 and separator units 38,
The electrode unit 34 holds the electrode 12 made of carbon-containing conductive plastic with an outer frame 34a made of insulating plastic.

この電極ユニット34の電極12は、米国特許No41
69816に示される共押出し成形あるいはインサート
・インジェクション等によって外枠34aに接続形成さ
れており、その表裏の面で負極12a及び正極12bの
両極の役目(一方は別の反応セルの電極となる)をする
構成となっている。また、セパレータユニット38はセ
パレータ14を所定の厚さを有するセパレータ枠38a
で保持し、このセパレータ枠38aには電解液流路40
が形成される。
The electrode 12 of this electrode unit 34 is disclosed in U.S. Patent No. 41
It is connected to the outer frame 34a by co-extrusion molding or insert injection as shown in No. 69816, and its front and back surfaces serve as both the negative electrode 12a and the positive electrode 12b (one serves as an electrode for another reaction cell). It is configured to do this. The separator unit 38 also includes a separator frame 38a having a predetermined thickness.
This separator frame 38a has an electrolyte flow path 40.
is formed.

このような電極ユニット34とセパレータユニット38
を積層すると、一方の電極ユニット34の負極12aと
セパレータ14との間に第2図の負極室16が、他方の
電極ユニット34の正極12bとセパレータ14との間
に正極室18が形成され、この負極室16及び正極室1
8には前記電解液流路40から電解液が供給される。な
お、セパレータ14には整流器42が形成されており、
これにより電解液の流れを良好にすることができる。
Such an electrode unit 34 and separator unit 38
When stacked, a negative electrode chamber 16 in FIG. 2 is formed between the negative electrode 12a of one electrode unit 34 and the separator 14, and a positive electrode chamber 18 is formed between the positive electrode 12b of the other electrode unit 34 and the separator 14, This negative electrode chamber 16 and positive electrode chamber 1
8 is supplied with electrolyte from the electrolyte flow path 40. Note that a rectifier 42 is formed in the separator 14,
This makes it possible to improve the flow of the electrolyte.

[発明が解決しようとする課題] しかしながら、従来の電極ユニット34の電極12はハ
ロゲン物質によって、前記金属−臭素電池にあっては臭
素によってワーペイジ(伸びによる歪み)が生じるとい
う問題があった。
[Problems to be Solved by the Invention] However, there is a problem in that the electrode 12 of the conventional electrode unit 34 is caused by a halogen substance, and in the metal-bromine battery, warpage (distortion due to elongation) is caused by bromine.

すなわち、前述のように、電極12は軽量で低コストの
カーボンプラスチックを用いて押出し形成されているが
、このカーボンプラスチック板が臭素を吸収して伸びて
しまう。このことは、カーボンプラスナック板が特にカ
ーボンを含有していることに起因しており、電極ユニッ
ト34の外枠34aのプラスチック板においてはあまり
問題とはならない。
That is, as described above, the electrode 12 is extruded from lightweight and low-cost carbon plastic, but this carbon plastic plate absorbs bromine and stretches. This is due to the fact that the carbon plastic snack plate particularly contains carbon, and does not pose much of a problem with the plastic plate of the outer frame 34a of the electrode unit 34.

従って、従来では耐ワーペイジ性(耐臭素性)を向上さ
せるために、カーボンファイバ等の補強材をカーボンと
プラスチックの混練過程で混入することが行われる。そ
して、補強材混入のカーボンプラスチックを押出し成形
することにより、押出し方向の臭素による伸びを大幅に
低減することができる。
Therefore, conventionally, in order to improve warpage resistance (bromine resistance), a reinforcing material such as carbon fiber is mixed in during the kneading process of carbon and plastic. By extrusion molding carbon plastic mixed with a reinforcing material, elongation due to bromine in the extrusion direction can be significantly reduced.

しかしながら、前記伸びの低減は押出し方向においては
良好に改善されるが、押出し方向と垂直の方向では改善
が不十分であるという聞届があった。これは、補強材で
ある前記カーボンファイバが押出し方向に並ぶように配
列し、方向性が生じるからである。
However, it has been reported that although the reduction in elongation is well improved in the extrusion direction, the improvement is insufficient in the direction perpendicular to the extrusion direction. This is because the carbon fibers serving as reinforcing materials are arranged in the extrusion direction, resulting in directionality.

このようなことから、従来では補強材としてグラファイ
トを配合することも行われており、これによれば、方向
性を生じさせることなく耐ワーペイジ性を改善すること
ができる。
For this reason, conventionally, graphite has been blended as a reinforcing material, and this makes it possible to improve warpage resistance without causing directionality.

しかし、前記グラファイトは臭素と反応して電池性能を
悪化させる傾向があるため、グラファイトの配合量には
限界があり、これによっても前記押出し方向に垂直な方
向のワーペイジを完全になくすことができなかった。
However, since graphite tends to react with bromine and deteriorate battery performance, there is a limit to the amount of graphite that can be added, and even with this, it is not possible to completely eliminate warpage in the direction perpendicular to the extrusion direction. Ta.

発明の目的 本発明は前記従来の問題点を解決することを課題として
なされたものであり、その目的は、電極のワーペイジを
方向性なく良好に低減することのできる電解液循環式金
属−ハロゲン電池を提供することにある。
OBJECTS OF THE INVENTION The present invention has been made to solve the problems of the conventional art, and its purpose is to provide a metal-halogen battery with electrolyte circulation that can effectively reduce electrode warpage without directionality. Our goal is to provide the following.

[課題を解決するための手段] 前記目的を達成するために、本発明に係る金属−ハロゲ
ン電池用電極の製造方法は、補強材を混入したカーボン
プラスチック板を押出し成形により複数個形成し、この
課数個のカーボンプラスチック板を押出し方向が交差す
るように積層して電極板を形成することを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the method for manufacturing an electrode for a metal-halogen battery according to the present invention involves forming a plurality of carbon plastic plates mixed with a reinforcing material by extrusion molding. It is characterized in that the electrode plate is formed by laminating several carbon plastic plates such that their extrusion directions intersect.

[作用] 以上の構成によれば、前述のように、グラスファイバや
カーボンファイバ等の補強材をカーボンプラスチックに
混入して、このカーボンプラスチックを押出し成形して
1枚の導電性の板とし、このカーボンプラスチック板を
複数他作る。そして、このカーボンプラスチック板をそ
の押出し方向が交差するように、例えば直交するように
重ね、熱圧着などにて接着して電極板を形成する。
[Function] According to the above configuration, as described above, a reinforcing material such as glass fiber or carbon fiber is mixed into carbon plastic, and this carbon plastic is extruded to form a single conductive plate. Make multiple carbon plastic plates. Then, the carbon plastic plates are stacked so that their extrusion directions intersect, for example, perpendicularly, and bonded by thermocompression bonding or the like to form an electrode plate.

これによれば、カーボンプラスチック板の補強方向が例
えば直交方向において設定されることになり、耐ワーペ
イジ性の方向性をなくすことができる。
According to this, the reinforcing direction of the carbon plastic plate is set, for example, in the orthogonal direction, and it is possible to eliminate the directionality of the warpage resistance.

[実施例] 以−ド、本発明の好適な実施例を図面に基づいて説明す
る。
[Embodiments] Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第1図には、本発明に係る金属−ハロゲン電池用電極の
構成が示されており、まずカーボンとプラスチックの混
練過程で補強材としてグラスファイバを配合し、このグ
ラスファイバ混入のカーボンプラスチックを方向200
に押出して1枚のカーボンプラスチック板44を成形す
る。
FIG. 1 shows the structure of the metal-halogen battery electrode according to the present invention. First, glass fiber is blended as a reinforcing material in the process of kneading carbon and plastic, and the carbon plastic mixed with glass fiber is 200
A single carbon plastic plate 44 is formed by extrusion.

この場合、補強材として前記グラスファイバの代わりに
カーボンファイバを用いることができる。
In this case, carbon fiber can be used as the reinforcing material instead of the glass fiber.

本発明において特徴的なことは、ワーペイジを改善する
際に生じる方向性をなくしたことであり、このために、
本発明では前記カーボンプラスチック板を複数個用い、
それぞれのカーボンプラスチック板の押出し方向を交差
させて積層し、これらを接着して1枚の電極板とする。
The characteristic feature of the present invention is that it eliminates the directionality that occurs when improving work pages, and for this purpose,
In the present invention, a plurality of the carbon plastic plates are used,
The carbon plastic plates are stacked with their extrusion directions crossing each other, and then bonded together to form one electrode plate.

実施例では、図示されるように、2枚のカーボンプラス
チック板44−1と44−2を押出し成形にて形成し、
これらカーボンプラスチック板44の押出し方向200
が直交するように重ねる。
In the example, as shown in the figure, two carbon plastic plates 44-1 and 44-2 are formed by extrusion molding,
Extrusion direction 200 of these carbon plastic plates 44
overlap so that they are orthogonal.

そして、両者を熱圧着することにより、1枚の電極板4
6を製作する。この場合、カーボンプラスチック板44
の厚さは0.5vn程度とすることができ、電極板12
の厚さは約11となる。なお、カーボンプラスチック板
44の厚さは等しいことが望ましいが、任意に設定する
ことができる。
Then, by thermocompression bonding the two, one electrode plate 4 is formed.
Produce 6. In this case, the carbon plastic plate 44
The thickness of the electrode plate 12 can be about 0.5vn.
The thickness is approximately 11. Although it is desirable that the thickness of the carbon plastic plate 44 be the same, it can be set arbitrarily.

また、実施例では、2枚のカーボンプラスチック板44
を重ねるようにしているが、これに限らず3枚でも4枚
でもよく、例えば3枚の場合は押出し方向が30度で交
差するように重ねることも好適である。このように、本
発明はカーボンプラスチック板44を重ねる枚数を選択
することにより、電極板46の厚さを任意に設定できる
という利点もある。
In addition, in the embodiment, two carbon plastic plates 44
However, the invention is not limited to this, and the number of sheets may be three or four. For example, in the case of three sheets, it is also preferable to overlap them so that the extrusion directions intersect at 30 degrees. In this way, the present invention has the advantage that the thickness of the electrode plate 46 can be arbitrarily set by selecting the number of stacked carbon plastic plates 44.

本出願人は、このような構成の電極板46を、2M(モ
ル)のZnBr+1MのB r 2の浸漬液に入れて、
50℃で2週間浸漬し、伸びの試験を行った。その結果
を次の第1表に示す。
The present applicant placed the electrode plate 46 having such a configuration in an immersion solution of 2M (mol) ZnBr+1M B r 2,
It was immersed at 50°C for 2 weeks and tested for elongation. The results are shown in Table 1 below.

第1表 前記第1表から明らかなように、実施例の電極板44に
よれば、伸びが直交するX方向及びY方向において共に
0.3%となり、臭素吸収による伸びが大幅に改善され
ることが理解される。
Table 1 As is clear from Table 1 above, according to the electrode plate 44 of the example, the elongation is 0.3% in both the orthogonal X and Y directions, and the elongation due to bromine absorption is significantly improved. That is understood.

なお、従来では電極を製作する際に、′電極の表面に繊
維状(ポーラス)の活性層を形成するが、本発明にあっ
ても、複数枚のカーボンプラスチック板44を圧着する
と同時に、前記活性層を形成することができ、これによ
り電解液との反応を促進させることができる。
Conventionally, when manufacturing an electrode, a fibrous (porous) active layer is formed on the surface of the electrode, but in the present invention, the active layer is A layer can be formed, which can accelerate the reaction with the electrolyte.

[発明の効果] 以上説明したように、本発明によれば、補強材混入のカ
ーボンプラスチック板を押出し成形により形成し、この
カーボンプラスチック板を押出し方向が交差するように
積層して電極板を得るようにしたので、電極のワーペイ
ジが多方向において低減され、耐ワーペイジ性において
方向性のない電極板が提供できる。
[Effects of the Invention] As explained above, according to the present invention, a carbon plastic plate containing a reinforcing material is formed by extrusion molding, and the carbon plastic plates are stacked so that the extrusion directions intersect with each other to obtain an electrode plate. As a result, the warpage of the electrode is reduced in multiple directions, and an electrode plate having no directionality in warpage resistance can be provided.

従って、ワーペイジに起因する電池故障も大幅に低減さ
れ、電池性能を長期間維持して電池寿命を長くすること
が可能となる。
Therefore, battery failures caused by warpage are significantly reduced, and it becomes possible to maintain battery performance for a long period of time and extend battery life.

また、薄いカーボンプラスチック板を複数個形成し、押
出し方向を交差させた複数枚のカーボンプラスチック板
を張り合わせることにより、所望の厚さの電極板を容易
に形成できるとともに、厚さの変更にも簡単に対処でき
、従来のようにその都度厚みを変更して1枚の電極板を
成形する必要もなくなる。
In addition, by forming multiple thin carbon plastic plates and pasting together multiple carbon plastic plates with their extrusion directions crossed, it is possible to easily form an electrode plate with a desired thickness, and it is also possible to change the thickness. This can be easily handled, and there is no need to mold a single electrode plate by changing the thickness each time, as was the case in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る金属−ハロゲン電池用電極板の構
成を示す説明図、 第2図は金属−臭素電池の概要を示す説明図、第3図は
従来のバイポーラ電池の構成を示す説明図である。 10 ・・・ 反応セル 12a  ・・・ 負極 12b  ・・・ 正極 14 ・・・ セパレータ 34 ・・・ 電極ユニット 38 ・・・ セパレータユニット。 44 ・・・ カーボンプラスチック板46 ・・・ 
電極板
FIG. 1 is an explanatory diagram showing the configuration of an electrode plate for a metal-halogen battery according to the present invention, FIG. 2 is an explanatory diagram showing an overview of a metal-bromine battery, and FIG. 3 is an explanatory diagram showing the configuration of a conventional bipolar battery. It is a diagram. 10... Reaction cell 12a... Negative electrode 12b... Positive electrode 14... Separator 34... Electrode unit 38... Separator unit. 44... Carbon plastic plate 46...
electrode plate

Claims (1)

【特許請求の範囲】[Claims] (1)補強材を混入したカーボンプラスチック板を押出
し成形により複数個形成し、この複数個のカーボンプラ
スチック板を押出し方向が交差するように積層して電極
板を形成する金属−ハロゲン電池用電極の製造方法。
(1) A metal-halogen battery electrode in which a plurality of carbon plastic plates mixed with a reinforcing material are formed by extrusion molding, and the plurality of carbon plastic plates are laminated so that the extrusion directions intersect to form an electrode plate. Production method.
JP63214630A 1988-08-29 1988-08-29 Manufacture of electrode for metal-halogen battery Pending JPH0265073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63214630A JPH0265073A (en) 1988-08-29 1988-08-29 Manufacture of electrode for metal-halogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63214630A JPH0265073A (en) 1988-08-29 1988-08-29 Manufacture of electrode for metal-halogen battery

Publications (1)

Publication Number Publication Date
JPH0265073A true JPH0265073A (en) 1990-03-05

Family

ID=16658921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63214630A Pending JPH0265073A (en) 1988-08-29 1988-08-29 Manufacture of electrode for metal-halogen battery

Country Status (1)

Country Link
JP (1) JPH0265073A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100761980B1 (en) * 2006-07-20 2007-09-28 황현식 A temperature control circuit for heating mat

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100761980B1 (en) * 2006-07-20 2007-09-28 황현식 A temperature control circuit for heating mat

Similar Documents

Publication Publication Date Title
US3819412A (en) Plates for lead acid batteries
KR101009440B1 (en) Electrode for soluble lead acid redox flow battery and soluble lead acid redox flow battery using the same
CN207409606U (en) It is easy to the Li-ion batteries piles of heat dissipation
CN210692370U (en) Solid-state capacitor cell, laminated capacitor cell and composite power capacitor cell
JPH0265073A (en) Manufacture of electrode for metal-halogen battery
CN113782815B (en) Lithium ion battery and method for activating dead lithium by light assistance
CN210692707U (en) Solid-state battery cell, laminated battery cell and composite power battery cell
CN1199299C (en) Cadmium cathode and Ni-Cd accumulator comprising same
JPS59173944A (en) Secondary battery
CN207967197U (en) The polymer Li-ion battery of monomer vast capacity
JPS59214173A (en) Separator for zinc-bromine battery
CN218769681U (en) Soft package solid-state battery of cluster in high voltage
JPH0286073A (en) Thin, ribbon-shaped, flexible and chargeable zinc/halide battery
CN220774419U (en) Flexible sodium ion battery pole piece
CN201804960U (en) Lithium ion battery cell
CN219959092U (en) High-rate solid-state battery
JPH05121091A (en) Double-electrode partition plate and double-electrode type laminate battery
JPH025481Y2 (en)
JP2853271B2 (en) Electrolyte static zinc-bromine battery
JPH0287483A (en) Separator of zinc-bromine cell
KR100238443B1 (en) The structure for lithium polymer secondary batteries unit cell using the electrode material slurry of including polymer and method thereof
JPS62136755A (en) Zinc-bromine cell
JPS58154171A (en) Lead-acid battery
JPH02148580A (en) Electrolyte circulation layer-built cell
JPS59126782A (en) Electrode plate for electrolytic cell