JPH025481Y2 - - Google Patents

Info

Publication number
JPH025481Y2
JPH025481Y2 JP1980181625U JP18162580U JPH025481Y2 JP H025481 Y2 JPH025481 Y2 JP H025481Y2 JP 1980181625 U JP1980181625 U JP 1980181625U JP 18162580 U JP18162580 U JP 18162580U JP H025481 Y2 JPH025481 Y2 JP H025481Y2
Authority
JP
Japan
Prior art keywords
diaphragm
supporter
electrode
mesh plate
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980181625U
Other languages
Japanese (ja)
Other versions
JPS57104464U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980181625U priority Critical patent/JPH025481Y2/ja
Publication of JPS57104464U publication Critical patent/JPS57104464U/ja
Application granted granted Critical
Publication of JPH025481Y2 publication Critical patent/JPH025481Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Hybrid Cells (AREA)

Description

【考案の詳細な説明】 A 産業上の利用分野 本考案は、電池(例えば亜鉛−臭素電池)の隔
膜サポータに関するものであり、更に詳しくは、
積層電池において、正極室と負極室との隔離手段
たる隔膜(例えば多孔膜、イオン交換膜)を支持
保護するための隔膜サポータに関するものであ
る。
[Detailed Description of the Invention] A. Field of Industrial Application The present invention relates to a diaphragm supporter for batteries (e.g. zinc-bromine batteries), and more specifically,
The present invention relates to a diaphragm supporter for supporting and protecting a diaphragm (for example, a porous membrane or an ion exchange membrane) that serves as a means of isolating a positive electrode chamber and a negative electrode chamber in a stacked battery.

B 考案の概要 本考案は、隔膜サポータにおいて特定の形状を
保持させることにより長時間にわたつて、電解液
の定常流を保つことが可能であり、従つて、電池
として長時間の間安定した機能を発揮させること
のできる電池の隔膜サポータに関するものであ
る。
B. Overview of the invention The present invention makes it possible to maintain a steady flow of electrolyte over a long period of time by maintaining a specific shape in the diaphragm supporter, and therefore enables stable function as a battery over a long period of time. This invention relates to a diaphragm supporter for a battery that can exhibit the following properties.

C 従来の技術 従来より使用されている積層電池において、電
極室を分離するために使用する隔膜にサポータを
持たない場合には、電池運転中、液循環などによ
つて隔膜が膨潤し、電極面に接触して電解液が接
触面で流れなくなり、電極として作用しなくなる
ばかりか、初期電極面積より有効面積が小さくな
るばかりでなく、電流がその部分に集中して亜鉛
の電着にも悪影響を与え、電気効率を著しく低下
させる原因となる。
C. Conventional technology In conventionally used stacked batteries, if the diaphragm used to separate the electrode chambers does not have a supporter, the diaphragm swells due to liquid circulation during battery operation, causing the electrode surface to swell. Not only does the electrolyte stop flowing on the contact surface and it no longer functions as an electrode, but also the effective area becomes smaller than the initial electrode area, and the current concentrates in that area, which has a negative effect on the electrodeposition of zinc. This causes a significant decrease in electrical efficiency.

それ故に、従来より、隔膜の機械的強度補強の
ために、 (1) 膜自体の機械強度を強くする。
Therefore, conventional methods for reinforcing the mechanical strength of the diaphragm include (1) increasing the mechanical strength of the membrane itself;

(2) 隔膜両側にサポータを入れ、両側より隔膜を
保護する。
(2) Insert supports on both sides of the diaphragm to protect it from both sides.

(3) 前記(1),(2)を併用する。(3) Use (1) and (2) above together.

のいずれかが一般に行われていた。Either of these was commonly practiced.

D 考案が解決しようとする課題 ここで、サポータを用いて、機械的強度を補強
する場合、このサポータとしてポリエチレンなど
のメツシユを使用していたが、これが直接電極と
接触するために負極側で電極面積を有効に生かせ
ず、また亜鉛の電着もメツシユ状になつて不均一
になり、電池効率に影響を与えるという問題点が
あつた。
Problems to be solved by the invention D Here, when using a supporter to reinforce mechanical strength, a mesh made of polyethylene or the like is used as the supporter, but since it comes into direct contact with the electrode, the mesh on the negative electrode side There were problems in that the area could not be used effectively and the electrodeposition of zinc became mesh-like and non-uniform, which affected battery efficiency.

ここにおいて、本考案は、これらの問題点を解
決した電池効率の良好な隔膜サポータを実現しよ
うとするものである。
Here, the present invention attempts to realize a diaphragm supporter with good battery efficiency that solves these problems.

E 課題を解決するための手段 本考案に係る電池の隔膜サポータでは、電解液
循環型積層電池に用いられる隔膜のサポータであ
つて、 前記サポータは、複数の桟を格子状に組み合せ
たメツシユ板から成り、 前記複数の桟は隔膜に面する側が弧状又は角状
の突断面形状を有し、 前記メツシユ板の電極に面する側に多数の錐体
状の突起を備えたものである。
E Means for Solving the Problems The battery diaphragm supporter according to the present invention is a diaphragm supporter used in an electrolyte circulation type laminated battery, and the supporter is made of a mesh plate in which a plurality of crosspieces are combined in a lattice shape. The plurality of bars have an arcuate or angular protruding cross-sectional shape on the side facing the diaphragm, and a large number of cone-shaped protrusions on the side of the mesh plate facing the electrode.

F 作用 本考案においては、複数の桟を格子状に組み合
せたメツシユ板から成り、前記複数の桟は隔膜に
面する側が弧状又は角状の突断面形状を有し、前
記メツシユ板の電極に面する側に多数の錐体状の
突起を備えた隔膜サポータであるため、隔膜には
格子を構成している桟が線接触し、電極には突起
の頂点が点接触する。
F Effect The present invention is composed of a mesh plate in which a plurality of crosspieces are combined in a lattice shape, and the plurality of crosspieces have an arcuate or angular protruding cross-sectional shape on the side facing the diaphragm, and the electrodes of the mesh plate have a surface facing the electrodes. Since the diaphragm supporter is equipped with a large number of cone-shaped protrusions on the diaphragm side, the bars forming the lattice are in line contact with the diaphragm, and the apexes of the protrusions are in point contact with the electrode.

G 実施例 第1図は本考案に係る隔膜サポータが用いられ
るZn−Br2電池の一例を示す原理的な構成図であ
る。この電池は、電解槽1の一方の側2に正極電
解液(ZnBr2+Br2)が、他方の側3には負極電
解液(ZnBr2)が入れられており、両者の間は後
述するような隔膜4によつて仕切られている。
G. Embodiment FIG. 1 is a basic configuration diagram showing an example of a Zn-Br 2 battery in which a diaphragm supporter according to the present invention is used. In this battery, a positive electrode electrolyte (ZnBr 2 +Br 2 ) is placed in one side 2 of an electrolytic cell 1, and a negative electrode electrolyte (ZnBr 2 ) is placed in the other side 3, and the gap between the two is as described below. It is partitioned off by a diaphragm 4.

正極電解液中には、正極電極5が、また、負極
電解液中には負極電極6がそれぞれ配置されてい
て、正極電解液は、ポンプ11によつて貯蔵槽9
から供給され、また、負極電解液はポンプ12に
よつて貯蔵槽10から供給されている。
A positive electrode 5 is placed in the positive electrolyte, and a negative electrode 6 is placed in the negative electrolyte, and the positive electrolyte is pumped into a storage tank 9 by a pump 11.
The negative electrode electrolyte is supplied from a storage tank 10 by a pump 12.

第2図は第1図に示すような原理の電池を積層
電池として構成する場合の一例を示す組立図であ
り、第3図は本考案に係る隔膜サポータと隔膜と
を積層した場合の要部構成断面図である。尚、第
1図の各部分に対応する部分には同一符号を付し
て示す。図において、正極電極5と負極電極6と
が交互に配置され、正極電極5と負極電極6との
間には隔膜4が配置され、各電極5,6と隔膜4
との間には隔膜サポータ40が配置されている。
尚、各電極5,6、各隔膜サポータ40、各隔膜
4は、何れも同一形状の枠によつて支持され、各
枠に形成した孔のうちの幾つかは、これらを積層
するためのネジ孔であり、また孔のうちの符号2
1と22で示すものは、これらの孔が互いに連通
することにより正極液通路と負極液通路とを構成
するようになつている。
FIG. 2 is an assembly diagram showing an example of a case where the battery based on the principle shown in FIG. 1 is configured as a laminated battery, and FIG. 3 is an assembly diagram showing the main parts when the diaphragm supporter and diaphragm according to the present invention are laminated. It is a configuration sectional view. Note that parts corresponding to those in FIG. 1 are designated with the same reference numerals. In the figure, positive electrodes 5 and negative electrodes 6 are arranged alternately, a diaphragm 4 is arranged between the positive electrode 5 and the negative electrode 6, and each electrode 5, 6 and the diaphragm 4 are arranged alternately.
A diaphragm supporter 40 is arranged between.
Note that each electrode 5, 6, each diaphragm supporter 40, and each diaphragm 4 are supported by frames of the same shape, and some of the holes formed in each frame are provided with screws for stacking them. It is a hole, and the code 2 of the hole
Those indicated by 1 and 22 are configured such that these holes communicate with each other to constitute a positive electrode liquid passage and a negative electrode liquid passage.

隔膜4は、複数の桟42を格子状に組み合せた
メツシユ板43と、該メツシユ板43の電極5又
は6側に突出した複数の突起41とから構成され
た一対の隔膜サポータ40によつて両側から挾ま
れている。
The diaphragm 4 is supported on both sides by a pair of diaphragm supports 40, which are composed of a mesh plate 43 in which a plurality of crosspieces 42 are combined in a lattice shape, and a plurality of protrusions 41 protruding from the mesh plate 43 toward the electrode 5 or 6 side. is being held between.

この突起41の形状は、横方向から外観形状は
3角形を形成した錐体状の突起であり、錐体の底
面部が前記メツシユ板43に設けられている。
The shape of the projection 41 is a cone-shaped projection having a triangular external appearance when viewed from the lateral direction, and the bottom surface of the cone is provided on the mesh plate 43.

このような形状をしていることにより、電解液
の流れ(即ち突起41に対して横方向の流れ)に
対して機械的な強度が大きくなり、然も電解液の
流れがスムーズとなつて、特に負極側では、亜鉛
イオンの流れがスムーズとなつて、電極付近での
亜鉛イオンの乱れが小さくなり、デンドライトの
発生を防止することができる。
By having such a shape, the mechanical strength against the flow of the electrolyte (that is, the flow in the lateral direction with respect to the protrusion 41) is increased, and the flow of the electrolyte becomes smooth. Particularly on the negative electrode side, the flow of zinc ions becomes smoother, the disturbance of zinc ions near the electrode becomes smaller, and the generation of dendrites can be prevented.

第4図は隔膜サポータ40の構成を示した図で
あり、Aは平面図、B又はCはA図におけるX−
X断面図である。
FIG. 4 is a diagram showing the configuration of the diaphragm supporter 40, where A is a plan view and B or C is a diagram showing the configuration of the diaphragm supporter 40.
It is an X sectional view.

この隔膜サポータ40は、例えば、材質として
ポリオレフイン系、一般的には、ポリエチレンや
ポリプロビレンが使用され、一体形成によつてメ
ツシユ板43の部分と複数の突起41が形成され
ている。
The diaphragm supporter 40 is made of, for example, polyolefin, typically polyethylene or polypropylene, and has a mesh plate 43 and a plurality of protrusions 41 integrally formed.

この突起41は、その先端部分が先細で丸状ま
たは鋭くとがつた状態で形成されており、また各
突起41の高さhはいずれも揃つていること、更
に可能であれば、その交差がh±0.2mm以下であ
ることが望ましい。
The protrusions 41 have tapered round or sharp tips, and the height h of each protrusion 41 should be the same, and if possible, their intersections should be avoided. It is desirable that h±0.2mm or less.

メツシユ板43を構成する桟42自体の形状
は、隔膜に面する側が弧状又は角状の突断面形状
を有していればよく、全体の断面形状が角、丸、
三角いずれでもよい。即ち、隔膜に面する側が弧
状又は角状の突断面形状であるため、隔膜に対し
て線接触となり、隔膜の有効面積をより広くする
ことができる。
The shape of the crosspiece 42 itself constituting the mesh plate 43 may be such that the side facing the diaphragm has an arcuate or angular protruding cross-sectional shape, and the overall cross-sectional shape is square, round, round, etc.
It can be any triangle. That is, since the side facing the diaphragm has an arcuate or angular protruding cross-sectional shape, it comes into line contact with the diaphragm, and the effective area of the diaphragm can be made wider.

また、メツシユ板43のメツシユ数は、7メツ
シユ以上であることが望ましく、突起41の数、
間隔、及びその高さhは、隔膜4の大きさ、使用
の状態などにより任意にとるものとする。
Further, the number of meshes of the mesh plate 43 is preferably 7 meshes or more, and the number of protrusions 41,
The spacing and the height h thereof may be set arbitrarily depending on the size of the diaphragm 4, the state of use, etc.

なお、突起41のメツシユ板43との接合部分
の側面形状は、メツシユ板43を構成する桟42
の断面形状によつて違つてくるが、例えば第4図
Bでは桟の断面形状が丸の場合の断面図を示して
おり、Cでは三角である。
Note that the side shape of the joint portion of the protrusion 41 with the mesh plate 43 is similar to that of the crosspiece 42 constituting the mesh plate 43.
For example, FIG. 4B shows a cross-sectional view when the cross-sectional shape of the crosspiece is round, and FIG. 4C shows a triangular cross-sectional shape.

以上のように、複数の桟42を格子状に組み合
せたメツシユ板43から成り、前記複数の桟42
は隔膜4に面する側が弧状又は角状の突断面形状
を有し、前記メツシユ板43の電極に面する側に
多数の錐体状の突起41を備えた隔膜サポータ4
0であるため、隔膜4には格子を構成している桟
42が線接触し、電極5,6には突起41の頂点
が点接触することとなる。このため、隔膜4を隔
膜サポータ40によつて、突起41が電極5,6
側に面するようにサンドイツチ状に挾んで積層す
れば、隔膜サポータ40が隔膜4を両側から押え
るため、隔膜4の撓みや膨潤等による変形を阻止
し、隔膜サポータ40による電極面積の損失は軽
減できるとともに、デンドライト等の問題も軽減
され、更に、突起41の高さhを均一にすると、
隔膜4と各電極5,6間の間隔も全面に亙つてほ
ぼ均一に維持することができるので、電解液の循
環を効率良く行うことができる。
As described above, the mesh plate 43 is composed of a plurality of crosspieces 42 combined in a grid pattern, and the plurality of crosspieces 42
The diaphragm supporter 4 has an arcuate or angular protruding cross-sectional shape on the side facing the diaphragm 4, and has a large number of cone-shaped protrusions 41 on the side of the mesh plate 43 facing the electrode.
0, the bars 42 forming the grid are in line contact with the diaphragm 4, and the apexes of the protrusions 41 are in point contact with the electrodes 5 and 6. For this reason, when the diaphragm 4 is supported by the diaphragm supporter 40, the protrusion 41 is connected to the electrodes 5, 6.
If they are sandwiched and stacked in a sandwich pattern so as to face the sides, the diaphragm supporter 40 presses the diaphragm 4 from both sides, thereby preventing deformation of the diaphragm 4 due to bending, swelling, etc., and reducing the loss of electrode area due to the diaphragm supporter 40. At the same time, problems such as dendrites are reduced, and furthermore, by making the height h of the protrusions 41 uniform,
Since the distance between the diaphragm 4 and each electrode 5, 6 can be maintained substantially uniform over the entire surface, the electrolyte can be circulated efficiently.

H 考案の効果 本考案は以上説明したとおり、複数の桟を格子
状に組み合せたメツシユ板から成り、前記複数の
桟は隔膜に面する側が弧状又は角状の突断面形状
を有し、前記メツシユ板の電極に面する側に多数
の錐体状の突起を備えた隔膜サポータであるた
め、隔膜には格子を構成している桟が線接触し、
電極には突起の頂点が点接触する。このため、電
極と隔膜サポータと隔膜の各々を積層した場合に
は、隔膜サポータが隔膜を両側から押えるため、
隔膜の撓みや膨潤等による変形を阻止し、然も隔
膜サポータの電極面及び隔膜面への接触による電
極面積の損失は軽減できるという効果がある。
H. Effect of the invention As explained above, the present invention consists of a mesh plate in which a plurality of crosspieces are combined in a lattice shape, and the plurality of crosspieces have an arcuate or angular protruding cross-sectional shape on the side facing the diaphragm, and the mesh Since the diaphragm supporter has many cone-shaped protrusions on the side of the plate facing the electrode, the crosspieces that make up the grid come into line contact with the diaphragm.
The apex of the protrusion makes point contact with the electrode. Therefore, when the electrode, diaphragm supporter, and diaphragm are stacked, the diaphragm supporter presses the diaphragm from both sides, so
This has the effect of preventing deformation of the diaphragm due to bending, swelling, etc., and reducing loss of electrode area due to contact of the diaphragm supporter with the electrode surface and the diaphragm surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案に係る隔膜サポータが用いられ
るZn−Br2電池の一例を示す原理的な構成図、第
2図は第1図に示すような原理の電池を積層電池
として構成する場合の一例を示す組立図、第3図
は隔膜サポータと隔膜とを積層した場合の要部構
成断面図、第4図は隔膜サポータ40の構成を示
す説明図である。 図において、40は隔膜サポータ、41は突
起、42は桟、43はメツシユ板である。
Figure 1 is a basic configuration diagram showing an example of a Zn-Br 2 battery in which the diaphragm supporter according to the present invention is used, and Figure 2 is a diagram showing the basic structure of a battery based on the principle shown in Figure 1 when it is configured as a stacked battery. An assembly diagram showing an example, FIG. 3 is a sectional view of the main part configuration when a diaphragm supporter and a diaphragm are laminated, and FIG. 4 is an explanatory diagram showing the configuration of the diaphragm supporter 40. In the figure, 40 is a diaphragm supporter, 41 is a protrusion, 42 is a crosspiece, and 43 is a mesh plate.

Claims (1)

【実用新案登録請求の範囲】 電解液循環型積層電池に用いられる隔膜のサポ
ータ40であつて、 前記サポータ40は、複数の桟42を格子状に
組み合せたメツシユ板43から成り、 前記複数の桟42は隔膜4に面する側が弧状又
は角状の突断面形状を有し、 前記メツシユ板43の電極に面する側に多数の
錐体状の突起41を備えたことを特徴とする電池
の隔膜サポータ。
[Claims for Utility Model Registration] A supporter 40 for a diaphragm used in an electrolyte circulation type stacked battery, wherein the supporter 40 is composed of a mesh plate 43 in which a plurality of crosspieces 42 are combined in a lattice shape, and the plurality of crosspieces 42 is a battery diaphragm characterized in that the side facing the diaphragm 4 has an arcuate or angular protruding cross-sectional shape, and the mesh plate 43 has a large number of cone-shaped protrusions 41 on the side facing the electrode. Supporter.
JP1980181625U 1980-12-19 1980-12-19 Expired JPH025481Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980181625U JPH025481Y2 (en) 1980-12-19 1980-12-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980181625U JPH025481Y2 (en) 1980-12-19 1980-12-19

Publications (2)

Publication Number Publication Date
JPS57104464U JPS57104464U (en) 1982-06-28
JPH025481Y2 true JPH025481Y2 (en) 1990-02-09

Family

ID=29979265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980181625U Expired JPH025481Y2 (en) 1980-12-19 1980-12-19

Country Status (1)

Country Link
JP (1) JPH025481Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629893Y2 (en) * 1983-09-26 1994-08-10 株式会社明電舍 Secondary battery separator
JPH0629896Y2 (en) * 1983-07-15 1994-08-10 株式会社明電舍 Liquid circulating zinc-bromine laminated secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347940A (en) * 1976-02-25 1978-04-28 Zoellner Helmut Electrochemical cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347940A (en) * 1976-02-25 1978-04-28 Zoellner Helmut Electrochemical cell

Also Published As

Publication number Publication date
JPS57104464U (en) 1982-06-28

Similar Documents

Publication Publication Date Title
US6060198A (en) Electrochemical battery structure and method
EP0130723A2 (en) Secondary battery having a separator
US5993494A (en) Method of manufacturing modular components for a bipolar battery and the resulting bipolar battery
US3956012A (en) Storage battery plates of plastic and lead
JPH025481Y2 (en)
JPS62229772A (en) Lead-acid battery
JP2002260716A (en) Lead battery
US2625574A (en) Storage battery plate grid
US3873366A (en) Electrode for electrical lead accumulators
JPS6226917Y2 (en)
JPS62165875A (en) Storage battery
KR920702899A (en) Improved electrode plate structure
JPH0527233B2 (en)
JPH05159769A (en) Lead-acid battery
JP2505007Y2 (en) Electrolyte circulation type laminated battery
CN217468487U (en) Electrode, battery cell, battery and electronic equipment
CN113036197B (en) Zinc-bromine flow battery
JPH0629893Y2 (en) Secondary battery separator
JP2677137B2 (en) Thin sealed storage battery
JPH0532939Y2 (en)
JPH0629896Y2 (en) Liquid circulating zinc-bromine laminated secondary battery
JP2536682B2 (en) Sealed lead acid battery
CN113725443A (en) Grid plate in battery
JPH0546065B2 (en)
JPS6037662A (en) Zinc electrode