JPH0264431A - Inspecting and calibrating method of fluid pressure sensor - Google Patents

Inspecting and calibrating method of fluid pressure sensor

Info

Publication number
JPH0264431A
JPH0264431A JP21503188A JP21503188A JPH0264431A JP H0264431 A JPH0264431 A JP H0264431A JP 21503188 A JP21503188 A JP 21503188A JP 21503188 A JP21503188 A JP 21503188A JP H0264431 A JPH0264431 A JP H0264431A
Authority
JP
Japan
Prior art keywords
pressure
atmospheric pressure
weight
output
fluid pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21503188A
Other languages
Japanese (ja)
Inventor
Norio Akaishi
赤石 紀夫
Katsuhiko Kanamori
金森 克彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP21503188A priority Critical patent/JPH0264431A/en
Publication of JPH0264431A publication Critical patent/JPH0264431A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To dispense with special equipment such as a pressure regulating chamber or the like and to enable easy execution of detection and calibration by a method wherein a weight giving an amount of deformation being equal to the one caused by a fluid pressure being used is made to act on a deformation output element of an atmospheric pressure detecting means. CONSTITUTION:In an atmospheric pressure sensor 1, an output circuit is constructed so that an output voltage varies linearly in relation to a change in an atmospheric pressure. While a reference output curve of the sensor 1 is shown by a curve C, it is indefinite actually as shown by curves A and B. After assembling, therefore, an adjusting screw 24 is adjusted under a standard pressure to shift the curves A and B in the direction of a longitudinal axis and thereby to output an initial output V0. Accordingly, the curves A and B turn to be A' and B' respectively. In order to make the curves A' and B' coincide with the curve C, subsequently, a weight 34 weighing corresponding to a barometric pressure 500mB equals to 5,000m above sea level, for instance, is given to the sensor 1, and an output voltage is made to coincide by adjusting a variable resistor 33. Thereby an output curve can be made to coincide with the curve C irrespective of nonuniformity of a spring constant of an atmospheric pressure detecting means 2. Berside, an auxiliary weight 48 is used for correcting the gravity of the weight.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、気圧、水圧などの流体圧を検出するセンサの
検査・較正方法に関し、更に詳細には、アネロイド型流
体圧計の変形量を電気信号として取り出すセンサの簡易
検査・較正方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for inspecting and calibrating a sensor that detects fluid pressure such as atmospheric pressure or water pressure. This invention relates to a simple inspection and calibration method for sensors that are extracted as signals.

〔従来の技術〕[Conventional technology]

従来から気圧計、高度針などにアネロイド気圧計が使用
されていることは周知である。該アネロイド気圧計は、
同心円状のひだを設け、且つ皿状にした2枚の金属板の
周縁を結合して中空の筐体(空盒)を作り、内部を真空
にした構造を持ち、気圧変化を前記金属板の弾性変形量
に変換して気圧を測定するものであって、構造及び取扱
が簡便であるために従来から多く使用されている。
It is well known that aneroid barometers have been used for barometers, altitude hands, and the like. The aneroid barometer is
It has a structure in which a hollow casing (empty box) is created by connecting the peripheries of two plate-shaped metal plates with concentric folds, and the interior is evacuated. This device measures atmospheric pressure by converting it into the amount of elastic deformation, and has been widely used in the past because of its simple structure and easy handling.

このアネロイド気圧計、は、近時内燃機関にも使用され
るに至っている。即ち、内燃機関の燃料は、燃焼状態を
最適状態に維持するために吸入空気の体積流量に比例し
て供給する必要がある。ところで、周知のとおり空気の
密度は気圧。
This aneroid barometer has recently come to be used in internal combustion engines as well. That is, fuel for the internal combustion engine needs to be supplied in proportion to the volumetric flow rate of intake air in order to maintain optimal combustion conditions. By the way, as we all know, the density of air is atmospheric pressure.

温度によって変化するが、自動車の場合、平地(低地)
と高地とに亙り走行するために吸入空気の気圧変動が大
きい。
It varies depending on the temperature, but in the case of a car, it is a flat land (low land)
Because the vehicle travels at high altitudes and at high altitudes, the pressure of the intake air fluctuates greatly.

気象条件にもよるが、平地の気圧が1気圧、叩ち101
3 ミリバール程度であっても、5000 mの高地で
は500ミリバ一ル程度にまで大幅に低下する。したが
って、吸入空気と燃料との比、即ち空燃比(質量比)の
気圧による変化量が大きくなり気圧補正が必要である。
It depends on the weather conditions, but the atmospheric pressure on flat ground is 1 atm, 101
Even if it is around 3 millibars, it drops significantly to around 500 millibars at a high altitude of 5000 m. Therefore, the amount of change in the ratio of intake air to fuel, that is, the air-fuel ratio (mass ratio) due to atmospheric pressure increases, and atmospheric pressure correction is required.

そこで取扱が簡便なアネロイド気圧計によって燃料供給
量を自動的に制御する装置が開発されるに至っている。
Therefore, a device has been developed that automatically controls the amount of fuel supplied using an aneroid barometer that is easy to handle.

自動車に搭載するアネロイド気圧計は、小型とする必要
があるので空盒の直径がせいぜい20〜3(Inと小さ
いので、500 ミリバール前後の気圧変化に対しせい
ぜい0.5 w程度変位するにすぎない。したがって個
々の空盒のばね定数のバラツキによる指示誤差を較正し
たり、自動制御を行わせたりするには、前記変位を電気
信号に変換することが最も有利であり、従来は差動変圧
器が用いられている。
The aneroid barometer installed in a car needs to be small, so the diameter of the empty chamber is small, at most 20 to 3 inches (In), so it will only shift by about 0.5 W at most when the pressure changes around 500 millibar. Therefore, in order to calibrate indication errors due to variations in the spring constant of individual air cans or to perform automatic control, it is most advantageous to convert the displacement into an electrical signal. is used.

ところでアネロイド気圧計を使用した気圧センサの従来
の較正方法は、一般に較正用基準気圧に調整した調圧室
内に気圧センサを入れ、作業者も室内に入るか、又は調
圧室に開けた小窓に取付けた手袋を介して作業を行うな
どの手段が用いられている。
By the way, the conventional method for calibrating a barometric pressure sensor using an aneroid barometer is to place the barometric pressure sensor in a pressure regulating chamber that has been adjusted to the reference pressure for calibration, and the operator also enters the room or uses a small window opened in the pressure regulating chamber. Measures such as performing the work through gloves attached to the body are used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記のように気圧センサを基準気圧室に入れて、作業者
が室内に入るか、又は外°部から手袋を介して間接的に
作業をする従来の方法は、基準気圧を発生させる装置、
少なくとも較正する気圧センサを収容し、必要とする操
作を行うことのできる基準気圧室を準備する必要があり
、該設備の建設・維持に多大の経費を必要とすることの
外に、対象とする気圧センサなど機器類の出し入れの際
の気圧調整に時間を要するなど作業能率が悪く、また検
査・較正作業には電気配線作業及び可変抵抗器の調整作
業などを伴うので、手袋を介して作業する場合には作業
性が悪くなるという問題がある。
As described above, the conventional method in which a barometric pressure sensor is placed in a reference atmospheric pressure chamber and a worker enters the room or works indirectly from outside through gloves is a device that generates a reference atmospheric pressure,
At the very least, it is necessary to prepare a reference pressure chamber that can accommodate the pressure sensor to be calibrated and perform the necessary operations. Work efficiency is poor as it takes time to adjust the air pressure when putting in and taking out equipment such as air pressure sensors, and inspection and calibration work involves electrical wiring work and adjustment of variable resistors, so work must be done while wearing gloves. In some cases, there is a problem that workability deteriorates.

本発明は、以上の問題に着目して成されたものであり、
アネロイド気圧計ないし類似の測定原理に基づく流体圧
計を用い、該流体圧計の変位を電気信号に変換する変換
手段を有する流体圧センサを、基準流体圧室を用いない
で同等の精度で検査・較正をすることのできる方法を提
供することを目的としている。
The present invention has been made focusing on the above problems,
Inspect and calibrate a fluid pressure sensor using an aneroid barometer or a fluid pressure gauge based on a similar measurement principle and having a conversion means for converting the displacement of the fluid pressure gauge into an electrical signal with the same accuracy without using a reference fluid pressure chamber. The purpose is to provide a method that can be used to

〔課題を解決するための手段〕[Means to solve the problem]

以上の目的を達成するための本発明の流体圧センサの検
査・較正方法の構成は、内部を所定気圧にした空盒から
成り、流体圧の変化によって形状を弾性変形させる流体
圧検出手段と、前記弾性変形を電気信号に変換する変換
手段とから成る気圧センサを較正するに際し、該流体圧
センサの較正に使用する流体圧による変形量と同等の変
形量を与える重錘を前記流体圧検出手段の変形量出力部
に作用させることを特徴としている。
The configuration of the fluid pressure sensor inspection/calibration method of the present invention to achieve the above object includes a fluid pressure detection means that includes an air container whose interior is at a predetermined atmospheric pressure, and whose shape is elastically deformed by changes in fluid pressure; When calibrating a barometric pressure sensor comprising a conversion means for converting the elastic deformation into an electric signal, a weight that provides a deformation amount equivalent to the deformation amount due to the fluid pressure used for calibrating the fluid pressure sensor is used as the fluid pressure detection means. It is characterized in that it acts on the deformation amount output section of.

前記流体圧とは気圧、水圧などを指しており、該流体圧
検出手段は、例えばアネロイド気圧計による流体圧検出
手段、ダイヤフラムに同心円状の波形を設けるなどとし
て弾性変形を容易にし、その一方を所定気圧にした流体
圧検出手段、ベローズの内外いずれかの側を所定圧にし
、他方に流体圧を作用させ、それに対抗する方向に付勢
するばねなどの弾性部材を取付けた流体圧検出手段、金
属製の偏平管を、円弧、渦巻、螺旋状などの形状にした
空*(ブルドン管)による流体圧検出手段、その他類似
の手段を用いたものである。
The fluid pressure refers to atmospheric pressure, water pressure, etc., and the fluid pressure detection means is, for example, a fluid pressure detection means using an aneroid barometer, a diaphragm provided with concentric waveforms, etc., to facilitate elastic deformation; Fluid pressure detection means set to a predetermined pressure; fluid pressure detection means set to a predetermined pressure on either the outside or the outside of the bellows, apply fluid pressure to the other side, and attach an elastic member such as a spring to bias the other side; Fluid pressure detection means uses a hollow metal flat tube shaped into an arc, spiral, spiral, etc. (Bourdon tube), or other similar means.

前記所定気圧とは、測定に必要・十分な程度とした気圧
を意味し、通常は減圧状態であるが、必要に応じ1気圧
以上とすることもできる。
The predetermined atmospheric pressure refers to an atmospheric pressure that is necessary and sufficient for measurement, and is usually in a reduced pressure state, but can be set to 1 atm or more if necessary.

前記変換手段は、従来の差動変圧器を用いることもでき
るが、該変圧器に使用する鉄心と空盒とで振動系を形成
した、す、取付は姿勢により鉄心の重みで空盒が変形し
て誤差を生じるなどの欠点があるために以下に説明する
感圧導電部材を使用することが好ましい。変換する電気
信号は、通常直流電圧であるが、これに限定されず交番
電圧、周波数などに変換した信号とすることもできる。
Although a conventional differential transformer can be used as the conversion means, the iron core used in the transformer and the empty cup form a vibration system. It is preferable to use the pressure-sensitive conductive member described below because it has disadvantages such as the occurrence of errors due to the pressure-sensitive conductive member described below. The electrical signal to be converted is usually a DC voltage, but is not limited to this, and can also be a signal converted to an alternating voltage, frequency, or the like.

該感圧導電部材としては、例えばシリコーンゴムにカー
ボン粒子を混入・分散させたゴム状の弾性体から成り、
圧縮量に応じて電気抵抗が変化するようにした感圧導電
ゴム、液状を呈し、塗布・ゲル化により同様に圧縮量に
応じて電気抵抗が変化する弾性体を形成する感圧塗料な
どの使用が好ましい。即ち、これらの部材は、実質的可
動部分がな(、小型化が可能であり、差動変圧器のよう
り振動系の形成、取付は姿勢による誤差の発生などの危
険がなく、しかも価格的にも有利であるなどの長所があ
る。
The pressure-sensitive conductive member is made of a rubber-like elastic body made of silicone rubber mixed with and dispersed with carbon particles, for example.
Use of pressure-sensitive conductive rubber whose electrical resistance changes depending on the amount of compression, pressure-sensitive paint that is liquid and forms an elastic body whose electrical resistance changes depending on the amount of compression when applied or gelled. is preferred. In other words, these members have virtually no moving parts (they can be made smaller, and unlike differential transformers, there is no risk of forming or installing a vibration system due to posture errors, and they are inexpensive. It also has advantages such as being advantageous.

前記流体圧センサは、通常は流体圧検出手段の変位側に
変換器を配置する構造をしているので、重錘を作用させ
る際は、単に空盒に重錘を吊り下げることはできない。
The fluid pressure sensor usually has a structure in which a converter is disposed on the displacement side of the fluid pressure detection means, so when a weight is applied, it is not possible to simply suspend the weight from an empty cup.

したがって、流体圧検出手段の変位量出力部に重錘と係
合する係合部を設け、また垂直に立てたガイドに摺動自
在に重錘を取付け、該重錘から片持状の腕を伸び出させ
て、該腕に係合する係合部を、気圧センサの当該部分に
設けるなどとしたり、また前記重錘を取付けた天秤を前
記係合部に係合させるなどとして荷重を掛けることがで
きる。
Therefore, the displacement amount output part of the fluid pressure detection means is provided with an engaging part that engages with a weight, and the weight is slidably attached to a vertically erected guide, and a cantilevered arm is attached from the weight. Applying a load by, for example, providing an engaging portion that extends and engages the arm on the relevant portion of the barometric pressure sensor, or engaging a balance to which the weight is attached to the engaging portion. Can be done.

前記重錘は、基準気圧に対する基準変位を与えるように
予め計算ないし実験的に定める。その際に重錘による荷
重は、空盒を通じて該空盒の支持体にも同方向に作用す
るが、流体圧による変形は、膨張・収縮であるから前記
と逆向きの力が作用する。したがって、支持部材の変形
を考慮する必要のある場合には、支持体の変形を防止す
る補助設備を設けるなどの対策が必要である。
The weight is determined in advance by calculation or experiment so as to provide a reference displacement with respect to a reference atmospheric pressure. At this time, the load due to the weight acts on the support of the empty bag in the same direction through the empty bag, but since the deformation due to the fluid pressure is expansion and contraction, a force in the opposite direction to that described above acts. Therefore, if it is necessary to take into account the deformation of the support member, it is necessary to take measures such as providing auxiliary equipment to prevent deformation of the support body.

また検査・較正作業に際しては、作業環境の気圧補正を
する必要がある。通常は前記重錘の重量を気圧に応じて
増減ξせて行う。
Furthermore, during inspection and calibration work, it is necessary to correct the atmospheric pressure of the working environment. Usually, this is done by increasing or decreasing the weight of the weight according to the atmospheric pressure.

〔作 用〕[For production]

前記重錘は、該気圧センサに作用する気圧による変位と
同等の変位を与えるので、調圧室など特別な設備を必要
としないでも容易に検査・較正を行うことができる。
Since the weight gives a displacement equivalent to the displacement caused by the atmospheric pressure acting on the atmospheric pressure sensor, inspection and calibration can be easily performed without requiring special equipment such as a pressure regulating chamber.

〔実施例〕〔Example〕

以下添付の図面を対照して気圧センサによって実施した
一実施例により本発明を具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to an embodiment implemented using an atmospheric pressure sensor with reference to the accompanying drawings.

まず第2図及び第3図によって、本実施例に使用した気
圧センサの構造を説明する。図において、気圧センサ1
はアネロイド気圧計からなる流体圧検出手段2と感圧導
電ゴムシート4を用いた変換手段6とをフレーム8に取
付けたものである。
First, the structure of the atmospheric pressure sensor used in this example will be explained with reference to FIGS. 2 and 3. In the figure, atmospheric pressure sensor 1
In this example, a fluid pressure detection means 2 consisting of an aneroid barometer and a conversion means 6 using a pressure-sensitive conductive rubber sheet 4 are attached to a frame 8.

流体圧検出手段2は、アネロイド気圧針から成、す、空
盒に一体的に取付けた固定側ボス10を介して固定ビス
12によりフレーム8に固定しており、その反対側には
円柱状の可動側ボス14を一体的に取付けている。該可
動側ボス14には、一部を細くして、図示しない較正用
重錘を懸架するためのリング状の係合部15を設けてい
る。
The fluid pressure detection means 2 consists of an aneroid pressure needle, and is fixed to the frame 8 with a fixing screw 12 via a fixing side boss 10 that is integrally attached to the air cup. A movable boss 14 is integrally attached. The movable boss 14 is partially thinned and provided with a ring-shaped engagement portion 15 for suspending a calibration weight (not shown).

気圧変化を電気信号に変換する変換手段6は、プリント
配線基板から成る下基板16にスペーサ18を介して同
様にプリント配線基板から成る上基板20を配置し、該
上基板20と下基板16との間に感圧導電ゴムシート4
を配置し、前記上基板20の自由端側に受圧子22を取
付けた構造をしている。
The conversion means 6 for converting changes in atmospheric pressure into electrical signals includes an upper substrate 20 similarly made of a printed wiring board placed on a lower substrate 16 made of a printed wiring board via a spacer 18, and the upper substrate 20 and the lower substrate 16 connected to each other. Pressure-sensitive conductive rubber sheet 4 between
, and a pressure receiving element 22 is attached to the free end side of the upper substrate 20.

そして、流体圧検出手段2の変位(変形)は、可動側ボ
ス14で受圧子22を圧するように配置して感圧導電ゴ
ム4に伝達する。即ち本実施例では、可動側ボス14が
前記変形量出力部を構成する。
The displacement (deformation) of the fluid pressure detection means 2 is transmitted to the pressure sensitive conductive rubber 4 by disposing the movable boss 14 so as to press the pressure receiving element 22 . That is, in this embodiment, the movable boss 14 constitutes the deformation amount output section.

可動側ボス14が受圧子22を圧する力(初期圧)の調
整は、調整ビス24によって行う。
The force (initial pressure) with which the movable boss 14 presses the pressure receiving element 22 is adjusted by an adjustment screw 24 .

即ち、フレーム8はコ状をしており、下側の自由端部の
側方を折上げて第3図に示すように調整ビス24を捩じ
込む台座26を形成している。
That is, the frame 8 has a U-shape, and the side of the lower free end is folded up to form a pedestal 26 into which the adjustment screw 24 is screwed, as shown in FIG.

調整ビス24は、フレーム8の上方腕8□に設けた貫通
穴28に挿通し、台座26に設けたビス穴30に螺合し
ている。前記可動側ボスI4と受圧子22との圧接力は
、調整ビス24を台座26に捩じ込むと強くなり、戻す
とフレーム8の弾性にる戻り力により弱くすることがで
きる。なお図の32は上部腕8Iの長手方向の剛性を高
めるためのリブである。
The adjustment screw 24 is inserted into a through hole 28 provided in the upper arm 8□ of the frame 8, and is screwed into a screw hole 30 provided in the base 26. The pressure force between the movable boss I4 and the pressure receiving element 22 becomes stronger when the adjustment screw 24 is screwed into the pedestal 26, and can be weakened by the return force caused by the elasticity of the frame 8 when it is returned. Note that 32 in the figure is a rib for increasing the longitudinal rigidity of the upper arm 8I.

感圧導電ゴム4の抵抗変化を検出する電気回路は、図示
しないプリント配線からなる電極及び抵抗検出回路及び
該回路の出力電圧の増幅回路から成っていおり、前記の
図示しない電極上に感圧導電ゴム4を配置している。図
の33は気圧−出力電圧の傾斜を調節する可変抵抗器で
ある。
The electric circuit for detecting the resistance change of the pressure-sensitive conductive rubber 4 consists of an electrode made of printed wiring (not shown), a resistance detection circuit, and an amplification circuit for the output voltage of the circuit. Rubber 4 is placed. 33 in the figure is a variable resistor that adjusts the slope of the atmospheric pressure-output voltage.

なお感圧導電ゴム4は、自由な状態では絶縁体として作
用し、圧縮力が作用すると抵抗は急速に減少し、更に圧
縮力が高くなると抵抗の減少割合が低下しながら最終抵
抗値に収斂した曲線を画いて変化する性質を有する。
Note that the pressure-sensitive conductive rubber 4 acts as an insulator in its free state, and when compressive force is applied, the resistance rapidly decreases, and as the compressive force increases, the rate of decrease in resistance decreases and converges to the final resistance value. It has the property of changing in a curved manner.

次に第1図、第4図及び第5図によって本実施例の較正
手段を説明する。第1図は、第2図〜第3図によっ°て
説明した気圧センサIを較正する重錘34を直接係合部
15に懸架するようにした較正装置35で較正する様子
を説明する。
Next, the calibration means of this embodiment will be explained with reference to FIGS. 1, 4, and 5. FIG. 1 explains how the barometric pressure sensor I described in FIGS. 2 and 3 is calibrated using a calibration device 35 in which a weight 34 for calibrating the pressure sensor I is suspended directly from the engaging portion 15.

第1図において、重錘34は、架台36に直立して取付
けたガイド支柱38に装着している。
In FIG. 1, the weight 34 is attached to a guide column 38 that is mounted upright on a pedestal 36.

即ち重錘34には、ガイド支柱38を嵌入する穴40が
開いており、また下部には気圧センサ1の前記係合部1
5に係合する片持腕状の加圧子42を設けたものである
。架台36には気圧センサ1を取付けるためのガイド4
4が設けてあり、ここに較正する気圧センサlを配置し
、重錘3・4の方へ停止するまで押し付けると、係合部
15が加圧子42と係合する。
That is, the weight 34 has a hole 40 into which the guide column 38 is inserted, and the engaging portion 1 of the atmospheric pressure sensor 1 is provided at the lower part.
5 is provided with a cantilever-shaped pressurizer 42 that engages with the holder 5. A guide 4 for attaching the barometric pressure sensor 1 to the pedestal 36
4 is provided, and when the atmospheric pressure sensor l to be calibrated is placed here and pressed against the weights 3 and 4 until they stop, the engaging portion 15 engages with the pressurizing element 42.

前記係合部15と加圧子42とが係合する様子を第4図
によって説明する。加圧子42は、フォーク状の先端4
5を有し、下面側を斜面46とした形状をしている。そ
して斜面46の先端側は、可動側ボス14に設けた係合
部15の下面より上方にあり、可動側ボス14を加圧子
42の方(図の矢印)に押し込むと、係合部15が加圧
子42と共に重錘34を押し上げ、荷重が気圧検出手段
2に加わる。
The manner in which the engaging portion 15 and the pressurizing element 42 engage will be explained with reference to FIG. 4. The presser 42 has a fork-shaped tip 4
5, and has a shape with a slope 46 on the lower surface side. The tip end of the slope 46 is located above the lower surface of the engaging portion 15 provided on the movable boss 14, and when the movable boss 14 is pushed toward the pressurizer 42 (indicated by the arrow in the figure), the engaging portion 15 is The weight 34 is pushed up together with the pressurizer 42, and a load is applied to the atmospheric pressure detection means 2.

次に本実施例の気圧センサ1の較正方法について第5図
に基づき説明する。図に示すように本実施例の気圧セン
サlは、気圧変化に対し直線的に出力電圧が変化するよ
うに出力回路を構成している。該実施例の気圧センサ1
の基準出力曲線は、図のCに示す出力曲線であるが、実
際は、同一仕様のものでも出力曲線A、Bに示すように
一定しない。そこで気圧センサlを組立後、標準気圧(
通常1気圧)の下で調整ビス24を調節して、出力曲線
A、Bを縦軸方向に移動させて初期出力VOを出力する
ように調節する。したがって、前記出力曲線A、Bはそ
れぞれA’、B’に変化する。なお標準気圧以上の気圧
に対する補正は、気圧センサを逆に配置、即ちフサーム
8を下にして較正できるように第1図の手段を変更する
ことにより容易に行うことができる。
Next, a method of calibrating the atmospheric pressure sensor 1 of this embodiment will be explained based on FIG. 5. As shown in the figure, the atmospheric pressure sensor 1 of this embodiment has an output circuit configured such that the output voltage changes linearly with changes in atmospheric pressure. Air pressure sensor 1 of the embodiment
The reference output curve is the output curve shown in C in the figure, but in reality, even those with the same specifications are not constant as shown in output curves A and B. Therefore, after assembling the atmospheric pressure sensor l, we installed the standard atmospheric pressure (
The adjustment screw 24 is adjusted under a pressure of 1 atm (normally 1 atm) to move the output curves A and B in the vertical axis direction and adjust the output to the initial output VO. Therefore, the output curves A and B change to A' and B', respectively. Note that correction for atmospheric pressure above the standard atmospheric pressure can be easily performed by changing the means shown in FIG. 1 so that the atmospheric pressure sensor can be reversely arranged, that is, calibrated with the futherm 8 facing down.

次に出力曲線A’、B’を基準出力曲線Cに一致させる
ために例えば標高5000 mに相当する気圧500 
ミリバールに対応する重量の重錘34を気圧センサ1に
加え、出力電圧を可変抵抗器33 (第2図)を調節す
ることにより基準出力に一致させる。かくすることによ
り気圧検出手段2のばね定数のバラツキに関係なく出力
曲線を基準出力曲線Cに一致させることができる。
Next, in order to match the output curves A' and B' with the standard output curve C, for example, the atmospheric pressure is set at 500 m, which corresponds to an altitude of 5000 m.
A weight 34 having a weight corresponding to millibar is added to the barometric pressure sensor 1, and the output voltage is made to match the reference output by adjusting the variable resistor 33 (FIG. 2). By doing so, the output curve can be made to match the reference output curve C regardless of variations in the spring constant of the atmospheric pressure detection means 2.

本実施例の場合、気圧検出手段1に使用するアネロイド
気圧計の直径は2.4鰭、500 ミリバールに相当す
る重錘の重量が768gfであり、標高ゼロの気圧(1
013ミリバール)のときの初期電圧を3.8V、標高
5000 mに相当する気圧(500ミリバール)のと
きの出力電圧を3.5Vとなるように調整した。
In the case of this embodiment, the diameter of the aneroid barometer used as the atmospheric pressure detection means 1 is 2.4 fins, the weight of the weight corresponding to 500 millibar is 768 gf, and the atmospheric pressure (1
The initial voltage was adjusted to 3.8 V at a pressure of 0.013 mbar), and the output voltage was adjusted to 3.5 V at an atmospheric pressure equivalent to an altitude of 5000 m (500 mbar).

なお該較正作業を行う場所の気圧は必ずしも標準気圧と
なっていない。したがって重錘重量を補正しないと較正
結果に誤差を生じる。第1図の48は該補正用の補助重
錘である。
Note that the atmospheric pressure at the location where the calibration work is performed is not necessarily standard atmospheric pressure. Therefore, if the weight of the weight is not corrected, an error will occur in the calibration result. Reference numeral 48 in FIG. 1 is an auxiliary weight for this correction.

第1図の実施例に使用した気圧センサ1に所定の気圧が
作用したときに流体圧検出手段2を変形させる力をF、
フレーム8の撓みδf、前記気圧に該当する重錘34の
重量をW、フレーム8の撓みをδ−1気圧検出手段2の
空盒のばね定数をKAとすると、 W=F−に八  (δ−+δf ) となり、フレーム8の撓み量が較正精度に影響するので
、フレームの撓みを少なくとも無視できる程度に小さく
製作する必要がある。本実施例に使用する第2図の気圧
センサ1は、押し上げ力による撓み(δf)は小さいが
、引き下げ力による撓み(δ賀)の影響が大きくなる構
造をしている。但し、本実施例では調整ビス24を捩じ
込み、上部腕8.を撓ませて初期出力を調整するように
したので、前記δ―を十分小さくすることができる。
The force that deforms the fluid pressure detection means 2 when a predetermined atmospheric pressure acts on the atmospheric pressure sensor 1 used in the embodiment shown in FIG.
If the deflection of the frame 8 is δf, the weight of the weight 34 corresponding to the above atmospheric pressure is W, and the deflection of the frame 8 is δ−1, and the spring constant of the air cup of the atmospheric pressure detection means 2 is KA, then W=F−8 (δ -+δf), and since the amount of deflection of the frame 8 affects the calibration accuracy, it is necessary to manufacture the frame so that the deflection is at least negligible. The atmospheric pressure sensor 1 shown in FIG. 2 used in this embodiment has a structure in which the deflection (δf) due to the upward force is small, but the influence of the deflection (δf) due to the downward force is large. However, in this embodiment, the adjustment screw 24 is screwed in and the upper arm 8. Since the initial output is adjusted by deflecting, the above-mentioned δ- can be made sufficiently small.

第6図は、前記撓み量δ−のキャンセル装置の要部説明
図である。即ち気圧センサ1の上部腕81が加圧子42
によって撓まないように把持するフック付きサポータ5
0を設けたものである。
FIG. 6 is an explanatory diagram of a main part of the device for canceling the amount of deflection δ-. That is, the upper arm 81 of the atmospheric pressure sensor 1 is the pressurizer 42.
Supporter 5 with a hook to hold it so as not to bend due to
0 is set.

次に第7図に示す第2の実施例による較正手段について
説明する。第2の実施例は、標準気圧に対する初期出力
VOを、室内気圧に対しても補正できる較正装置35を
示している。即ち検査・較正装置35は、スタンド52
に設けた軸54に回転可能に支持したレバー56の両側
の腕に重錘光は皿58.59吊り下げ(当然上皿として
もよい)、前記レバー56の一方の腕を延長して第1図
と同様の加圧子42を設けたものである。
Next, the calibration means according to the second embodiment shown in FIG. 7 will be explained. The second embodiment shows a calibration device 35 that can correct the initial output VO for standard atmospheric pressure also for indoor atmospheric pressure. That is, the inspection/calibration device 35 is mounted on the stand 52
A plate 58, 59 (naturally, it may be used as an upper plate) is suspended from the arms on both sides of a lever 56 which is rotatably supported on a shaft 54 provided in A pressure element 42 similar to that shown in the figure is provided.

気圧センサlを上下方向に僅かな間隙を持たせて固定す
る門型フレーム60によって支持している。該気圧セン
サ1と加圧子42との係合は第1図に示したものと同様
としたので説明を省略する。
The barometric pressure sensor l is supported by a gate-shaped frame 60 that is fixed with a slight gap in the vertical direction. The engagement between the atmospheric pressure sensor 1 and the pressurizing element 42 is the same as that shown in FIG. 1, so the explanation will be omitted.

次に第7図の検査・較正装置35による較正方法につい
て説明する。室内圧力が1気圧以上の場合には、その圧
力に応じて予め定めた補正用の分銅式重錘48を重錘光
は皿58に乗せ、空盒2を標準気圧における状態に調整
して初期出力V。を較正する。もし気圧が標準気圧より
低い場合には重錘光は皿59側に前記重錘48を乗せる
ことによって空盒2を圧縮して調整する。なお高地の気
圧に対応する重錘を用いれば、第7図の装置35によっ
て各気圧に対する較正を行うこともできる。
Next, a calibration method using the inspection/calibration device 35 shown in FIG. 7 will be explained. When the indoor pressure is 1 atm or more, a predetermined correction weight 48 according to the pressure is placed on the plate 58, and the empty bag 2 is adjusted to the standard pressure condition and initialized. Output V. calibrate. If the atmospheric pressure is lower than the standard atmospheric pressure, the weight light is adjusted by compressing the empty cup 2 by placing the weight 48 on the side of the dish 59. Note that if a weight corresponding to the atmospheric pressure at a high altitude is used, calibration for each atmospheric pressure can be performed using the device 35 shown in FIG.

第8図に示す検査・較正装置35は、むしろ標準気圧よ
り高い気圧で使用する流体圧センサの較正に適した実施
例を示したものである。該較正装置35は、支柱52か
ら突き出した梁62に2個の滑車64を取付け、該滑車
64に懸架した紐65で重錘光は皿58及び加圧子42
の基部66を吊り下げた構造をしている。なお基部66
には貫通穴40を設け、これにガイド支柱38を挿通し
て加圧子42が水平に上下できるようにした。
The test/calibration device 35 shown in FIG. 8 represents an embodiment suitable for calibrating a fluid pressure sensor used at a pressure higher than standard pressure. The calibration device 35 has two pulleys 64 attached to a beam 62 protruding from the support 52, and a string 65 suspended from the pulleys 64 connects the plate 58 and the pressurizer 42 to the weight light.
The structure has a suspended base 66. Note that the base 66
A through hole 40 is provided in the hole 40, through which the guide column 38 is inserted so that the presser 42 can be moved up and down horizontally.

第8図に示す検査・較正装置35は、重錘34を重錘光
は皿58に乗せることにより標準気圧以上の気圧に対す
る較正を行うことができる。
The inspection/calibration device 35 shown in FIG. 8 can perform calibration for atmospheric pressure higher than standard atmospheric pressure by placing the weight 34 on a weight plate 58.

第8図を基部66に重錘の載置部を設けるように変形し
、前記受は皿58又は66のいずれかに測定時の気圧に
応じた重錘を載荷することにより標準気圧補正をするこ
ともできる。
Fig. 8 is modified so that a weight placement part is provided at the base 66, and the receiver corrects the standard atmospheric pressure by loading a weight corresponding to the atmospheric pressure at the time of measurement on either the plate 58 or 66. You can also do that.

以上のとおり標準気圧より低い気圧下で主に使用する車
両、航空機などに使用する気圧センサにも、また水中、
坑道内など、標準気圧より高い圧力下で使用する流体圧
センサに対する較正手段としても使用できることが理解
されよう。
As mentioned above, barometric pressure sensors used mainly in vehicles and aircraft that are used under atmospheric pressure lower than standard atmospheric pressure, as well as underwater,
It will be appreciated that it may also be used as a calibration means for fluid pressure sensors used at pressures above standard atmospheric pressure, such as in mine shafts.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の流体圧センサの検査・較正
方法は、内部を所定気圧にした空盒から成り、流体圧の
変化によって形状を弾性変形させる流体圧検出手段と、
前記弾性変形を電気信号に変換する変換手段とから成る
気圧センサを較正するに際し、該流体圧センサの較正に
使用する流体圧による変形量と同等の変形量を与える重
錘を前記流体圧検出手段の変形量出力部に作用させる構
成としたので以下の効果を得ることができる。即ち、 +l)  気圧センサ、水圧センサなどの流体圧センサ
を実際の圧力に調整する調圧室を用いないで同等の検査
・較正を行うことができるので調圧設備が不用であり、
調圧、その復元に要する時間が節約できる。
As explained above, the method for inspecting and calibrating a fluid pressure sensor according to the present invention includes a fluid pressure detecting means that includes an air container whose interior is kept at a predetermined pressure, and whose shape is elastically deformed according to changes in fluid pressure;
When calibrating a barometric pressure sensor comprising a conversion means for converting the elastic deformation into an electric signal, a weight that provides a deformation amount equivalent to the deformation amount due to the fluid pressure used for calibrating the fluid pressure sensor is used as the fluid pressure detection means. Since it is configured to act on the deformation amount output section, the following effects can be obtained. That is, +l) Since equivalent inspection and calibration can be performed without using a pressure regulation chamber to adjust fluid pressure sensors such as barometric pressure sensors and water pressure sensors to the actual pressure, pressure regulation equipment is not required;
The time required for pressure regulation and restoration can be saved.

(2)調圧室内に据えた流体圧センサの測定用電気配線
、出力調整を通常の気圧内で行うことができるので、従
来のように調圧室の外から手袋などを介した作業や、い
ちいち調圧室に出入りして作業する必要がないので作業
能率が著しく向上する。
(2) Electrical wiring for measurement and output adjustment of the fluid pressure sensor installed in the pressure regulating chamber can be performed within normal atmospheric pressure, so work can be done from outside the pressure regulating chamber through gloves, etc. Since there is no need to go in and out of the pressure regulating chamber each time, work efficiency is significantly improved.

(3)以上によって、設備費、ランニングコストの大幅
な節約ができる。
(3) With the above, equipment costs and running costs can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一実施例による流体圧センサの検査・較正装置
の立面図、第2図は第1図に示す気圧(流体圧)センサ
の立面図、第3図は第2図の側面図、第4図は第1図の
要部説明図、第5図は第2図に示す気圧センサの気圧−
出力電圧特性を示すグラフ図、第6図は第1図の装置の
変形例を示す要部説明図、第7図〜第8図は別の実施例
を示す図である。 1・・・気圧(流体圧)センサ、2・・・流体圧検出手
段、6・・・変換手段、15・・・係合部、34・・・
重錘、35・・・検査・較正装置、42・・・加圧子(
変形量出力部)。 気圧mbal
FIG. 1 is an elevational view of a fluid pressure sensor inspection/calibration device according to one embodiment, FIG. 2 is an elevational view of the air pressure (fluid pressure) sensor shown in FIG. 1, and FIG. 3 is a side view of FIG. 2. Figure 4 is an explanatory diagram of the main parts of Figure 1, and Figure 5 is the atmospheric pressure of the atmospheric pressure sensor shown in Figure 2.
FIG. 6 is a graph showing output voltage characteristics, FIG. 6 is an explanatory diagram of main parts showing a modification of the device shown in FIG. 1, and FIGS. 7 to 8 are diagrams showing another embodiment. DESCRIPTION OF SYMBOLS 1... Air pressure (fluid pressure) sensor, 2... Fluid pressure detection means, 6... Conversion means, 15... Engagement part, 34...
Weight, 35... Inspection/calibration device, 42... Pressure element (
deformation amount output section). atmospheric pressure mbal

Claims (1)

【特許請求の範囲】[Claims] 内部を所定気圧とした空盒から成り、流体圧の変化によ
って形状を弾性変形させる気圧検出手段と、前記弾性変
形を電気信号に変換する変換手段とから成る流体圧セン
サを検査・較正するに際し、該流体圧センサの検査・較
正に使用する流体圧による変形量と同等の変形量を与え
る重錘を前記気圧検出手段の変形量出力部に作用させる
ことから成る流体圧センサの検査・較正方法。
When inspecting and calibrating a fluid pressure sensor consisting of an air chamber with a predetermined pressure inside, an air pressure detection means that elastically deforms its shape due to changes in fluid pressure, and a conversion means that converts the elastic deformation into an electrical signal, A method for inspecting and calibrating a fluid pressure sensor, which comprises applying a weight that provides a deformation amount equivalent to the amount of deformation caused by the fluid pressure used for inspecting and calibrating the fluid pressure sensor to the deformation output portion of the atmospheric pressure detection means.
JP21503188A 1988-08-31 1988-08-31 Inspecting and calibrating method of fluid pressure sensor Pending JPH0264431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21503188A JPH0264431A (en) 1988-08-31 1988-08-31 Inspecting and calibrating method of fluid pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21503188A JPH0264431A (en) 1988-08-31 1988-08-31 Inspecting and calibrating method of fluid pressure sensor

Publications (1)

Publication Number Publication Date
JPH0264431A true JPH0264431A (en) 1990-03-05

Family

ID=16665604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21503188A Pending JPH0264431A (en) 1988-08-31 1988-08-31 Inspecting and calibrating method of fluid pressure sensor

Country Status (1)

Country Link
JP (1) JPH0264431A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100423239B1 (en) * 2002-04-18 2004-03-18 한국표준과학연구원 Automatic deadweight loading/unloading device
JP2017044688A (en) * 2015-08-25 2017-03-02 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Device and method for calibrating altitude measurement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100423239B1 (en) * 2002-04-18 2004-03-18 한국표준과학연구원 Automatic deadweight loading/unloading device
JP2017044688A (en) * 2015-08-25 2017-03-02 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Device and method for calibrating altitude measurement device

Similar Documents

Publication Publication Date Title
US9360391B2 (en) Multi-axis tilt sensor for correcting gravitational effects on the measurement of pressure by a capacitance diaphragm gauge
US20100154552A1 (en) Capacitance diaphragm gauge and vaccum apparatus
US4499773A (en) Variable capacitance pressure transducer
KR20020000768A (en) Apparatus and method for correcting sensor drift
US3520191A (en) Strain gage pressure transducer
US6655216B1 (en) Load transducer-type metal diaphragm pressure sensor
KR101947031B1 (en) Apparatus for measuring deflection of bridge using ring type displacement transducer
EP0197042B1 (en) Reference pressure devices for calibrating pressure-measuring instruments
CA2313313C (en) Relative pressure sensor
EP0403254A2 (en) Hermetic pressure sensor
US5005408A (en) Gas weights compensation method for liquid depth gauging system
JPH0264431A (en) Inspecting and calibrating method of fluid pressure sensor
CN201527322U (en) Pressure sensor
US6912910B2 (en) Capacitive pressure sensor
US3242738A (en) Pressure-responsive instruments
US5060520A (en) Hermetic pressure sensor
US6425291B1 (en) Relative-pressure sensor having a gas-filled bellows
US3067614A (en) Apparatus for indicating pressure in fluid system
JP4414746B2 (en) Capacitive pressure sensor
CN1182210A (en) Pressure sensor
Handbook Pressure & Temperature Measurement
JPH01318936A (en) Fluid pressure sensor
CN2795256Y (en) Washing machine using new water level controller
SU1434288A1 (en) Gas pressure transducer
JPS62121302A (en) Temperature compensating circuit in strain gauge type converter, and its temperature compensating method