JPH026406B2 - - Google Patents

Info

Publication number
JPH026406B2
JPH026406B2 JP57154863A JP15486382A JPH026406B2 JP H026406 B2 JPH026406 B2 JP H026406B2 JP 57154863 A JP57154863 A JP 57154863A JP 15486382 A JP15486382 A JP 15486382A JP H026406 B2 JPH026406 B2 JP H026406B2
Authority
JP
Japan
Prior art keywords
oxygen
enriched air
air
combustion furnace
enriched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57154863A
Other languages
Japanese (ja)
Other versions
JPS5944516A (en
Inventor
Juji Matsumura
Tamotsu Hirota
Yoshio Okita
Akihiro Hachitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP57154863A priority Critical patent/JPS5944516A/en
Publication of JPS5944516A publication Critical patent/JPS5944516A/en
Publication of JPH026406B2 publication Critical patent/JPH026406B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Drying Of Gases (AREA)

Description

【発明の詳細な説明】 本発明は燃焼炉たとえばキユポラなどを備える
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus comprising a combustion furnace, such as a cupola.

燃焼炉たとえばキユポラにおいて供給される燃
焼用空気の酸素濃度を高くすれば、単に空気を供
給する場合に比べて溶解速度の増大、出湯温度の
上昇、溶湯の吸炭増加による溶湯中の炭素量の増
大、溶解時におけるシリコンやマンガンのロスの
減少、溶湯の吸硫減少による溶湯中のイオウ量の
減少および地金の溶解ロスの減少等を図ることが
できる。その結果、溶湯原価の低減、生産性の向
上、溶湯品質の最適化による製品不良率の減少、
高付加価値鋳鉄品の生産の容易化等のきわめて有
効な利点を得ることができる。このような利点を
得るために従来では、酸素ボンベからの酸素、ま
たは液体酸素タンクから気化させた酸素を空気中
に供給して酸素富化空気を得ていた。ところがこ
のような従来技術では、高価な酸素を必要とする
経済面での不利、酸素ボンベまたは液体酸素タン
クをキユポラ近くの高温雰囲気で使用することに
起因する危険性および酸素を扱うに適する高圧ガ
ス取締法による特別な作業者や貯蔵所の許可を必
要とする等の不都合があつた。特に中小企業にお
いては、酸素を扱うに適する特別な作業者の確保
が困難であり、酸素富化空気を用いたキユポラの
操業が困難であつた。
If the oxygen concentration of the combustion air supplied to a combustion furnace, such as a cupora, is increased, the dissolution rate will increase, the tapping temperature will increase, and the amount of carbon in the molten metal will decrease due to increased carbon absorption in the molten metal, compared to the case where air is simply supplied. It is possible to reduce the loss of silicon and manganese during melting, reduce the amount of sulfur in the molten metal by reducing sulfur absorption in the molten metal, and reduce the loss of melting metal. As a result, the cost of molten metal is reduced, productivity is improved, and product defect rate is reduced by optimizing molten metal quality.
Very effective advantages such as ease of production of high value-added cast iron products can be obtained. In order to obtain such advantages, conventionally, oxygen from an oxygen cylinder or vaporized oxygen from a liquid oxygen tank was supplied to the air to obtain oxygen-enriched air. However, such conventional technology has economic disadvantages due to the need for expensive oxygen, dangers due to the use of oxygen cylinders or liquid oxygen tanks in the high temperature atmosphere near the cupora, and high pressure gas suitable for handling oxygen. There were inconveniences such as the need for special permission for workers and storage facilities under the Control Law. Particularly in small and medium-sized enterprises, it has been difficult to secure special workers suitable for handling oxygen, and it has been difficult to operate cupolas using oxygen-enriched air.

上述のごとき技術的課題を解決するために本件
出願人は、すでに特願昭56−143375にて酸素選択
透過膜を用いて酸素富化した空気をキユポラに供
給するようにした技術を提案している。ところが
酸素選択透過膜は水蒸気をも透過しやすいので、
酸素富化空気中の湿度が上昇することを抑えるた
めに脱湿装置が設けられ、電気冷凍機によつて得
られた冷水などによつて酸素富化空気を冷却し
て、除湿している。そのために電気冷凍機を駆動
するための電力消費量が多大となつて不経済であ
る。
In order to solve the above-mentioned technical problems, the applicant has already proposed a technology in which oxygen-enriched air is supplied to the cupora using an oxygen selective permeation membrane in Japanese Patent Application No. 143375/1983. There is. However, oxygen selectively permeable membranes are also permeable to water vapor, so
In order to suppress the rise in humidity in the oxygen-enriched air, a dehumidification device is provided, and the oxygen-enriched air is cooled and dehumidified using cold water obtained by an electric refrigerator. Therefore, the power consumption for driving the electric refrigerator becomes large, which is uneconomical.

本発明は上述のごとき技術的課題を解決し、酸
素富化空気を容易に発生させて燃焼炉の経済性、
安全性および操業性を向上するとともに、燃焼炉
の排ガス顕熱を有効に利用して酸素富化空気の除
湿を行なうことによつて経済性をさらに向上させ
た燃焼炉を備える装置を提供することを目的とす
る。
The present invention solves the above-mentioned technical problems, easily generates oxygen-enriched air, and improves the economy of combustion furnaces.
To provide a device equipped with a combustion furnace that improves safety and operability and further improves economic efficiency by dehumidifying oxygen-enriched air by effectively utilizing the sensible heat of the exhaust gas of the combustion furnace. With the goal.

以下、図面によつて本発明の実施例を説明す
る。第1図は本発明の一実施例の系統図である。
燃焼炉たとえばキユポラ1には、コークスが充填
されており、酸素富化空気発生手段2で発生した
酸素富化空気が除湿器3で除湿された後、予熱器
4で予熱されて前記コークスの充填層内に供給さ
れる。それによつてキユポラ1ではコークスが高
温度で燃焼して地金を溶解し、その溶湯が連続的
に取出される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of an embodiment of the present invention.
A combustion furnace, for example, a cupola 1, is filled with coke, and after the oxygen-enriched air generated by the oxygen-enriched air generating means 2 is dehumidified by a dehumidifier 3, it is preheated by a preheater 4 and filled with the coke. Supplied within the layer. As a result, in the cupola 1, the coke burns at a high temperature to melt the base metal, and the molten metal is continuously taken out.

酸素富化空気発生手段2は、ポリジメチルシロ
キサン、ポリ塩化ビニル、ポリプロピレン等の高
分子材料から成る酸素選択透過膜を備える。この
酸素富化空気発生手段2は、管路5を介してキユ
ポラ1に連結される。管路5の途中には、酸素富
化空気発生手段2からキユポラ1に向けて順に吸
引ポンプ6、流量制御用ダンパ7、除湿器3、ブ
ロワ8および予熱器4が備えられる。酸素富化空
気発生手段2における酸素選択透過膜の下流側を
吸引ポンプ6で吸引することによつて酸素選択透
過膜を流通する空気中の酸素濃度が富化される。
ブロワ8は、酸素富化空気と通常の空気とを混合
し燃焼用空気として供給するために設けられる。
なお除湿器3と流量制御用ダンパ7との間には大
気に開放した管路9が接続されており、この管路
9には上流側から順にフイルタ10および流量制
御用ダンパ11が備えられる。酸素選択透過膜を
流通した空気は、酸素濃度が25〜31%程度まで高
められるが、管路9における流量制御用ダンパ1
1の開度を調節することにより前記酸素富化され
た空気中に大気が混入して希釈され、したがつて
ブロワ8から供給される空気中の酸素濃度を自在
に調節することが可能となる。
The oxygen-enriched air generating means 2 includes an oxygen selectively permeable membrane made of a polymeric material such as polydimethylsiloxane, polyvinyl chloride, polypropylene, or the like. This oxygen-enriched air generating means 2 is connected to the cupola 1 via a conduit 5. A suction pump 6, a flow control damper 7, a dehumidifier 3, a blower 8, and a preheater 4 are provided in the middle of the pipe line 5 in order from the oxygen-enriched air generating means 2 toward the cupola 1. By suctioning the downstream side of the oxygen selectively permeable membrane in the oxygen enriched air generating means 2 with the suction pump 6, the oxygen concentration in the air flowing through the oxygen selectively permeable membrane is enriched.
A blower 8 is provided to mix oxygen-enriched air and normal air and supply the mixture as combustion air.
A conduit 9 open to the atmosphere is connected between the dehumidifier 3 and the flow rate control damper 7, and the conduit 9 is equipped with a filter 10 and a flow rate control damper 11 in this order from the upstream side. The oxygen concentration of the air that has passed through the oxygen selective permeation membrane is increased to about 25 to 31%, but the flow rate control damper 1 in the pipe line 9
By adjusting the opening degree of the blower 1, the atmosphere is mixed into the oxygen-enriched air and diluted, so that the oxygen concentration in the air supplied from the blower 8 can be freely adjusted. .

酸素富化空気発生手段2からの酸素富化空気
は、たとえば酸素濃度が28%、温度が70℃、絶対
湿度が276g/Kg(乾燥空気)であり、管路9か
らの希釈用空気は、たとえば酸素濃度が21%、温
度が30℃、絶対湿度が21.8g/Kg(乾燥空気)で
ある。管路9からの希釈空気で希釈された酸素富
化空気は、たとえば酸素濃度が25%、温度が53
℃、絶対湿度が102g/Kg(乾燥空気)である。
この希釈された酸素富化空気は除湿器3で除湿さ
れてたとえば、酸素濃度が25%、温度が9℃、絶
対湿度が7.13g/Kg(乾燥空気)となる。
The oxygen-enriched air from the oxygen-enriched air generation means 2 has, for example, an oxygen concentration of 28%, a temperature of 70°C, and an absolute humidity of 276 g/Kg (dry air), and the dilution air from the pipe 9 is For example, the oxygen concentration is 21%, the temperature is 30°C, and the absolute humidity is 21.8g/Kg (dry air). The oxygen-enriched air diluted with diluted air from line 9 has an oxygen concentration of 25% and a temperature of 53%, for example.
℃, absolute humidity is 102g/Kg (dry air).
This diluted oxygen-enriched air is dehumidified by the dehumidifier 3, so that the oxygen concentration is 25%, the temperature is 9° C., and the absolute humidity is 7.13 g/Kg (dry air).

キユポラ1から排出される高温度たとえば900
℃の排ガスは、予熱器4で酸素富化空気と熱交換
されて排熱ボイラ12、冷却器13、集塵機14
を経て吸引送風機15から大気に放出される。熱
交換器4を経た排ガスの温度はたとえば700℃で
あり、排熱ボイラ12を経た排ガス温度はたとえ
ば200℃である。排熱ボイラ12で排ガス顕熱を
回収して得られたたとえば95℃の温水は、吸収式
冷凍機16の熱源として供給されるとともに、循
環回路21を介して冷暖房などの熱源水20とし
て用いられる。この吸収式冷凍機16で得られた
冷却媒体たとえば冷水は、循環回路17を介して
除湿器3に供給される。この冷水によつて酸素富
化空気の除湿が行なわれる。この吸収式冷凍機1
6からの冷水の温度はたとえば7℃であり、除湿
器3を経た後の温度はたとえば12℃である。吸収
式冷凍機16の凝縮器、吸収器を冷却するために
冷却塔18から冷却水が冷却水循環回路19を介
して吸収式冷凍機16に送られる。
High temperature emitted from Kyupora 1, for example 900
The exhaust gas at a temperature of
It is then released into the atmosphere from the suction blower 15. The temperature of the exhaust gas passing through the heat exchanger 4 is, for example, 700°C, and the temperature of the exhaust gas passing through the waste heat boiler 12 is, for example, 200°C. For example, 95° C. hot water obtained by recovering exhaust gas sensible heat in the waste heat boiler 12 is supplied as a heat source to the absorption chiller 16, and is also used as a heat source water 20 for air conditioning, etc. via a circulation circuit 21. . A cooling medium, such as cold water, obtained by this absorption refrigerator 16 is supplied to the dehumidifier 3 via a circulation circuit 17. This cold water dehumidifies the oxygen-enriched air. This absorption refrigerator 1
The temperature of the cold water from 6 is, for example, 7°C, and the temperature after passing through the dehumidifier 3 is, for example, 12°C. In order to cool the condenser and absorber of the absorption chiller 16, cooling water is sent from the cooling tower 18 to the absorption chiller 16 via a cooling water circulation circuit 19.

本件発明者の実験結果によれば、除湿器3に至
る前の希釈された酸素富化空気は、前述のように
酸素濃度が25%、温度が53℃、絶対湿度が102
g/Kg(乾燥空気)であり、除湿器3で除湿され
た酸素富化空気は、酸素濃度が25%、温度が9
℃、絶対湿度が7.13g/Kg(乾燥空気)である。
したがつて除湿のために要する熱量は、85kcal/
Nm3となる。この熱量は、溶解能力がたとえば
2t/Hのキユポラでは93000kcal/hの熱量とな
る。この実施例では、上記熱量をキユポラからの
排ガスの顕熱を回収することによつて得るため
に、電気冷凍機に比べて消費電力が大幅に節減さ
れる。さらにキユポラ1の排ガスから回収された
余剰の熱量は、前述のように他の冷暖房などの熱
源水20として利用することができる。
According to the inventor's experimental results, the diluted oxygen-enriched air before reaching the dehumidifier 3 has an oxygen concentration of 25%, a temperature of 53°C, and an absolute humidity of 102°C, as described above.
g/Kg (dry air), and the oxygen-enriched air dehumidified by dehumidifier 3 has an oxygen concentration of 25% and a temperature of 9.
℃, absolute humidity is 7.13g/Kg (dry air).
Therefore, the amount of heat required for dehumidification is 85kcal/
It becomes Nm3 . This amount of heat has a melting capacity of, for example,
A 2t/h cupola produces 93,000kcal/h of heat. In this embodiment, the amount of heat is obtained by recovering the sensible heat of the exhaust gas from the cupora, so power consumption is significantly reduced compared to an electric refrigerator. Furthermore, the surplus heat recovered from the exhaust gas of the cupola 1 can be used as the heat source water 20 for other air conditioning and heating purposes, as described above.

第2図は本発明の他の実施例の系統図である。
この実施例は前述の実施例に類似し対応する部分
には同一の参照符を付す。注目すべきは、管路5
において流量制御用ダンパ7と管路9の接続個所
との間には、冷却塔18からの冷却水たとえば30
℃の冷却水が、冷却水循環回路19の途中から管
路22を介して冷却器23に導かれ、さらに冷却
水循環回路19に返される。酸素富化空気発生手
段2で発生した酸素富化空気は、この冷却器23
で1次除湿される。酸素富化空気発生手段2から
の酸素富化空気が、冷却器23で1次除湿される
と、たとえば酸素濃度28%、温度40℃、絶対湿度
48.8g/Kg(乾燥空気)となる。さらに希釈空気
によつて希釈されて、たとえば酸素濃度25%、温
度36℃、絶対湿度37.2g/Kg(乾燥空気)とな
る。その後除湿器3で2次除湿される。その他の
構成は、前述の実施例と同様である。
FIG. 2 is a system diagram of another embodiment of the present invention.
This embodiment is similar to the previous embodiment and corresponding parts are provided with the same reference numerals. What should be noted is pipe 5.
Between the flow rate control damper 7 and the connection point of the pipe line 9, cooling water from the cooling tower 18, for example,
℃ cooling water is led to the cooler 23 through the pipe line 22 from the middle of the cooling water circulation circuit 19, and is further returned to the cooling water circulation circuit 19. The oxygen-enriched air generated by the oxygen-enriched air generation means 2 is transferred to the cooler 23.
primary dehumidification is performed. When the oxygen-enriched air from the oxygen-enriched air generating means 2 is primarily dehumidified in the cooler 23, the oxygen concentration is 28%, the temperature is 40°C, and the absolute humidity is, for example, 28%.
48.8g/Kg (dry air). The air is further diluted with dilution air to, for example, have an oxygen concentration of 25%, a temperature of 36° C., and an absolute humidity of 37.2 g/Kg (dry air). Thereafter, the dehumidifier 3 performs secondary dehumidification. The other configurations are similar to those of the previous embodiment.

本件発明者の実験結果によれば、酸素富化空気
発生手段2からの酸素富化空気は前述のように酸
素濃度が28%、温度が70℃、絶対湿度が276g/
Kg(乾燥空気)であり、冷却器23で1次除湿さ
れた酸素富化空気は、酸素濃度が28%、温度が40
℃、絶対湿度が48.8g/Kg(乾燥空気)である。
したがつて1次除湿のために要する熱量は、
177kcal/Nm3となる。この熱量は冷却塔18か
らの冷却水によつて供給されるので、無視できる
程度のものである。
According to the experimental results of the inventor, the oxygen-enriched air from the oxygen-enriched air generating means 2 has an oxygen concentration of 28%, a temperature of 70°C, and an absolute humidity of 276 g/min, as described above.
Kg (dry air), and the oxygen-enriched air that has been primarily dehumidified in the cooler 23 has an oxygen concentration of 28% and a temperature of 40%.
℃, absolute humidity is 48.8g/Kg (dry air).
Therefore, the amount of heat required for primary dehumidification is
It becomes 177kcal/ Nm3 . Since this amount of heat is supplied by the cooling water from the cooling tower 18, it is negligible.

さらに希釈空気によつて希釈された酸素富化空
気は、前述のように酸素濃度が25%、温度が36
℃、絶対湿度が37.2g/Kg(乾燥空気)であり、
除湿器3で2次除湿された酸素富化空気は、酸素
濃度が25%、温度が9℃、絶対温度が7.13g/Kg
(乾燥空気)である。したがつて2次除湿のため
に要する熱量は、31kcal/Nm3となる。この実施
例では1次除湿されるために、吸収式冷凍機16
からの余剰の冷却媒体は、管路24を介して、他
の冷房設備25などに利用すればよい。
The oxygen-enriched air further diluted with diluted air has an oxygen concentration of 25% and a temperature of 36% as described above.
℃, absolute humidity is 37.2g/Kg (dry air),
The oxygen-enriched air that has been secondarily dehumidified by dehumidifier 3 has an oxygen concentration of 25%, a temperature of 9℃, and an absolute temperature of 7.13g/Kg.
(dry air). Therefore, the amount of heat required for secondary dehumidification is 31 kcal/Nm 3 . In this embodiment, in order to perform primary dehumidification, the absorption refrigerator 16
The surplus cooling medium may be used for other cooling equipment 25 or the like via the pipe line 24.

以上のように本発明によれば、燃焼炉からの排
ガス顕熱を利用して吸収式冷凍機を駆動して、前
記吸収式冷凍機からの冷却媒体によつて酸素富化
空気を除湿するようにしたので、電気冷凍機を用
いて除湿する先行技術に比べて多大の電気量を節
減することができ経済性が向上する。
As described above, according to the present invention, the absorption chiller is driven using the sensible heat of the exhaust gas from the combustion furnace, and the oxygen-enriched air is dehumidified by the cooling medium from the absorption chiller. As a result, a large amount of electricity can be saved compared to the prior art in which dehumidification is performed using an electric refrigerator, resulting in improved economic efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の系統図、第2図は
本発明の他の実施例の系統図である。 1……キユポラ、2……酸素富化空気発生手
段、3……除湿器、4……予熱器、16……吸収
式冷凍機、23……冷却器。
FIG. 1 is a system diagram of one embodiment of the present invention, and FIG. 2 is a system diagram of another embodiment of the invention. 1... Kyupora, 2... Oxygen enriched air generation means, 3... Dehumidifier, 4... Preheater, 16... Absorption refrigerator, 23... Cooler.

Claims (1)

【特許請求の範囲】 1 燃焼炉と、 酸素選択透過膜に空気を流過させることにより
酸素富化空気を発生する酸素富化空気発生手段
と、 燃焼炉からの排ガス顕熱を熱源とする吸収式冷
凍機と、 前記酸素富化空気発生手段から燃焼炉に酸素富
化空気を供給する管路の途中に備えられ前記吸収
式冷凍機で得られた冷却媒体により酸素富化空気
を冷却して除湿する除湿器とを含むことを特徴と
する燃焼炉を備える装置。 2 燃焼炉と、 酸素選択透過膜に空気を流過させることにより
酸素富化空気を発生する酸素富化空気発生手段
と、 燃焼炉からの排ガス顕熱を熱源とする吸収式冷
凍機と、 前記酸素富化空気発生手段から燃焼炉に酸素富
化空気を供給する管路の途中に備えられ、冷却水
と酸素富化空気とを接触させて冷却する冷却器
と、 前記酸素富化空気を供給するための管路におけ
る冷却器よりも下流側に設けられ、前記吸収式冷
凍機で得られた冷却媒体により酸素富化空気を冷
却して除湿する除湿器とを含むことを特徴とする
燃焼炉を備える装置。
[Scope of Claims] 1. A combustion furnace, an oxygen-enriched air generation means that generates oxygen-enriched air by passing air through an oxygen selective permeation membrane, and an absorption device that uses sensible heat from the exhaust gas from the combustion furnace as a heat source. a cooling medium provided in the middle of a conduit for supplying oxygen-enriched air from the oxygen-enriched air generation means to the combustion furnace, and cools the oxygen-enriched air with a cooling medium obtained by the absorption refrigerator. An apparatus comprising a combustion furnace, characterized in that it includes a dehumidifier for dehumidifying. 2. A combustion furnace, an oxygen-enriched air generation means that generates oxygen-enriched air by passing air through an oxygen selective permeation membrane, an absorption refrigerator that uses sensible heat of exhaust gas from the combustion furnace as a heat source, and the above-mentioned. a cooler provided in the middle of a pipe line that supplies oxygen-enriched air from the oxygen-enriched air generating means to the combustion furnace, and that cools the cooling water by bringing it into contact with the oxygen-enriched air; and a cooler that supplies the oxygen-enriched air. a dehumidifier, which is provided downstream of the cooler in a conduit for cooling and dehumidifies oxygen-enriched air using the cooling medium obtained by the absorption refrigerator. A device comprising:
JP57154863A 1982-09-06 1982-09-06 Apparatus equipped with combustion furnace Granted JPS5944516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57154863A JPS5944516A (en) 1982-09-06 1982-09-06 Apparatus equipped with combustion furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57154863A JPS5944516A (en) 1982-09-06 1982-09-06 Apparatus equipped with combustion furnace

Publications (2)

Publication Number Publication Date
JPS5944516A JPS5944516A (en) 1984-03-13
JPH026406B2 true JPH026406B2 (en) 1990-02-09

Family

ID=15593558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57154863A Granted JPS5944516A (en) 1982-09-06 1982-09-06 Apparatus equipped with combustion furnace

Country Status (1)

Country Link
JP (1) JPS5944516A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4878252B2 (en) * 2006-09-25 2012-02-15 巴工業株式会社 Belt type concentrator
CN104315753B (en) * 2014-10-15 2018-06-22 江苏省绿色建筑工程技术研究中心有限公司 A kind of cold, heat and power triple supply system for including energy tower
CN105066114A (en) * 2015-08-27 2015-11-18 四川德胜集团钒钛有限公司 Boiler oxygen-enriched combustion system for power generation set

Also Published As

Publication number Publication date
JPS5944516A (en) 1984-03-13

Similar Documents

Publication Publication Date Title
CA1133894A (en) Method and apparatus for recovering and reusing heat from hot gases
JPH0132283B2 (en)
US2631835A (en) Apparatus for heating gases
JPH026406B2 (en)
US3461190A (en) Method of and apparatus for establishing and maintaining an atmosphere controlled as to pressure,temperature,gas content and rate of gas flow,and closed and semi-closed arc heater loop apparatus for use therein
US4354669A (en) Apparatus for regulating the quantities and percentages of the gaseous constituents of oxygen, nitrogen, carbon dioxide and water in reaction processes in metallurgical applications
CN208373103U (en) Active coke regeneration system
JP2698967B2 (en) Exhaust gas dehumidification method and dehumidifier
JPS59123707A (en) Utilizing method of gas formed by reaction in melt reducing furnace
JPS5520267A (en) Oxygen recycle ozone generating apparatus
JPS6137987Y2 (en)
JPH0468527B2 (en)
JPH01193588A (en) Atmosphere gas furnace equipped with exhaust combustion gas refining device
JPH0513426Y2 (en)
JPH11342314A (en) Treatment of chloride dust containing-exhaust gas and treating device therefor
CN108404865B (en) Active coke regeneration system and method
JPS6118165Y2 (en)
US1490546A (en) Apparatus for producing pure nitrogen
JPH0255387B2 (en)
US2224041A (en) Process for the production of metallic magnesium
RU2016082C1 (en) Method of preparing metal scrap
JPS59166639A (en) Heat recovery method and apparatus in zinc refining installation
JPS609550B2 (en) Method for recovering waste heat from coke oven gas
JP2004116789A (en) Blast dehumidifying method of combustion furnace
JPS6391121A (en) Air separator