JPH0264059A - Low-temperature sintering ceramic composition for multilayer substrate - Google Patents

Low-temperature sintering ceramic composition for multilayer substrate

Info

Publication number
JPH0264059A
JPH0264059A JP63212097A JP21209788A JPH0264059A JP H0264059 A JPH0264059 A JP H0264059A JP 63212097 A JP63212097 A JP 63212097A JP 21209788 A JP21209788 A JP 21209788A JP H0264059 A JPH0264059 A JP H0264059A
Authority
JP
Japan
Prior art keywords
thermal expansion
coefficient
cordierite
mechanical strength
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63212097A
Other languages
Japanese (ja)
Other versions
JPH0667783B2 (en
Inventor
Kouji Kajiyoshi
梶芳 浩二
Yasunobu Yoneda
康信 米田
Wakichi Tsukamoto
塚本 和吉
Yukio Sakabe
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP63212097A priority Critical patent/JPH0667783B2/en
Publication of JPH0264059A publication Critical patent/JPH0264059A/en
Publication of JPH0667783B2 publication Critical patent/JPH0667783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain the title composition capable of sintering at a relatively low temperature, having small coefficient of thermal expansion and dielectric constant and high mechanical strength by adding GeO2 and/or TiO2 to a main ingredient consisting of cordierite, B2O3 and SiO2. CONSTITUTION:1-10wt.% GeO2 and/or TiO2 is added to a main ingredient consisting of 40-85wt.% cordierite, 10-40wt.% B2O3 and 5-50wt.% SiO2. Sintering of a ceramic can be carried out at relatively low temperature of <=1020 deg.C and the title composition having small coefficient of thermal expansion and dielectric constant and high mechanical strength by the above-mentioned blending. Thereby energy required to sintering is reduced and use of high-melting metal as a conductive material for forming circuit pattern is made unnecessary. Since a ceramic substrate having the aimed composition is small in coefficient of thermal expansion and has coefficient of thermal expansion close to that of silicon chip, crack occurrence by heat strain is extremely small even when the silicon chip is carried on the substrate porosity is decreased and high reliability is attained by further adding TiO2 and GeO2, since mechanical strength thereof is as high as that of alumina.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、多層基板用低温焼結磁器組成物に関し、特
に、複数の磁器層が積層され、磁器間に回路が形成され
て成る多層磁器基板に適した、多層基板用低温焼結磁器
組成物に関する。
Detailed Description of the Invention [Field of Industrial Application] This invention relates to a low-temperature sintered porcelain composition for a multilayer board, and particularly to a multilayer porcelain composition in which a plurality of porcelain layers are laminated and a circuit is formed between the porcelains. The present invention relates to a low-temperature sintered ceramic composition for multilayer substrates, which is suitable for substrates.

〔従来の技術) −eに、電子機器の小型化に伴い、電子回路を構成する
各種電子部品を実装するのに磁器基板が汎用され、最近
では、実装密度を更に高めるため、表面に導電材料のペ
ーストで回路パターンを形成した未焼成の磁器シートを
複数枚積層し、これを焼成して一体化した多層磁器基板
が開発されている。従来このような多層磁器基板の材料
としてはアルミナが用いられていた。
[Prior art] -e. With the miniaturization of electronic devices, ceramic substrates are widely used to mount various electronic components that make up electronic circuits, and recently, in order to further increase the packaging density, conductive materials are used on the surface. A multilayer porcelain board has been developed in which a plurality of unfired porcelain sheets on which circuit patterns are formed using paste are laminated and then fired and integrated. Conventionally, alumina has been used as a material for such multilayer ceramic substrates.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、アルミナには、■その焼結温度が1500〜
1600°Cと高温であるため、焼結に要する多量のエ
ネルギーが必要になりコスト高になる、■基板内部に形
成される内部回路の導電材料が高温の焼結温度に耐え得
るWやMo等の高融点金属に限定されるため、回路パタ
ーンそのものの抵抗値が高くなる、■アルミナの熱膨張
係数がアルミナ基板の上に搭載される半導体を構成する
シリコンチップよりも大きいため、シリコンチップに熱
ストレスが加わりそれにクラックを発生させる原因とな
る、■アルミナそのものの誘電率が高いため、回路の内
部を伝播する信号の遅延時間が大きくなる、等の問題が
あった。
However, for alumina, ■ its sintering temperature is 1500 ~
Because the temperature is as high as 1,600°C, a large amount of energy is required for sintering, resulting in high costs. ■The conductive material of the internal circuit formed inside the substrate must be able to withstand the high sintering temperature, such as W or Mo. The circuit pattern itself has a high resistance value because it is limited to high melting point metals. ■The thermal expansion coefficient of alumina is larger than that of the silicon chip that makes up the semiconductor mounted on the alumina substrate, so the silicon chip does not receive heat. There were problems such as adding stress and causing cracks, and (2) the high dielectric constant of alumina itself, which increased the delay time of signals propagating inside the circuit.

そこでこの発明は、比較的低温で焼結可能で、熱膨張係
数が小さく、誘電率が小さく、かつ機械的強度の高い多
層基板用低温焼結磁器組成物を提供することを目的とす
る。
Therefore, an object of the present invention is to provide a low-temperature sintered ceramic composition for a multilayer substrate that can be sintered at a relatively low temperature, has a small coefficient of thermal expansion, a small dielectric constant, and high mechanical strength.

〔課題を解決するための手段〕[Means to solve the problem]

この発明の多層基板用低温焼結磁器組成物は、コージェ
ライトが40〜85重量%、Bz0310〜40重量%
およびSiO□が5〜50重量%から成る主成分に対し
て、G e OtおよびTiO□の一種以上を外添前で
1〜IO重量%添加したことを特徴とする。
The low-temperature sintered ceramic composition for multilayer substrates of the present invention contains 40 to 85% by weight of cordierite and 10 to 40% by weight of Bz03.
It is characterized in that 1 to IO weight % of one or more of GeOt and TiO□ is added to the main component consisting of 5 to 50 weight % of SiO□ and SiO□ before external addition.

ここでコージェライトとは、2Mg0・2AhOi・5
SiO2の他、E、N、Levin et al、によ
る”Phase  Diagrams  for  C
eramists”  、The  American
Ceramic 5ociety、Columbus、
1964.P、246(Fig、712)に開示されて
いる組成範囲から構成されるものであり、より具体的に
は第1図における領域へのものを指す。
Here, cordierite is 2Mg0・2AhOi・5
In addition to SiO2, “Phase Diagrams for C” by E.N. Levin et al.
eramists”, The American
Ceramic 5ociety, Columbus,
1964. P, 246 (Fig, 712), and more specifically refers to the region in FIG.

また、上記三主成分の組成範囲を第2図の領域Bに示す
Further, the composition range of the three main components mentioned above is shown in region B of FIG.

上記のように組成範囲を限定した理由は次の通りである
The reason for limiting the composition range as described above is as follows.

即ち、コージェライトが40重量%未満ではGeO□、
T i O□を添加してもなお機械的強度が低く、一方
85重量%を越えると焼結温度が高くなるからである。
That is, if cordierite is less than 40% by weight, GeO□,
This is because even if T i O□ is added, the mechanical strength is still low, while if it exceeds 85% by weight, the sintering temperature becomes high.

また、B2O310重量%未満では焼結温度が高くなり
、一方40重量%を越えると多孔質になり、機械的強度
が低くなるからである。
Further, if the B2O3 content is less than 10% by weight, the sintering temperature will be high, while if it exceeds 40% by weight, the material will become porous and the mechanical strength will be low.

また、S i Ozが5重量%未満では焼結温度が高く
なり、一方50重量%を越えると機械的強度が低くなる
からである。
Further, if S i Oz is less than 5% by weight, the sintering temperature becomes high, while if it exceeds 50% by weight, the mechanical strength becomes low.

また、添加物であるGeO□および/またはT i O
Zが1重量%未満では機械的強度が低くなり、一方10
重量%を越えると、主成分がコージェライトリンチ基で
は焼結温度が高くなり、B20.−3iO□リツチ系で
は機械的強度が低くなり、しかもいずれの場合も比抵抗
が小さくなるからである。
In addition, additives GeO□ and/or T i O
If Z is less than 1% by weight, the mechanical strength will be low;
If B20.% by weight is exceeded, the sintering temperature becomes high when the main component is a cordierite lynch group. This is because -3iO□ rich type has low mechanical strength and also has low specific resistance in both cases.

〔実施例〕〔Example〕

まず、コージェライトの原料を準備した。原料として、
S i Ot 、MgOまたはMgC0ffあるいはT
alc(3Mg’0 ・4SiO2・HzO) 、Al
2O3を秤量し、混合した。この混合物を1350〜1
400°Cで仮焼した。このようにして第1図で示した
コージェライト組成物を得た。このコージェライト仮焼
物を粉砕して新たにコージェライト原料として($備し
た。
First, raw materials for cordierite were prepared. As a raw material,
S i Ot , MgO or MgC0ff or T
alc(3Mg'0 ・4SiO2・HzO), Al
2O3 was weighed and mixed. Add this mixture to 1350-1
It was calcined at 400°C. In this way, the cordierite composition shown in FIG. 1 was obtained. This calcined cordierite was crushed and used as a new cordierite raw material.

次に、このコージェライト原料と、その他の主成分構成
材料、即らB20.またはBNあるいはB、CおよびS
iO□並びに添加物構成材料のGeO□およびTi12
を準備し、第1表に示す組成の磁器が得られるように、
秤量、混合した。
Next, this cordierite raw material and other main constituent materials, namely B20. or BN or B, C and S
iO□ and additive constituent materials GeO□ and Ti12
to obtain porcelain with the composition shown in Table 1.
Weighed and mixed.

そしてこの混合物を800〜900°Cの温度で仮焼し
、粉砕した。この粉砕した粉末に有機バインダーを加え
て混練し、得られたスラリーをドクターブレード法にて
厚さ1mmのシート状に成形した。このセラミックグリ
ーンシートを@130mm、横10mmの大きさにカッ
トし、水蒸気中に通過させた窒素をキャリヤガスとする
窒素−水蒸気の還元性もしくは非酸化性雰囲気中900
°Cの温度でバインダー成分を燃焼させ、これを第1表
に示す各温度で1時間焼成して磁器を得た。
This mixture was then calcined at a temperature of 800 to 900°C and pulverized. An organic binder was added to the pulverized powder and kneaded, and the resulting slurry was formed into a sheet with a thickness of 1 mm using a doctor blade method. This ceramic green sheet was cut into a size of @130 mm and a width of 10 mm, and passed through water vapor in a nitrogen-steam reducing or non-oxidizing atmosphere using nitrogen as a carrier gas.
The binder component was burned at a temperature of .degree. C., and then fired for 1 hour at each temperature shown in Table 1 to obtain porcelain.

また、このセラミックグリーンシートをu3mm1横4
0mmの角板状にカットし、これを積層して200 k
 g/cniで加圧し、約4mmX3mmX40mmの
角柱状にした。そして、これを上記の方法で焼成し、熱
膨張、抗折強度などを測定する測定用の試料とした。
In addition, this ceramic green sheet is u3mm1 horizontal 4
Cut into 0mm square plates and stack them to 200k
It was pressurized at g/cni to form a prismatic shape of approximately 4 mm x 3 mm x 40 mm. Then, this was fired by the method described above and used as a measurement sample for measuring thermal expansion, bending strength, etc.

このようにして得られた各試料についての各特性の測定
結果を第1表に示す。
Table 1 shows the measurement results of each characteristic of each sample thus obtained.

尚、同表中の添加物の量は、主成分であるコージエライ
h−3iOz  BzOz系に対する外添前世(重量%
)であり、より具体的にはコージェライト中への固溶量
とSiO□−B20.中への添加量とを合わせたもので
ある。
The amounts of additives in the same table are based on the amount of external additives (wt.
), and more specifically, the amount of solid solution in cordierite and SiO□-B20. This is the sum of the amount added to the inside.

また、比誘電率は、周波数IMHzで測定した値である
Further, the relative dielectric constant is a value measured at a frequency of IMHz.

比抵抗は、試料に直流100■を印加したときの値であ
る。
The specific resistance is the value when a direct current of 100 cm is applied to the sample.

線熱膨張係数αは、 α=(ΔL/L (T2  T+))+αS i O2
より算出した値であり、ここでΔLは加熱による試料の
見掛けの伸び(mm)、Lは室温での試料の長さ(mm
) 、T、は室温、T2は500 ’C1αSiO□は
石英ガラスの熱膨張係数である。
The coefficient of linear thermal expansion α is α=(ΔL/L (T2 T+))+αS i O2
Here, ΔL is the apparent elongation of the sample due to heating (mm), and L is the length of the sample at room temperature (mm).
), T, is room temperature, T2 is 500'C1αSiO□ is the coefficient of thermal expansion of quartz glass.

抗折強度は、JIS規格(R1601)の3点曲げ法に
従って測定した値である。
The bending strength is a value measured according to the three-point bending method of JIS standard (R1601).

気孔率は、アルキメデス法で測定した密度より算出した
値である。
The porosity is a value calculated from the density measured by the Archimedes method.

(以下余白) 第1表において、*印を付したものはこの発明の範囲外
であり、それ以外は全てこの発明の範囲内のものである
(Left below) In Table 1, those marked with an * are outside the scope of this invention, and all others are within the scope of this invention.

範囲限定理由は次の通りである。The reason for limiting the range is as follows.

即ち、コージェライトが40重量%未満ではG e O
z、T i Ozを添加してもなお機械的強度が低く、
一方85重量%を越えると焼結温度が1020°C以上
になるからである。ここで1020°Cを基準としたの
は、それ以下の温度では内部導電材料にAg、 Ag 
 Pd (80: 20) %’ Cu等が使用可能だ
からである。
That is, if cordierite is less than 40% by weight, G e O
Even if z, T i Oz is added, the mechanical strength is still low,
On the other hand, if it exceeds 85% by weight, the sintering temperature will be 1020°C or higher. Here, 1020°C is used as the standard because at lower temperatures, Ag, Ag
This is because Pd(80:20)%'Cu, etc. can be used.

また、B20.が10重量%未満では焼結温度が102
0°C以上になり、一方40重量%を越えると多孔質に
なり、抗折強度が2500未満になるからである。
Also, B20. is less than 10% by weight, the sintering temperature is 102
This is because if the temperature exceeds 0°C and the content exceeds 40% by weight, it becomes porous and the bending strength becomes less than 2500.

また、SiO□が5重量%未満では焼結温度が1020
 ’C以上になり、一方50重量%を越えると抗折強度
が2500未満になるからである。
In addition, when SiO□ is less than 5% by weight, the sintering temperature is 1020
If the content exceeds 50% by weight, the bending strength becomes less than 2500.

また、添加物であるGeO□および/またはTi0zが
1重量%未満では抗折強度が2500未満になり、一方
10重量%を越えると主成分がコージェライトリッチ系
では焼結温度が高くなり、B20゜S i Ozリッチ
系では抗折強度が低くなり、しかもいずれの場合も比抵
抗がIQI2Ω・cm未溝になるからである。
Furthermore, if the additives GeO□ and/or TiOz are less than 1% by weight, the bending strength will be less than 2500, while if the content exceeds 10% by weight, the sintering temperature will be high in cordierite-rich systems, and B20 This is because the bending strength is low in the S i Oz rich system, and in both cases, the specific resistance is IQI2Ω·cm.

尚、上記実施例は、焼成雰囲気を還元性もしくは非酸化
性雰囲気に設定したが、この他、空気中のような酸化雰
囲気中で焼成しても、第1表に示した程度の特性が得ら
れることが確認できた。
In the above examples, the firing atmosphere was set to a reducing or non-oxidizing atmosphere, but the properties shown in Table 1 can also be obtained even if firing is performed in an oxidizing atmosphere such as air. It was confirmed that

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明に係る多層基板用低温焼結磁器組
成物によれば、次のような効果が得られる。
As described above, according to the low temperature sintered ceramic composition for multilayer substrates according to the present invention, the following effects can be obtained.

■ 1020°C以下の比較的低温で焼結可能であるた
め、焼結に要するエネルギーが少なくて済むと共に、回
路パターンを形成するための導電材料に、抵抗値の高い
高融点金属を用いなくて済む。
■ Since it can be sintered at a relatively low temperature of 1020°C or less, less energy is required for sintering, and there is no need to use high-resistance, high-melting-point metals as conductive materials to form circuit patterns. It's over.

例えば当該導電材料に、Ag、Ag−Pd等の比較的安
価な貴金属を使用することができ、また酸化、非酸化い
ずれの雰囲気でも焼成できるため、安価なCu、Ni等
の卑金属を使用することもできる。
For example, relatively inexpensive noble metals such as Ag and Ag-Pd can be used as the conductive material, and inexpensive base metals such as Cu and Ni can be used as they can be fired in either oxidizing or non-oxidizing atmospheres. You can also do it.

■ 熱膨張係数が約3 X 10−h/’Cとシリコン
のそれ(約3.5X I O−6/’C)に近いため、
この磁器基板上にシリコンチップを搭載しても、熱歪み
によるクランク等の発生率が極めて小さくなる。
■ The coefficient of thermal expansion is about 3 x 10-h/'C, which is close to that of silicon (about 3.5 x IO-6/'C), so
Even if a silicon chip is mounted on this ceramic substrate, the incidence of cranks and the like due to thermal distortion is extremely small.

■ 比誘電率が4.9以下とアルミナのそれ(約10)
に比べて小さいため、信号の伝播遅延速度が小さくなる
■ The relative dielectric constant is 4.9 or less, which is that of alumina (approximately 10)
Since it is smaller than , the signal propagation delay speed is small.

■ GeO□、TiO□の添加により焼成体の気孔率が
減少し、機械的強度がアルミナに匹敵するため、高い信
頼性が得られる。
(2) The addition of GeO□ and TiO□ reduces the porosity of the fired body, and the mechanical strength is comparable to that of alumina, resulting in high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、コージェライトの組成範囲を示す図である。 第2図は、この発明に係る組成物の主成分の組成範囲を
示す図である。 M9す 第1図
FIG. 1 is a diagram showing the composition range of cordierite. FIG. 2 is a diagram showing the composition range of the main components of the composition according to the present invention. M9S Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)コージェライトが40〜85重量%、B_2O_
310〜40重量%およびSiO_2が5〜50重量%
から成る主成分に対して、GeO_2およびTiO_2
の一種以上を外添加で1〜10重量%添加したことを特
徴とする多層基板用低温焼結磁器組成物。
(1) Cordierite is 40-85% by weight, B_2O_
310-40 wt% and 5-50 wt% SiO_2
For the main components consisting of GeO_2 and TiO_2
A low-temperature sintered ceramic composition for a multilayer substrate, characterized in that 1 to 10% by weight of one or more of the following is added as an external additive.
JP63212097A 1988-08-26 1988-08-26 Low temperature sintered porcelain composition for multilayer substrate Expired - Fee Related JPH0667783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63212097A JPH0667783B2 (en) 1988-08-26 1988-08-26 Low temperature sintered porcelain composition for multilayer substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63212097A JPH0667783B2 (en) 1988-08-26 1988-08-26 Low temperature sintered porcelain composition for multilayer substrate

Publications (2)

Publication Number Publication Date
JPH0264059A true JPH0264059A (en) 1990-03-05
JPH0667783B2 JPH0667783B2 (en) 1994-08-31

Family

ID=16616829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63212097A Expired - Fee Related JPH0667783B2 (en) 1988-08-26 1988-08-26 Low temperature sintered porcelain composition for multilayer substrate

Country Status (1)

Country Link
JP (1) JPH0667783B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0468801A2 (en) * 1990-07-25 1992-01-29 Ngk Insulators, Ltd. Distributed constant circuit board using ceramic substrate material
EP0474354A1 (en) * 1990-07-25 1992-03-11 Ngk Insulators, Ltd. Dielectric ceramic body, method of producing the same and circuit board using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182887A (en) * 1987-01-26 1988-07-28 松下電工株式会社 Manufacture of ceramic wiring circuit board

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182887A (en) * 1987-01-26 1988-07-28 松下電工株式会社 Manufacture of ceramic wiring circuit board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0468801A2 (en) * 1990-07-25 1992-01-29 Ngk Insulators, Ltd. Distributed constant circuit board using ceramic substrate material
EP0474354A1 (en) * 1990-07-25 1992-03-11 Ngk Insulators, Ltd. Dielectric ceramic body, method of producing the same and circuit board using the same
US5232765A (en) * 1990-07-25 1993-08-03 Ngk Insulators, Ltd. Distributed constant circuit board using ceramic substrate material
US5262595A (en) * 1990-07-25 1993-11-16 Ngk Insulators, Ltd. Dielectric ceramic body including TiO2 dispersion in crystallized cordierite matrix phase, method of producing the same, and circuit board using the same

Also Published As

Publication number Publication date
JPH0667783B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
IE64626B1 (en) Ceramic composition of matter and its use
JPH04212441A (en) Ceramic wiring board
JPH0264059A (en) Low-temperature sintering ceramic composition for multilayer substrate
JP3087656B2 (en) Low temperature sintering inorganic composition
JPS63265858A (en) Low-temperature sintered ceramics composition for multi-layered substrate
JP3134437B2 (en) Low-temperature sintered ceramic composition for multilayer substrate
JP2600778B2 (en) Low temperature sintering porcelain composition for multilayer substrate
JPS6049149B2 (en) Manufacturing method of white alumina/ceramic for electronic parts
JP3120603B2 (en) Low-temperature sintered porcelain composition for multilayer substrates
JP3082478B2 (en) Porcelain composition for multilayer substrate
JPH062619B2 (en) Low temperature sintered porcelain composition for multilayer substrate
JPS62252365A (en) Low temperature sintered ceramic composition for multilayer substrate
KR19990058244A (en) Low temperature sintering substrate material powder and its manufacturing method
JPS62132762A (en) Ceramic composition
JPH01317164A (en) Ceramic composition
JPS62148365A (en) Low dielectric ceramic board
JPH04139060A (en) Ceramic circuit board
JPH01230463A (en) Low-temperature sintering porcelain composition for multi-layer base
JP4576151B2 (en) Ceramic composition and ceramic wiring board
JPH10245263A (en) Low-temperature sinterable porcelain composition
JP2001220219A (en) Glass-ceramic sintered compact and multilayer circuit board using the same
JPH01197359A (en) Porcelain composition sinterable at low temperature for multilayered board
JPH03112856A (en) Composition for ceramic base board
JP2004161562A (en) Ceramic material for circuit board
JPH0372594B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees