JPH0263552A - Ozonolysis catalyst - Google Patents

Ozonolysis catalyst

Info

Publication number
JPH0263552A
JPH0263552A JP63213829A JP21382988A JPH0263552A JP H0263552 A JPH0263552 A JP H0263552A JP 63213829 A JP63213829 A JP 63213829A JP 21382988 A JP21382988 A JP 21382988A JP H0263552 A JPH0263552 A JP H0263552A
Authority
JP
Japan
Prior art keywords
catalyst
ozone
oxide
component
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63213829A
Other languages
Japanese (ja)
Inventor
Sadao Terui
照井 定男
Katsunori Miyoshi
勝則 三好
Yoshiyuki Yokota
善行 横田
Kunio Sano
邦夫 佐野
Akira Inoue
明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP63213829A priority Critical patent/JPH0263552A/en
Publication of JPH0263552A publication Critical patent/JPH0263552A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the low-temp. activity and heat resistance of the title ozonolysis catalyst by forming the catalyst from a first component consisting of the oxide of the element selected from Ti, Si, Al, etc., and a second component selected from manganese oxide, trimanganese tetroxide, etc. CONSTITUTION:An appropriate amt. of water is added to the powder consisting of the double oxides of Ti and Si along with a molding assistant, mixed, and kneaded. The kneaded material is molded by an extruder in the form of pellets, honeycombs, etc. The molded product is dried at 50-250 deg.C, and then calcined at 300-800 deg.C for 1 to 10hr under the circulation of air to obtain a TiO2-SiO2 molded body. The molded body is impregnated with an aq. manganate soln. to deposit the manganate on the body. The product is dried at 50-150 deg.C, then calcined at 300-800 deg.C, and further reduced with hydrogen at 150-800 deg.C for 1-10hr to produce an ozonolysis catalyst.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はガス中に含有されるオゾンを接触分解して無害
化するオゾン分解用触媒に関する。更に詳しくは、低温
活性および耐久性に優れるオゾン分解用触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an ozone decomposition catalyst that catalytically decomposes ozone contained in gas to render it harmless. More specifically, the present invention relates to an ozone decomposition catalyst that has excellent low-temperature activity and durability.

〈従来の技術とその問題点〉 オゾンは強い酸化能を有し、分解すると無害な酸素にな
るため、脱狐 殺菌、漂白あるいは排水中のCOD減少
等の目的で様々な分野において輻広く利用されている。
<Conventional technology and its problems> Ozone has strong oxidizing ability and becomes harmless oxygen when decomposed, so it is widely used in various fields for purposes such as de-fox sterilization, bleaching, and reducing COD in wastewater. ing.

しかし、処理に利用されたオゾンは一部未反応のまま大
気中に放出されるため、光化学スモッグ等の二次公害を
発生きせる恐れがある。また、オゾンの臭いは1 pp
m以下の濃度で感知でき、2 ppm以上の濃度では呼
吸器系に刺激を引き起こし、人体に有害なものである。
However, some of the ozone used in the treatment is released into the atmosphere unreacted, which may cause secondary pollution such as photochemical smog. Also, the smell of ozone is 1pp
It can be detected at concentrations below 2 ppm, and at concentrations above 2 ppm it causes irritation to the respiratory system and is harmful to the human body.

例えば、航空機が成層圏を飛行する際に機内にオゾンを
含む空気が入って乗客や搭乗員に悪影響を及ぼす危険性
がある。更に、最近、乾式複写機等の高電圧発生装置を
組み込んだ機器からオゾンが発生し、これらの機器は主
に室内に置かれるために、オゾン発生量がff1ffl
であっても室内が汚染されるとして問題になっている。
For example, when an aircraft flies in the stratosphere, there is a risk that ozone-containing air may enter the cabin and have an adverse effect on passengers and crew. Furthermore, recently, ozone is generated from devices that incorporate high-voltage generators such as dry copying machines, and since these devices are mainly placed indoors, the amount of ozone generated is ff1ffl.
However, it has become a problem because indoors can be contaminated.

これら各種の発生源から混入あるいは排出されるオゾン
を除去し、無害化する必要がある。
It is necessary to remove ozone mixed in or emitted from these various sources and render it harmless.

従来用いられてきた廃オゾンの処理技術としては、活性
炭法、薬液洗浄法および熱分解法がある。
Conventionally used waste ozone treatment techniques include an activated carbon method, a chemical cleaning method, and a thermal decomposition method.

活性炭法は低濃度オゾンの処理に利用されているが、オ
ゾン分解の進行に伴って活性炭が消耗するために補充す
る必要があり、また高濃度のオゾンを処理する場合は反
応熱により活性炭自身が発火、燃焼する危険性があるの
で取り扱い上問題がある。
The activated carbon method is used to treat low-concentration ozone, but the activated carbon is consumed as ozone decomposition progresses, so it needs to be replenished, and when treating high-concentration ozone, the activated carbon itself is destroyed by the heat of reaction. There are problems in handling as there is a risk of ignition and combustion.

薬液洗浄法は還元性物質の水溶液で廃オゾンを洗浄する
ために処理コストが高く、また廃水処理の問題が生じる
In the chemical cleaning method, waste ozone is cleaned with an aqueous solution of a reducing substance, so the treatment cost is high and problems arise in wastewater treatment.

熱分解法は分解効率を上げるためには300℃以上に加
熱する必要があり、また多量の排ガスを処理するために
は加熱費用がかかり、処理コストが高くなる等の欠点が
ある。
The thermal decomposition method requires heating to 300° C. or higher in order to increase the decomposition efficiency, and has the disadvantage that heating costs are required to process a large amount of exhaust gas, which increases the processing cost.

一方、近年廃オゾン処理方法として触媒分解法が研究さ
れており、この方法は発火、爆発の危険性がなく、廃水
処理も不要であり、低コストでオゾンを分解除去できる
ために有利な方法とされている。
On the other hand, in recent years, research has been conducted on the catalytic decomposition method as a waste ozone treatment method.This method has no risk of ignition or explosion, does not require wastewater treatment, and can decompose and remove ozone at low cost, making it an advantageous method. has been done.

オゾン分解触媒としてはニッケル、マンガン、コバルト
等の酸化物を用いた触媒が優れた分解効率を示す(特開
昭60−97049号公報)。しかし、実用触媒として
は更に低い温度領域で高活性を示す触媒が必要とされる
As ozone decomposition catalysts, catalysts using oxides such as nickel, manganese, and cobalt exhibit excellent decomposition efficiency (Japanese Patent Laid-Open No. 60-97049). However, as a practical catalyst, a catalyst that exhibits high activity in an even lower temperature range is required.

〈発明が解決しようとしている問題点〉本発明の目的は
、ガス中に含まれるオゾンを酸素に接触的に分解するに
あたり、低温活性および耐久性に優れた安価なオゾン分
解用触媒を提供することにある。
<Problems to be Solved by the Invention> An object of the present invention is to provide an inexpensive ozone decomposition catalyst with excellent low-temperature activity and durability for catalytically decomposing ozone contained in gas into oxygen. It is in.

く問題を解決するための手段〉 本発明者らは鋭意研究した結果、上記目的を満足するオ
ゾン分解用触媒を見いだしたものである。
Means for Solving the Problems> As a result of intensive research, the present inventors have discovered an ozone decomposition catalyst that satisfies the above objectives.

即ち本発明は、 触媒A成分としてチタン、珪素、アルミニウムおよびジ
ルコニウムからなる群から選ばれる少なくとも一種の元
素の酸化物および触媒B成分として酸化マンガン(II
 ) 、四酸化三マンガンおよび酸化マンガン(II+
 )からなる群から選ばれる少なくとも一種を含有して
なることを特徴とするオゾン分解用触媒。
That is, the present invention provides an oxide of at least one element selected from the group consisting of titanium, silicon, aluminum, and zirconium as a catalyst A component, and manganese oxide (II) as a catalyst B component.
), trimanganese tetroxide and manganese oxide (II+
) An ozone decomposition catalyst comprising at least one selected from the group consisting of:

である。本発明の触媒は低温活性および耐久性にf!i
へ一10〜20℃、好ましくは0〜20℃の低い温度領
域においても優れたオゾン分解性能を示す。しかも本発
明の触媒は安価である。
It is. The catalyst of the present invention has f! low temperature activity and durability. i
It exhibits excellent ozone decomposition performance even in the low temperature range of 10 to 20°C, preferably 0 to 20°C. Furthermore, the catalyst of the present invention is inexpensive.

本発明者らは、触媒A成分単独または触媒B成分単独で
は十分なオゾン分解性能は得られないが、触媒A成分と
触媒B成分とを共に含有する触媒はオゾン分解性能が著
しく向上して、低温活性および耐久性に優れることを見
いだした。
The present inventors have discovered that although sufficient ozone decomposition performance cannot be obtained with catalyst A component alone or catalyst B component alone, a catalyst containing both catalyst A component and catalyst B component has significantly improved ozone decomposition performance. It was found that it has excellent low-temperature activity and durability.

各触媒成分の組成は、触媒A成分が酸化物として40〜
95重量%および触媒B成分が5〜60重景%を含有し
てなるものが好ましく、特に触媒B成分がこの範囲から
はずれる場合はオゾン分解性能が低下し、60重量%を
超える場合は経済的にも不利である。
The composition of each catalyst component is as follows: Catalyst A component is 40~
It is preferable that the catalyst B component contains 95% by weight and 5 to 60% by weight, especially if the catalyst B component is out of this range, the ozone decomposition performance will decrease, and if it exceeds 60% by weight, it will be economical. It is also disadvantageous.

また、本発明の触媒において触媒A成分がチタン、珪素
およびジルコニウムからなる群から選ばれる少なくとも
二種の元素の複合酸化物である場合には、これらの複合
酸化物は強い固体酸性と大きいBET表面積を有し、触
媒活性、触媒成型性および強度安定性等の点からより好
ましい。
Furthermore, in the case where the catalyst A component in the catalyst of the present invention is a composite oxide of at least two elements selected from the group consisting of titanium, silicon, and zirconium, these composite oxides have strong solid acidity and a large BET surface area. It is more preferable in terms of catalytic activity, catalyst moldability, strength stability, etc.

本発明の触媒は各種の方法で調製することができる。例
えば、 (a)チタンおよび珪素の複合酸化物からなる粉体に適
量の水を成型助材と共に加え、混合、混練し、押し出し
成型機でベレット状またはハニカム状等に成型し、50
〜250℃で乾燥後、300〜800℃で1〜10時間
、空気流通下で焼成してTiO□−5in2成型体を得
る。次いで該成型体にマンガン塩の水溶液を含浸させて
担持し、50〜150℃で乾燥し、300〜800℃で
焼成した後、 150〜800℃で1〜10時間、水素
還元することにより本発明の触媒を得る。
The catalyst of the present invention can be prepared in a variety of ways. For example, (a) an appropriate amount of water is added to a powder made of a composite oxide of titanium and silicon together with a molding aid, the mixture is mixed and kneaded, and the mixture is molded into a pellet shape or honeycomb shape using an extrusion molding machine.
After drying at ~250°C, it is fired at 300~800°C for 1~10 hours under air circulation to obtain a TiO□-5in2 molded body. Next, the molded body is impregnated with an aqueous solution of manganese salt, supported, dried at 50 to 150°C, fired at 300 to 800°C, and then subjected to hydrogen reduction at 150 to 800°C for 1 to 10 hours to obtain the present invention. of the catalyst.

(b)上記(a)の方法において、TiO□−5iOz
成型体にマンガン塩の水溶液を含浸、乾亀 焼成した後
、水素還元する代わりにエタノールアミン水溶液を含浸
させ、50〜150℃で乾燥した後、200〜600℃
で焼成して1.〜10時間、空気流通下で焼成して本発
明の触媒を得る。
(b) In the method of (a) above, TiO□-5iOz
After impregnating the molded body with an aqueous solution of manganese salt and drying it, it is impregnated with an ethanolamine aqueous solution instead of hydrogen reduction, dried at 50 to 150°C, and then heated to 200 to 600°C.
1. The catalyst of the present invention is obtained by calcination under air flow for ~10 hours.

(c)上記(a)の方法において、Ti0z  5if
t成型体にマンガン塩の水溶液を含浸させて担持し、乾
燥した後、焼成することなく水素還元して本発明の触媒
を得る。
(c) In the method of (a) above, Ti0z 5if
The T-molded body is impregnated with an aqueous solution of manganese salt, supported, dried, and then subjected to hydrogen reduction without calcination to obtain the catalyst of the present invention.

(d) TE01およびSiO□の複合酸化物および四
酸化三マンガンからなる混合粉体を用いて、(a)と同
様な方法でベレット状またはハニカム状等に成型して本
発明の触媒を得る。
(d) A mixed powder consisting of a composite oxide of TE01 and SiO□ and trimanganese tetroxide is molded into a pellet shape, honeycomb shape, etc. in the same manner as in (a) to obtain the catalyst of the present invention.

以上、触媒調製法を具体的に示したが、本発明はこれら
に限定・されるものではない。触媒形状としてもベレッ
ト状、ハニカム状等の他、円柱状、円筒状、板状、リボ
ン状、波板状、バイブ状、ドーナッツ状、格子状その他
一体化成型されたものなどから適宜選ばれる。
Although the catalyst preparation method has been specifically shown above, the present invention is not limited thereto. The shape of the catalyst is appropriately selected from pellet, honeycomb, columnar, cylindrical, plate, ribbon, corrugated plate, vibrator, donut, lattice, and integrally molded shapes.

〈実施例〉 以下、実施例および比較例により本発明をざらに詳細に
説明するが、本発明はこれらの実施例のみに限定される
ものではない。
<Examples> The present invention will be described in detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

実JL例」− チタンおよび珪素からなる複合酸化物を以下に述べる方
法で調製した。
Practical JL Example - A composite oxide consisting of titanium and silicon was prepared by the method described below.

チタン源として以下の組成を有する市販の硫酸チタニル
の硫酸水溶液を用いた。
A commercially available sulfuric acid aqueous solution of titanyl sulfate having the following composition was used as a titanium source.

Ti0SO4(TiO□換算)     250g/Q
全t(zS041100 g/ Q 別に、水402に25重量%アンモニア水28Qを添加
し、これにスノーテックス−NC3−30(8産化学製
シリカゾル、SiO□として約30重量%含有)2.4
kgを加えた。得られた溶液中に、上記硫酸チタニルの
硫酸溶液15.3Qを水30Qに添加して希釈した溶液
を攪拌下体々に滴下し、共沈ゲルを生成した。ざらにそ
のまま15時間静置した。かくしてえられたTiO□−
5iO□ゲルを濾過、水洗後200℃で10時間乾燥し
た。次いで550℃で6時間空気雰囲気下で焼成した。
Ti0SO4 (TiO□ conversion) 250g/Q
Total t (zS041100 g/Q Separately, 25% by weight ammonia water 28Q was added to water 402, and Snowtex-NC3-30 (silica sol manufactured by 8 San Kagaku, containing approximately 30% by weight as SiO□) 2.4
kg was added. A diluted solution of 15.3Q of the titanyl sulfate sulfuric acid solution added to 30Q of water was dropped into the resulting solution while stirring to form a coprecipitated gel. It was left undisturbed for 15 hours. The thus obtained TiO□−
The 5iO□ gel was filtered, washed with water, and then dried at 200°C for 10 hours. Then, it was fired at 550° C. for 6 hours in an air atmosphere.

得られた粉体の組成はTiO□:Si0□=4:  1
  (モル比)でBET表面積は185 m2/gであ
った(以下、この粉体をTS−1と称する)。
The composition of the obtained powder was TiO□:Si0□=4:1
(molar ratio), the BET surface area was 185 m2/g (hereinafter, this powder will be referred to as TS-1).

TS−1粉体10kgに適当量の水を添加し、ニーダ−
でよく混合し、混練機により充分混練し、ベレット状に
成型し、150℃で5時間乾燥した後300℃で2時間
空気雰囲気下で焼成した。°次いで、得られたベレット
に硝酸マンガン水溶液を含浸せしめ、120℃で3時間
乾燥し、次いで450℃で3時間焼成して、その後40
0℃で水素10%を含む窒素雰囲気下で4時間水素還元
して完成触媒を得た。
Add an appropriate amount of water to 10 kg of TS-1 powder, and add it to the kneader.
The mixture was thoroughly mixed using a kneading machine, formed into a pellet shape, dried at 150°C for 5 hours, and then fired at 300°C for 2 hours in an air atmosphere. °Next, the obtained pellet was impregnated with an aqueous manganese nitrate solution, dried at 120°C for 3 hours, then calcined at 450°C for 3 hours, and then
A completed catalyst was obtained by hydrogen reduction at 0°C for 4 hours under a nitrogen atmosphere containing 10% hydrogen.

完成触媒中のマンガン含有量は、Mn元素として12.
5重量%であった。X線回折分析結果より、Mnは四酸
化三マンガン()ln30a)  と酸化マンガン(]
I[)  (MnJ*)  の混合物であった。
The manganese content in the finished catalyst is 12.
It was 5% by weight. From the X-ray diffraction analysis results, Mn is trimanganese tetroxide ()ln30a) and manganese oxide (]
It was a mixture of I[) (MnJ*).

1施■2 実施例1で得られたTS−1粉体を使用して、実施例1
と同様の方法でベレット状に成型し、硝酸マンガンを含
浸せしめ、120℃で3時間乾燥し、450℃で3時間
焼成した。その後8重量%エタノールアミン水溶液を含
浸して、120℃で3時間乾燥し、次いで450℃で2
時間焼成して完成触媒を得た。
1.2 Using the TS-1 powder obtained in Example 1, Example 1
It was molded into a pellet shape in the same manner as above, impregnated with manganese nitrate, dried at 120°C for 3 hours, and fired at 450°C for 3 hours. Thereafter, it was impregnated with an 8% by weight aqueous ethanolamine solution, dried at 120°C for 3 hours, and then heated at 450°C for 2 hours.
A completed catalyst was obtained by calcination for a period of time.

完成触媒中のマンガン含有量は、Mn元素として12.
5重量%であった。X線回折分析結果より、Mnは四酸
化三マンガン(Mn:+0.t)  と酸化マンガン(
Ilt )  (Mnz03)  の混合物であった。
The manganese content in the finished catalyst is 12.
It was 5% by weight. According to the X-ray diffraction analysis results, Mn consists of trimanganese tetroxide (Mn: +0.t) and manganese oxide (
Ilt) (Mnz03).

L立■ユ 実施例1で得られたTS−1粉体を使用して、実施例1
と同様の方法でベレット状に成型し、硝酸マンガンを含
浸せしめ、120℃で3時間乾燥し、その後400℃で
水素10%を含む窒素雰囲気下4時間水素還元して完成
触媒を得た。
Using the TS-1 powder obtained in Example 1, Example 1
It was molded into a pellet shape in the same manner as above, impregnated with manganese nitrate, dried at 120°C for 3 hours, and then reduced with hydrogen at 400°C for 4 hours in a nitrogen atmosphere containing 10% hydrogen to obtain a completed catalyst.

完成触媒中のマンガン含有量は、Mn元素として12.
5重量%であった。X線回折分析結果より、Mnは四酸
化三マンガン(Mn304)  と酸化マンガン(II
I )  (MnzC1+)  の混合物であった。
The manganese content in the finished catalyst is 12.
It was 5% by weight. According to the X-ray diffraction analysis results, Mn is composed of trimanganese tetroxide (Mn304) and manganese oxide (II
I) (MnzC1+).

支施1 市販のγ−アルミナペレットに硝酸マンガンを含浸し、
120℃で3時間乾燥し、次いで450℃で3時間焼成
した。その後、400℃で水素10%を含む窒素雰囲気
下4時間水素還元して完成触媒を得た。
Support 1 Commercially available γ-alumina pellets were impregnated with manganese nitrate,
It was dried at 120°C for 3 hours and then fired at 450°C for 3 hours. Thereafter, hydrogen reduction was performed at 400° C. for 4 hours in a nitrogen atmosphere containing 10% hydrogen to obtain a completed catalyst.

完成触媒中のマンガン含有量は、Mn元素として12.
5重量%であった。X線回折分析結果より、Mnは四酸
化三マンガン(Mn30J  と酸化マンガン(]II
 )  (Mnz03)  の混合物であった。
The manganese content in the finished catalyst is 12.
It was 5% by weight. According to the results of X-ray diffraction analysis, Mn is composed of trimanganese tetroxide (Mn30J) and manganese oxide (]II
) (Mnz03).

見立■5 800℃で水素10%を含む窒素雰囲気下4時間水素還
元した以外は実施例4と同様にして完成触媒を得た。
Mitate 5 A completed catalyst was obtained in the same manner as in Example 4, except that hydrogen reduction was carried out at 800° C. for 4 hours in a nitrogen atmosphere containing 10% hydrogen.

完成触媒中のマンガン含有量は、Mn元素として12.
5重量%であった。X線回折分析結果より、Mnは酸化
マンガン(II)  (MnO)  であった。
The manganese content in the finished catalyst is 12.
It was 5% by weight. According to the results of X-ray diffraction analysis, Mn was manganese(II) oxide (MnO).

比」計測」− 水素還元処理を省略した以外は実施例1と同様にして完
成触媒を得た。
Measurement of Ratio - A completed catalyst was obtained in the same manner as in Example 1, except that the hydrogen reduction treatment was omitted.

完成触媒中のマンガン含有量は、Mn元素として12.
5重量%であった。X線回折分析結果より、Mnは酸化
マンガン(II)  (MnO□)であった。
The manganese content in the finished catalyst is 12.
It was 5% by weight. According to the results of X-ray diffraction analysis, Mn was manganese(II) oxide (MnO□).

比m旦 水素還元処理を省略した以外は実施例4と同様にして完
成触媒を得た。
A completed catalyst was obtained in the same manner as in Example 4, except that the hydrogen reduction treatment was omitted for the first time.

完成触媒中のマンガン含有量は、Mn元素として12.
5重量%であった。X線回折分析結果より、Mnは酸化
マンガン(II)  (MnO□)であった。
The manganese content in the finished catalyst is 12.
It was 5% by weight. According to the results of X-ray diffraction analysis, Mn was manganese(II) oxide (MnO□).

丸立孤1 実施例1〜5および比較例1.2で得られた各触媒につ
いて、次の方法でオゾン分解率を測定し、表−1に示す
結果を得た。なお、実施例中のオゾン分解率は、触媒層
入口と出口の空気中のオゾン濃度を測定した結果から次
の式により求めた。
Round 1 The ozone decomposition rate of each catalyst obtained in Examples 1 to 5 and Comparative Example 1.2 was measured by the following method, and the results shown in Table 1 were obtained. In addition, the ozone decomposition rate in the examples was determined by the following formula from the results of measuring the ozone concentration in the air at the inlet and outlet of the catalyst layer.

オゾン分解率0ω= 内径20mmのパイレックス反応管に直径3. 0mm
、長き3. 0mmのベレット状触媒10.5ccを充
填し、オゾンをtoppm含有する空気を0. 315
 N m3/hrの流速(空間速度30000hr″″
)で触媒層に導入し、反応温度2℃におけるオゾン分解
率を求めた。
Ozone decomposition rate 0ω = Pyrex reaction tube with an inner diameter of 20 mm and a diameter of 3. 0mm
, long 3. Filled with 10.5 cc of catalyst in the form of a pellet of 0 mm diameter, air containing TOPPM of ozone was added to 0.5 cc of catalyst. 315
Flow rate of N m3/hr (space velocity 30000hr''''
) was introduced into the catalyst layer, and the ozone decomposition rate at a reaction temperature of 2°C was determined.

医佼邂】 四酸化三マンガン(Mn3oa)  からなるベレット
状触媒を用い、実施例6に準じて反収 オゾン分解率の
測定を行ない、表−1に示す結果を得た。
Using a pellet-shaped catalyst made of trimanganese tetroxide (Mn3oa), the reaction ozone decomposition rate was measured according to Example 6, and the results shown in Table 1 were obtained.

L較U 酸化マンガン(Ill )  04n、03)  から
なるベレット状触媒を用い、実施例6に準じて反応、オ
ゾン分解率の測定を行ない、表−1に示す結果を得た。
Using a pellet-shaped catalyst consisting of manganese oxide (Ill) 04n, 03), the reaction and ozone decomposition rate were measured according to Example 6, and the results shown in Table 1 were obtained.

表−1Table-1

Claims (1)

【特許請求の範囲】 1 触媒A成分としてチタン、珪素、アルミニウムおよ
びジルコニウムからなる群から選ばれる少なくとも一種
の元素の酸化物および触媒B成分として酸化マンガン(
II)、四酸化三マンガンおよび酸化マンガン(III)か
らなる群から選ばれる少なくとも一種を含有してなるこ
とを特徴とするオゾン分解用触媒。 2 触媒A成分を酸化物として40〜95重量%および
触媒B成分を5〜60重量%含有してなる請求項1に記
載のオゾン分解用触媒。 3 触媒A成分がチタン、珪素およびジルコニウムから
なる群から選ばれる少なくとも二種の元素の複合酸化物
である請求項1または2に記載のオゾン分解用触媒。
[Scope of Claims] 1 Catalyst A component is an oxide of at least one element selected from the group consisting of titanium, silicon, aluminum and zirconium, and catalyst B component is manganese oxide (
II), trimanganese tetroxide, and manganese (III) oxide. 2. The ozone decomposition catalyst according to claim 1, comprising 40 to 95% by weight of catalyst A component as an oxide and 5 to 60% by weight of catalyst B component. 3. The ozone decomposition catalyst according to claim 1 or 2, wherein the catalyst A component is a composite oxide of at least two elements selected from the group consisting of titanium, silicon, and zirconium.
JP63213829A 1988-08-30 1988-08-30 Ozonolysis catalyst Pending JPH0263552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63213829A JPH0263552A (en) 1988-08-30 1988-08-30 Ozonolysis catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63213829A JPH0263552A (en) 1988-08-30 1988-08-30 Ozonolysis catalyst

Publications (1)

Publication Number Publication Date
JPH0263552A true JPH0263552A (en) 1990-03-02

Family

ID=16645718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63213829A Pending JPH0263552A (en) 1988-08-30 1988-08-30 Ozonolysis catalyst

Country Status (1)

Country Link
JP (1) JPH0263552A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462905A (en) * 1992-08-21 1995-10-31 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462905A (en) * 1992-08-21 1995-10-31 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst

Similar Documents

Publication Publication Date Title
US5187137A (en) Catalyst and method of preparing the catalyst
EP0275620B1 (en) Method and catalyst for purification of gas
EP0545404B1 (en) Catalyst and a method of preparing the catalyst
EP0371740B1 (en) Catalyst and method for ozone decomposition
JPS62282623A (en) Purifying method for exhaust gas
JPH0443703B2 (en)
JPH0510973B2 (en)
JPH0555184B2 (en)
JPH0263552A (en) Ozonolysis catalyst
JP3604740B2 (en) Ozone decomposition catalyst and ozone decomposition method
JP2000288347A (en) Method of cleaning organic bromine compound-containing waste gas
JPH0741146B2 (en) Deodorization method
JPS63267439A (en) Catalyst for ozone decomposition
JPH0585218B2 (en)
JPH057776A (en) Catalyst and its manufacture
JPS62176541A (en) Ozone decomposing agent
JP2916259B2 (en) Method for oxidative decomposition of organic halogen compounds
JPS606695B2 (en) Exhaust gas purification catalyst
JPH02298317A (en) Decomposing method for ozone
JPH0838854A (en) Detoxification of ammonia-containing exhaust gas
JPS63267440A (en) Deodorizing catalyst
JPH0357815B2 (en)
JPH0616849B2 (en) Catalyst for treating gas containing harmful and odorous components
JPH0586256B2 (en)
JPH08323208A (en) Decomposition catalyst of volatile organochlorine compound