JPH0263542A - Synthesis of diamond powder - Google Patents

Synthesis of diamond powder

Info

Publication number
JPH0263542A
JPH0263542A JP21388788A JP21388788A JPH0263542A JP H0263542 A JPH0263542 A JP H0263542A JP 21388788 A JP21388788 A JP 21388788A JP 21388788 A JP21388788 A JP 21388788A JP H0263542 A JPH0263542 A JP H0263542A
Authority
JP
Japan
Prior art keywords
powder
vessel
carbonate
press
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21388788A
Other languages
Japanese (ja)
Other versions
JPH0476733B2 (en
Inventor
Toshimori Sekine
利守 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP21388788A priority Critical patent/JPH0263542A/en
Publication of JPH0263542A publication Critical patent/JPH0263542A/en
Publication of JPH0476733B2 publication Critical patent/JPH0476733B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/08Application of shock waves for chemical reactions or for modifying the crystal structure of substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prepare diamond powder inexpensively by press-molding a mixture of a carbonate with reducing metal powder, and exerting impact compression to the press-molded body. CONSTITUTION:A carbonate (e.g., CaCO3) having <=100mum grain size as carbon source, is mixed with reducing metal powder (e.g., Fe) in a proportion of >=67mol.% the metal basing on the amt. of the mixture. The powder mixture 4 is filled in a stainless steel sample vessel 3, and the powder in the vessel 3 is compressed to 20% void by pressing with a press. Threads 5, 6 of the vessel 3 are then fastened. The vessel 3 is inserted into an insertion hole located at a center of a housing vessel 2 made of iron, and the whole body is laid in a ring 1 constructing thus a recovery assembly. A shock wave is generated by colliding a flying body accelerated by a single stage powder gun, and the shock wave is made to penetrate through the sample. Diamond powder is prepd. inexpensively by exerting 100-500Kbar impact compression to the molded body by this method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はダイヤモンド粉末の合成法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method for synthesizing diamond powder.

更に詳しくは、火薬の燃焼ガスで加速した飛翔板を原料
容器に高速で衝突させて高温高圧を発生させてダイヤモ
ンドを合成する所謂衝撃波による高温加圧下でのダイヤ
モンド粉末の合成法の改良に関する。
More specifically, the present invention relates to an improved method for synthesizing diamond powder under high temperature and pressure using so-called shock waves, in which a flying plate accelerated by the combustion gas of gunpowder collides with a raw material container at high speed to generate high temperature and high pressure to synthesize diamond.

従来技術 従来の衝撃波によるダイヤモンド粉末の合成法は、黒鉛
や非晶質炭素を出発物質として用い、これに衝撃波を与
えて、マルテンサイト変態的な転移による固相反応を起
こさせるかあるいは炭素原子の拡散速度を高めるため液
相を介在させる方法であった。
Prior art The conventional method for synthesizing diamond powder using shock waves uses graphite or amorphous carbon as a starting material, and applies shock waves to it to cause a solid-phase reaction due to a martensitic transformation transition, or to induce a solid phase reaction of carbon atoms. This method used a liquid phase to increase the diffusion rate.

即ち、従来の方法は固相反応あるいはこれに液相を介在
させた反応によりダイヤモンド粉末の合成する方法であ
った。しかもこれらの方法では300〜1500kba
rの比較的強い衝撃波を必要とし、それだけ装置も強固
なものを要し、コスト高となる問題点もあった。
That is, the conventional method was to synthesize diamond powder by a solid phase reaction or a reaction involving a liquid phase. Moreover, with these methods, 300 to 1500 kba
A relatively strong shock wave of r is required, and the device must be strong accordingly, which poses a problem of high cost.

発明の目的 本発明は出発原料を従来法と変えて炭酸塩を出発原料と
し、衝撃波加圧中に分解反応と還元反応を同時に行わし
めて遊離炭素を生成させ、かつ遊離炭素をダイヤモンド
化するという気相反応も同時に行うダイヤモンド粉末の
合成法を提供することを目的とする。
Purpose of the Invention The present invention uses carbonate as a starting material instead of the conventional method, and simultaneously performs a decomposition reaction and a reduction reaction during shock wave pressurization to generate free carbon, and converts the free carbon into diamond. The purpose of this invention is to provide a method for synthesizing diamond powder that also performs a phase reaction at the same time.

発明の構成 本発明者は前記目的を達成すべく鋭意研究の結果、出発
原料として炭酸塩を用い、これに炭酸ガスを還元する粉
状金属を混合し、この混合物を加圧成形したものに衝撃
波を与えると、炭酸塩は分解し、生成炭酸ガスは還元性
金属により還元されて遊離炭素を生成し、遊離炭素をダ
イヤモンド化し得ると言う新知見を得た。この新知見に
基づいて本発明を完成した。
Structure of the Invention As a result of intensive research to achieve the above object, the present inventor used carbonate as a starting material, mixed powdered metal that reduces carbon dioxide gas with it, and pressure-molded this mixture to create a shock wave. We obtained new knowledge that when given carbonate, the carbonate decomposes, and the carbon dioxide gas produced is reduced by a reducing metal to produce free carbon, which can be turned into diamond. The present invention was completed based on this new knowledge.

本発明の要旨は、 衝撃波によって瞬間的に発生する高温高圧を利用してダ
イヤモンドを合成する方法において、粒度100ミクロ
ン以下の炭酸塩を炭素源とし、該炭酸塩に還元性金属粉
末を該金属が67モル%以上である割合に混合して加圧
成形し、該成形体に100〜500 kbarの衝撃圧
縮を行うことを特徴とするダイヤモンド粉末の合成法、
にある。
The gist of the present invention is a method of synthesizing diamond using high temperature and high pressure instantaneously generated by shock waves, in which a carbonate with a particle size of 100 microns or less is used as a carbon source, and a reducible metal powder is added to the carbonate. A method for synthesizing diamond powder, characterized in that the mixture is mixed in a proportion of 67 mol% or more, pressure molded, and the molded body is subjected to impact compression at 100 to 500 kbar.
It is in.

本発明における衝撃圧縮は、火薬の燃焼ガスによって飛
翔体を加速し、試料を収容した容器に衝突させて衝撃波
を発生させることによって行う。
Shock compression in the present invention is performed by accelerating a flying object with combustion gas of gunpowder and causing it to collide with a container containing a sample to generate a shock wave.

これにより試料にダイヤモンド合成に必要な高圧力と温
度を与える。衝撃波加圧による発熱は衝撃圧力、被衝撃
体の材質、試料成形体の空孔率に依存する。
This gives the sample the high pressure and temperature necessary for diamond synthesis. The heat generated by shock wave pressure depends on the impact pressure, the material of the impacted body, and the porosity of the sample molded body.

本発明において用いる炭酸塩は衝撃波加圧時に分解して
炭酸ガスを生成し、これを還元性金属で遊離炭素を生成
する。従って該炭酸塩は常圧下で低温で分解し易いもの
であることが好ましく、例えば、炭酸マグネシウム、炭
酸鉄、炭酸亜鉛等が挙げられる。その粒度は100 ミ
クロン以下、好ましくは10ミクロン以下のものがよい
。この炭酸塩に炭酸ガスを還元して遊離炭素を生成させ
る還元性金属粉末を混合し加圧成形する。還元性金属と
しては、鉄、アルミニウム、マグネシウム等が挙げられ
る。この金属粉末の粒度は反応性をよくするため、10
0 ミクロン以下、好ましくは5ミクロン以下のものが
よい。その混合割合は該金属が67モル%以上である。
The carbonate used in the present invention decomposes during shock wave pressurization to generate carbon dioxide gas, which is then treated with a reducing metal to generate free carbon. Therefore, the carbonate is preferably one that is easily decomposed at low temperature under normal pressure, and examples thereof include magnesium carbonate, iron carbonate, zinc carbonate, and the like. The particle size is preferably 100 microns or less, preferably 10 microns or less. This carbonate is mixed with a reducing metal powder that reduces carbon dioxide gas to generate free carbon, and then press-molded. Examples of reducing metals include iron, aluminum, magnesium, and the like. The particle size of this metal powder is 10 to improve reactivity.
0 microns or less, preferably 5 microns or less. The mixing ratio of the metal is 67 mol % or more.

この金属は炭酸ガスを還元する作用のほか冷却媒体とし
ても作用し、67モル%未満ではその効果を十分達成し
難い。
This metal acts not only to reduce carbon dioxide gas but also as a cooling medium, and if it is less than 67 mol %, it is difficult to achieve this effect sufficiently.

混合物の加圧成形は空孔率40%以下の成形体とするこ
とが好ましい、それは成形体中の空孔を少なくし、温度
の過度の上昇を防ぐためである。
The mixture is preferably pressure-molded into a molded body with a porosity of 40% or less, in order to reduce the number of pores in the molded body and prevent an excessive rise in temperature.

この成形体に加える衝撃圧力は100〜500 kba
rであることが好ましい。100 kbar未満ではダ
イヤモンドを生成し難< 、500 kbarを超える
と、過度の発熱を起こし、試料容器を破損し回収が不可
能となる。
The impact pressure applied to this molded body is 100 to 500 kba.
Preferably it is r. If it is less than 100 kbar, it is difficult to generate diamonds, and if it exceeds 500 kbar, excessive heat is generated, damaging the sample container and making it impossible to collect it.

衝撃圧縮により得りれた試料からダイヤモンド粉末を分
離する。その方法としては、該試料を濃硝酸に塩素酸ナ
トリウムを溶解し、これを沸点近くまで加熱した液で処
理する方法、あるいは塩酸による処理が挙げられる。衝
撃圧縮の手段は従来法と同様に行うことができる。
Separate the diamond powder from the sample obtained by impact compression. Examples of this method include a method in which the sample is treated with a solution in which sodium chlorate is dissolved in concentrated nitric acid and heated to near the boiling point, or a treatment with hydrochloric acid. The means of impact compression can be carried out in the same manner as conventional methods.

発明の効果 本発明は従来法における出発原料とは全く異なる炭酸塩
を用い、衝撃波による圧縮時に分解・還元の反応により
遊離炭素を生成させ、これをダイヤモンドに変換すると
いう全く新しい方法を開拓提供し得たものである。これ
により従来法におけるよりも低衝撃圧である100 k
barでもダイヤモンド粉末の合成を可能にし、低コス
トでダイヤモンド粉末が得られる。
Effects of the Invention The present invention pioneers and provides a completely new method of using carbonate, which is completely different from the starting material used in conventional methods, and generating free carbon through decomposition and reduction reactions during compression by shock waves, and converting this into diamond. That's what I got. This results in a lower impact pressure of 100 k than in the conventional method.
It is possible to synthesize diamond powder even in a bar, and diamond powder can be obtained at low cost.

実施例 粒度10ミクロンの炭酸マグネシウム30重量%、粒度
5ミクロンの鉄粉70重量%を混合し、この混合粉体4
を第1図に示すステンレス製試料容器3に充填し、プレ
ス加圧により試料容器中の粉末を圧縮して空孔率20%
とした。その後、ネジ部5及び6によってねししめした
。この試料容器3を鉄製収納容器2の中心に位置する挿
入孔に挿入し、全体をリング1の中に入れ、回収アセン
ブリーとした。この試料容器に一段式火薬銃法で加速し
た飛翔体を衝突させて衝撃波を発生させ、これを試料中
に通過させた。この際の衝突速度は1700m/秒、初
期圧力は200 kbar、ピーク圧力は400 kb
arであった。衝撃圧縮後、試料容器3から試料を取り
出し、X線粉末回折法で格子定数4.293±0.00
2人のマグネシオウスタイトが同定され、次の反応が起
きていることが確認された。
Example 30% by weight of magnesium carbonate with a particle size of 10 microns and 70% by weight of iron powder with a particle size of 5 microns were mixed, and this mixed powder 4
was filled into the stainless steel sample container 3 shown in Fig. 1, and the powder in the sample container was compressed by pressurization to a porosity of 20%.
And so. Thereafter, the screws 5 and 6 were tightened. This sample container 3 was inserted into the insertion hole located at the center of the iron storage container 2, and the whole was placed inside the ring 1 to form a recovery assembly. A projectile accelerated by the single-stage powder gun method collided with this sample container to generate a shock wave, which was passed through the sample. The collision speed at this time was 1700 m/s, the initial pressure was 200 kbar, and the peak pressure was 400 kb.
It was ar. After impact compression, the sample was taken out from the sample container 3 and determined by X-ray powder diffraction to have a lattice constant of 4.293±0.00.
Two magnesioustites were identified, and the following reactions were confirmed to occur.

MgC0++2Fe−MgOH2FeO+Cこの試料を
塩酸処理により、未反応マグネサイト、鉄及びマグネシ
オウスタイトを除去し、不溶残留物を採取し粉末結晶を
得た。この結晶を電子線回折により大方晶ダイヤモンド
であることが確認された。
MgC0++2Fe-MgOH2FeO+C This sample was treated with hydrochloric acid to remove unreacted magnesite, iron and magnesioustite, and the insoluble residue was collected to obtain powder crystals. This crystal was confirmed to be macrogonal diamond by electron beam diffraction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施するのに用いる回収アセン
ブリーの一実施例の概略図である。 1:リング、     2:試料容器の収納容器、3:
試料容器、 4:試料(混合粉体の加圧成形体)、 5.6:ネジ部。
FIG. 1 is a schematic diagram of one embodiment of a retrieval assembly used to carry out the method of the present invention. 1: Ring, 2: Storage container for sample container, 3:
Sample container, 4: Sample (press-molded body of mixed powder), 5.6: Threaded part.

Claims (1)

【特許請求の範囲】[Claims] 衝撃波によって瞬間的に発生する高温高圧を利用してダ
イヤモンドを合成する方法において、粒度100ミクロ
ン以下の炭酸塩を炭素源とし、該炭酸塩に還元性金属粉
末を該金属が67モル%以上である割合に混合して加圧
成形し、該成形体に100〜500kbarの衝撃圧縮
を行うことを特徴とするダイヤモンド粉末の合成法。
A method of synthesizing diamond using high temperature and high pressure instantaneously generated by shock waves, in which a carbonate with a particle size of 100 microns or less is used as a carbon source, and a reducing metal powder is added to the carbonate in such a way that the metal is 67 mol% or more. 1. A method for synthesizing diamond powder, which comprises mixing the diamond powders in the same proportions, press-molding the powder, and subjecting the compact to impact compression at 100 to 500 kbar.
JP21388788A 1988-08-29 1988-08-29 Synthesis of diamond powder Granted JPH0263542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21388788A JPH0263542A (en) 1988-08-29 1988-08-29 Synthesis of diamond powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21388788A JPH0263542A (en) 1988-08-29 1988-08-29 Synthesis of diamond powder

Publications (2)

Publication Number Publication Date
JPH0263542A true JPH0263542A (en) 1990-03-02
JPH0476733B2 JPH0476733B2 (en) 1992-12-04

Family

ID=16646662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21388788A Granted JPH0263542A (en) 1988-08-29 1988-08-29 Synthesis of diamond powder

Country Status (1)

Country Link
JP (1) JPH0263542A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2075055A1 (en) * 2006-09-01 2009-07-01 Kuraray Luminas Co., Ltd. Impact target capsule and impact compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002210350A (en) * 2001-01-17 2002-07-30 Japan Science & Technology Corp Method for synthesizing diamond powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2075055A1 (en) * 2006-09-01 2009-07-01 Kuraray Luminas Co., Ltd. Impact target capsule and impact compressor
EP2075055A4 (en) * 2006-09-01 2015-04-08 Kuraray Co Impact target capsule and impact compressor

Also Published As

Publication number Publication date
JPH0476733B2 (en) 1992-12-04

Similar Documents

Publication Publication Date Title
US3401019A (en) Process for synthesizing diamond
JP7115007B2 (en) Method for producing tetrahydroborate and tetrahydroborate
US2935382A (en) Production of hydrogen
CA2103896A1 (en) Production of metal and metalloid nitrides
JPH0263542A (en) Synthesis of diamond powder
JP7286110B2 (en) Method for producing magnesium hydride and method for producing tetrahydroborate
US4443420A (en) Process for producing cubic system boron nitride
WO2020188879A1 (en) Device and method for producing tetrahydroborate
JP7257653B2 (en) Method for producing magnesium hydride and method for producing tetrahydroborate
KR101235081B1 (en) A magnesium hydride powder and Manufacturing process of magnesium hydride powder by heat treatment under the pressure in hydrogen atmosphere of ball milled magnesium powder
Chen et al. Competitive gas-solid reactions realized by ball milling of Zr in ammonia gas
JP3498138B2 (en) Method for producing spinel-type sialon and powder thereof
US11542160B2 (en) Method for producing magnesium hydride and method for producing tetrahydroborate
JP3401560B2 (en) Synthesis method of spinel type silicon nitride powder
JPS63104641A (en) Method for synthesizing hexagonal diamond powder by shock-wave pressure method
JPH0818822B2 (en) Ammonia synthesis method
JP3493431B2 (en) Spinel-type silicon oxynitride powder and method for producing the same
JP7345788B2 (en) Method for producing tetrahydroborate
JP7216962B2 (en) Method for producing tetrahydroborate
JP3843318B2 (en) High density lithium aluminum oxide and synthesis method thereof
JPH06134284A (en) Synthesis of diamond powder
JP2945956B2 (en) Impact sample recovery method
Avvakumov et al. Introduction to soft mechanochemistry
JP2002255516A (en) Production method for spinel germanium nitride powder
JP2003137518A (en) Method for synthesizing carbon onion

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term