JP2004149360A - High density lithium aluminum oxide and method for synthesizing the same - Google Patents

High density lithium aluminum oxide and method for synthesizing the same Download PDF

Info

Publication number
JP2004149360A
JP2004149360A JP2002316958A JP2002316958A JP2004149360A JP 2004149360 A JP2004149360 A JP 2004149360A JP 2002316958 A JP2002316958 A JP 2002316958A JP 2002316958 A JP2002316958 A JP 2002316958A JP 2004149360 A JP2004149360 A JP 2004149360A
Authority
JP
Japan
Prior art keywords
aluminum oxide
lithium aluminum
density
phase
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002316958A
Other languages
Japanese (ja)
Other versions
JP3843318B2 (en
Inventor
Toshimori Sekine
関根利守
Xijun Li
リ・シュージン
Takamichi Kobayashi
小林敬道
Koji Kimoto
木元浩司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2002316958A priority Critical patent/JP3843318B2/en
Publication of JP2004149360A publication Critical patent/JP2004149360A/en
Application granted granted Critical
Publication of JP3843318B2 publication Critical patent/JP3843318B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide lithium aluminum oxide having a high density of 3.50g/cm<SP>3</SP>unknown so far, though α phase having a density of 3.41g/cm<SP>3</SP>, β phase having a density of 2.69g/cm<SP>3</SP>and γ phase having a density of 2.61g/cm<SP>3</SP>are known so far in the order of decreasing density as lithium aluminum oxide comprising light elements represented by the formula LiAlO<SB>2</SB>. <P>SOLUTION: The high density lithium aluminum oxide is obtained by compacting low pressure phase lithium aluminum oxide powder represented by the formula LiAlO<SB>2</SB>, charging the resulting compact into a device shown by figure 1, applying an instantaneous pressurizing force of ≥5 GPa by shock waves to the compact for a pressurization time of ≤5 microseconds to bring the compact into a reaction, and then separating and recovering the compact. This compact is identified as a new compound having a tetragonal system crystal structure different from the structure of the starting material by an X-ray diffraction method. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、従来全く知られていなかった高圧相、高密度3.50g/cmのリチウムアルミニウム酸化物とその製造方法に関する。詳しくは瞬間的な衝撃波による加圧力を発生し、付与することで知られている、いわゆる衝撃波による圧縮法を低圧相リチウムアルミニウム酸化物結晶に適用し、該結晶を高密度リチウムアルミニウム酸化物に転換し、高圧相、高密度のリチウムアルミニウム酸化物結晶を得ることからなる、高圧相、高密度リチウムアルミニウム酸化物結晶とその製造方法に関する。
【0002】
【従来の技術】
従来、化学式LiAlOで表されるリチウムアルミニウム酸化物としてα相、β相及びγ相が知られている。そのうち、α相は、密度が3.41g/cmで、その合成法は(1)AlとLiCOとを600℃で反応させる、(2)AlO(OH)とLiCOとを600℃で反応させる、(3)AlとLiCOの混合物を140℃で水熱処理し、得られるLiAl(OH)・HOを400℃で加熱分解する、及び(4)AlとLiCOの混合物やβ相やγ相を3.5GPa、850℃で30分処理する、以上4つの方法が知られている。
β相は、密度2.69g/cmで、その合成方法は、AlとLiCOの混合物を1.8GPa、370℃で処理する方法、あるいはAlとLiCOの混合物を240℃、0.04GPaで水熱処理し、得られるLiAl(OH)・HOを400〜800℃で加熱分解する方法が知られている。
γ相は、密度2.61g/cmで、その合成方法は、AlとLiCOとを1100℃で反応させる方法やα相やβ相を800〜1000℃で加熱する方法等知られている。
これらの合成条件は、何れも比較的低圧領域で生成するものであり、本発明の5GPaを超えるような圧力下での合成条件は、これまでに例がない。
【0003】
【発明が解決しょうとする課題】
本発明は、高圧領域の圧力を付与することにより、これまで知られていなかった高密度を有してなるリチウムアルミニウム酸化物結晶すなわち新規な高密度リチウムアルミニウム酸化物結晶(化学式LiAlO)とその製造方法を提供しようというものである。高圧領域の圧力を付与する手段としては、それ自体は従来技術である衝撃波を利用してなる衝撃波処理技術を適用することによって、高密度リチウムアルミニウム酸化物を提供しようというものである。
これによって、この種リチウム化合物を使用していた分野、例えば固体電解質そのものや固体電解質を使用してなる各種電池やバッテリー材料の分野を始め、その余の技術分野に対しても、これまでにない新しい性質を持った高密度材料のリチウムアルミニウム酸化物を提供し、その材料選択の自由度を少しでも提供し、以て産業の発展に寄与しようというものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、リチウムアルミニウム酸化物粉末に適量の銅粉を混合し、適当な密度に加圧成形し、その成形体に適当な圧力、温度の下で衝撃圧縮をある程度以上の短時間加えるようにすれば、出発原料のリチウムアルミニウム酸化物の組成を変えることなく、新規高圧相リチウムアルミニウム酸化物粉末に変換させ得ることを見出したものである。
本発明は、この知見に基づいてなされたものであり、その構成は、(1)ないし(4)に記載する要件事項を講じてなるものである。
すなわち、その第1の構成は、高圧相の高密度リチウムアルミニウム酸化物であり、以下の通りである。
(1)化学式LiAlOで表され、密度3.50g/cm、正方晶系の結晶構造を有する、高圧相の高密度リチウムアルミニウム酸化物。
また、その第2の構成は、前記(1)記載の化合物の合成方法を提示するものであり、次の通りである。
(2) 化学式LiAlOで示される低圧相リチウムアルミニウム酸化物粉末を銅粉と混合し、加圧成形し、得られた成形体に5GPa以上、加圧時間5マイクロ秒以下の衝撃波による瞬間的加圧力を付与し、該低圧相の結晶リチウムアルミニウム酸化物を化学式LiAlOで表される密度3.50g/cm、正方晶系の結晶構造を有する高圧相の高密度リチウムアルミニウム酸化物に転換することを特徴とする、衝撃波による高密度リチウムアルミニウム酸化物の合成方法。
さらにまた、その第3及び第4の構成は、前記(2)記載の合成法を、出発材料に基づいてさらに限定したものであり、下記の通りである。
(3) 前記出発原料とする化学式LiAlOで表される低圧相の結晶リチウムアルミニウム酸化物が、α相、β相、γ相よりなる群の何れか一つの結晶リチウムアルミニウム酸化物を選択してなるものであることを特徴とした、前項(2)に記載の衝撃波による高密度リチウムアルミニウム酸化物の合成方法。
(4) その出発原料が、特に密度2.61g/cm のγ相リチウムアルミニウム酸化物結晶粉末を選択したものであることを特徴とした、前項(3)に記載の衝撃波による高密度リチウムアルミニウム酸化物の合成方法。
【0005】
本発明の高圧相の高密度リチウムアルミニウム酸化物は、化学式LiAlOで示される低圧相のリチウムアルミニウム酸化物粉末から出発し、これを銅粉と混合して加圧成形し、5GPa以上の圧力で、加圧時間5マイクロ秒以下の衝撃波による瞬間的加圧で低圧相リチウムアルミニウム酸化物を高圧相のスピネル型相酸窒化ケイ素に相転移させることによって得られてなるものであり、その得られてなる高圧相のリチウムアルミニウム酸化物は、出発粉末化合物である低圧相のリチウムアルミニウム酸化物と同じ化学組成を有してなるものである。
本発明で得られる新規高圧相化合物は、密度が3.50g/cmもの高密度を示すものである点に特徴を有するものであり、すなわち、同種組成の化合物においてはこれまでに知られていなかった極めて高密度の物質が得られたものである。勿論、新規化合物を提供してなるものである。したがって、本発明は、それ自体が、産業上有用な発明をなしたものである。その物性は、現段階では密度、結晶構造が解明されただけでその他の化学的、機械的、あるいは電気的性質等はまだ十分に解明されたとは言えないが、その性質は、酸化雰囲気下での安定性に優れており、今後さらにその余の物性が解明されるとともに、その用途開発も飛躍的に進むものと確信する。特に電子材料等への用途がおおいに期待されるものである。
【0006】
【発明の実施の形態】
本発明の高圧相のリチウムアルミニウム酸化物の合成法においては、瞬間的な衝撃圧縮が被処理物に付与され、そこに発生する高温高圧状態を利用して物質合成が行なわれる、既知の衝撃加圧法を利用することができる。この衝撃加圧法においては、火薬を利用して飛翔体を高速で出発原料容器に衝突させ、その際に発生する衝撃波の伝播により出発原料に圧力を加える装置を用いる。あるいは爆薬を利用した衝撃加圧法も利用できる。
図1は、本発明の方法を実施するための衝撃波の発生および衝撃処理試料を例示したものである。具体的には、出発原料2を衝撃波の破壊から保護するための銅製回収容器3内に入れ、銅製ネジ蓋4で出発原料の背後から押さえた後、大型の鉄製円形収納体1に埋め込み、ターゲットとする。一方、高速衝突による衝撃波を発生させるため、火薬銃を使用する。衝撃圧力を高めるために、飛翔体5は、高密度ポリエチレン製サーボ6の前面に銅製の飛翔板7が付いて構成されている。
【0007】
この衝撃加圧法においては、加圧成形体を形成する条件と衝撃加圧条件が重要である。加圧成形体を形成する条件としては、出発原料である低圧相リチウムアルミニウム酸化物粉末と銅粉の選択、銅粉との混合条件、加圧成形体の見かけ密度、その圧成形体中での空隙の分布等が挙げられる。
出発原料のリチウムアルミニウム酸化物は、γ相が望ましく、粒径は10ミクロン以下が望ましい。相転移に伴う体積変化がγ相からの場合がもっとも大きく、α相からの場合がもっとも小さいからである。粒形が大きくなると、熱的な平衡が衝撃圧縮の時間内に起らず、不均一な反応を招くからである。
【0008】
出発原料のリチウムアルミニウム酸化物を銅粉と混合して加圧成形体とするのは、衝撃条件を均一にするために、また衝撃圧力と衝撃温度を高めるために必要である。銅粉はリチウムアルミニウム酸化物粉末に対して99〜80重量%程度を混合する。銅粉としては、市販品で粒径が100μm以下の物を使用する。
加圧成形は、出発原料容器中に油圧ポンプで加圧棒をピストンとして利用して行う。回収容器3は、リチウムアルミニウム酸化物と反応しない金属が最適であるが、十分に衝撃波からの破壊から試料を保護できなければならず、通常は銅製容器が使われる。
【0009】
圧成形体の見かけ密度は、衝撃温度を制御するのに重要であり、十分に反応速度を高めしかもリチウムアルミニウム酸化物が分解、溶融しない温度以下でなければならないので、加圧成形体は理論密度の60%から95%程度(空隙率としては5〜40%)が適当である。
しかも、その圧成形体中での空隙の分布ができるだけ均一であることが望ましい。そのためには金属粉の粒径は50ミクロン以下が望ましい。より好ましは10μm程度である。
【0010】
衝撃環境の条件は、圧力として5GPa以上が必要である。80GPa以上にあげると、容器の変形が大きくなると同時に試料が分解したり部分溶融したりして、圧力解放時に試料の回収が難しくなる。温度は500℃以上1500℃以下が望ましい。
【0011】
実施例1:
粒径 0.5〜10μmのγ型リチウムアルミニウム酸化物(化学式LiAlO)粉末10重量%と銅粉90重量%の混合物によって、みかけ密度6.10g/cm(空隙率10%)の直径12mm×厚さ2mmの加圧成形体を作成した。リチウムアルミニウム酸化物と銅粉の混合物の加圧成形体のみかけの密度はプレスによる成形圧の増減で調節した。厚み6mmの円筒状の銅製の回収容器に加圧性形体を収容し、銅製ネジ蓋で加圧性形体を背後から隙間なく押さえた後、大型の鉄製円形収納体の中心に埋め込み、ターゲットとした。
飛翔体として高密度ポリエチレン製の本体に衝突板の銅製デスクを張り付け、必要な衝撃圧の発生に供した。火薬銃で飛翔体速度を1.5Km/秒に加速し衝突させることで、33GPaの衝撃処理を行った。衝撃温度は熱力学的な解析を通して算出され、約900℃であった。衝撃圧は飛翔体速度の測定から、インピーダンスマッチ法で一次元的な解析から計算した。
衝撃処理後に回収容器から加圧性形体を取り出し、その加圧成形体は硝酸溶液中で5時間以上の処理で除去した後、沈殿物を水で洗浄後に乾燥して粉末を得た。
得られた粉末は、X線粉末回折で同定された。その得られた回折図は、図2の(1)に示されたように、新規の高圧相リチウムアルミニウム酸化物であることが明らかになった。これに対し、図2の(2)には、出発原料のγ相のリチウムアルミニウム酸化物のX線回折図が示され比較してある。得られた回折図の詳細な解析から衝撃回収試料中には、少量の不純物が含まれるが、新高密度相は正方晶系の結晶構造であり、その格子定数はa=0.3879nm、b=0.8303nmであると決定された。その結果、密度は3.50g/cmであると算出された。衝撃処理で得られた試料の電子顕微鏡での観察結果から合成した新規高圧相のリチウムアルミニウム酸化物の粒径は、100nm以下のナノ粒子から成った。 電子エネルギー損失分光法により新規高圧相のリチウムアルミニウム酸化物中ではリチウムもアルミニウムも6配位であることが確認された。従って、得られた新規のLiAlOは、従来にない化合物である事が明らかになった。
【0012】
本発明は、物質に衝撃波による高圧処理を施すことによって、物質がどのような影響を受けるのか、特に高圧相の物質の状態を調査し、新しい物質への転換も含め、物質の基礎的探究の一環として研究を進めていたところ、特に、軽元素から構成されているリチウムアルミニウム化合物に対し、衝撃波による高圧処理を施すとどうなるかを研究していていたところ、これまでにない全く知られていなかった高密度状態のリチウムアルミニウム酸化物結晶が存在し、合成しうることを見いだしたものであり、この成果は学術的におおいに意義が認められることは勿論、それ自体新規な化合物であることが同定されたことから、これは産業上有用な発明に該当するものである。そして、その用途についても各種分野において今後おおいに研究開発が進むものと期待される。現段階では、その物性等は前繰り返し述べたところを出ず、すなわち、高密度状態の結晶を作製することが出来たものである。これによって、例えば、特にリチウム化合物の用途分野の一つである固体電解質、バッテリー材料として、これまでの材料に比し、耐久性の向上を始めとして、その他の諸性質についてもこれまで以上の成果が期待され、該用途において、格別の作用効果が奏せられるものと期待される。もとより、前示したように、その物性、特性については、その解明は今後の研究に待つところ大であるが、本発明のリチウムアルミニウム酸化物は、極めて高密度状態であることから、上記以外にも新たな用途開発の道が開けるものと期待される。
【0013】
【発明の効果】
以上詳しく説明した通り、この発明により、極めて高い密度をもったリチウムアルミニウム酸化物結晶が提供され、また一回の衝撃処理で低圧相リチウムアルミニウム酸化物から高転換率で高圧相リチウムアルミニウム酸化物を大量に製造することが可能になったもので、それ自体極めて産業上有用な発明を提供したものである。
【図面の簡単な説明】
【図1】この発明のための装置の実施形態を示した概略図である。
【図2】X線粉末回折図を示すグラフである。
【符号の説明】
1:鉄製円形収納体
2:出発原料
3:銅製回収容器
4:銅製ネジ蓋
5:飛翔体
6:高密度ポリエチレン製サーボ
7:銅製飛翔板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lithium aluminum oxide having a high-pressure phase and a high density of 3.50 g / cm 3 , which has never been known before, and a method for producing the same. Specifically, a so-called shock-wave compression method, which is known to generate and apply a pressing force by an instantaneous shock wave, is applied to a low-pressure phase lithium aluminum oxide crystal, and the crystal is converted to a high-density lithium aluminum oxide. And a high-pressure phase, a high-density lithium aluminum oxide crystal, and a method for producing the same.
[0002]
[Prior art]
Conventionally, α phase, β phase and γ phase are known as lithium aluminum oxides represented by the chemical formula LiAlO 2 . Among them, the α phase has a density of 3.41 g / cm 3 , and its synthesis method is (1) reacting Al 2 O 3 and Li 2 CO 3 at 600 ° C., (2) AlO (OH) and Li 2 CO 3 is reacted at 600 ° C. (3) A mixture of Al 2 O 3 and Li 2 CO 3 is hydrothermally treated at 140 ° C., and the obtained LiAl (OH) 4 .H 2 O is thermally decomposed at 400 ° C. And (4) treating a mixture of Al 2 O 3 and Li 2 CO 3, a β phase and a γ phase at 3.5 GPa and 850 ° C. for 30 minutes are known.
The β phase has a density of 2.69 g / cm 3 , and is synthesized by treating a mixture of Al 2 O 3 and Li 2 CO 3 at 1.8 GPa and 370 ° C. or by mixing Al 2 O 3 and Li 2 CO 3. A method is known in which the mixture of No. 3 is hydrothermally treated at 240 ° C. and 0.04 GPa, and the obtained LiAl (OH) 4 .H 2 O is thermally decomposed at 400 to 800 ° C.
The γ phase has a density of 2.61 g / cm 3 , and is synthesized by a method of reacting Al 2 O 3 with Li 2 CO 3 at 1100 ° C. or a method of heating an α phase or a β phase at 800 to 1000 ° C. Etc. are known.
These synthesis conditions are all generated in a relatively low pressure region, and there is no example of synthesis conditions under a pressure exceeding 5 GPa according to the present invention.
[0003]
[Problems to be solved by the invention]
The present invention provides a lithium aluminum oxide crystal having a high density, which has not been known, that is, a novel high-density lithium aluminum oxide crystal (chemical formula: LiAlO 2 ) by applying a pressure in a high pressure region, It is intended to provide a manufacturing method. As means for applying pressure in the high-pressure region, a high-density lithium aluminum oxide is provided by applying a shock wave processing technique using a shock wave, which is a conventional technique.
As a result, the field of using lithium compounds of this kind, such as the field of various batteries and battery materials using the solid electrolyte itself or the solid electrolyte itself, and other technical fields, has never been seen before. The purpose is to provide lithium aluminum oxide, a high-density material with new properties, to provide a degree of freedom in selecting the material, thereby contributing to the development of industry.
[0004]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, mixed an appropriate amount of copper powder with lithium aluminum oxide powder, pressed and molded to an appropriate density, and applied an appropriate pressure to the molded product. It has been found that if shock compression is applied for a short period of time at a certain temperature at a certain temperature, it can be converted to a new high-pressure phase lithium aluminum oxide powder without changing the composition of the starting material lithium aluminum oxide. is there.
The present invention has been made on the basis of this finding, and the configuration thereof is based on the requirements described in (1) to (4).
That is, the first configuration is a high-pressure phase high-density lithium aluminum oxide, and is as follows.
(1) A high-pressure phase high-density lithium aluminum oxide represented by the chemical formula LiAlO 2 and having a density of 3.50 g / cm 3 and a tetragonal crystal structure.
The second configuration provides a method for synthesizing the compound according to the above (1), and is as follows.
(2) A low-pressure phase lithium aluminum oxide powder represented by the chemical formula LiAlO 2 is mixed with copper powder and pressed, and the resulting compact is instantaneously applied with a shock wave of 5 GPa or more and a pressing time of 5 microseconds or less. Pressure is applied to convert the low-pressure phase crystalline lithium aluminum oxide into a high-pressure phase high-density lithium aluminum oxide having a density of 3.50 g / cm 3 represented by the chemical formula LiAlO 2 and a tetragonal crystal structure. A method for synthesizing a high-density lithium aluminum oxide using a shock wave.
Further, the third and fourth configurations further limit the synthesis method described in (2) based on the starting materials, and are as follows.
(3) The crystalline lithium aluminum oxide of low pressure phase represented by the chemical formula LiAlO 2 as the starting material is selected from the group consisting of α phase, β phase, and γ phase. The method for synthesizing a high-density lithium aluminum oxide by a shock wave according to the above item (2), characterized in that:
(4) The high-density lithium aluminum by shock wave as described in (3) above, wherein the starting material is selected from a gamma-phase lithium aluminum oxide crystal powder having a density of 2.61 g / cm 3. A method for synthesizing an oxide.
[0005]
The high-pressure phase high-density lithium aluminum oxide of the present invention starts from a low-pressure phase lithium aluminum oxide powder represented by the chemical formula LiAlO 2 , and is mixed with copper powder and compacted, and subjected to a pressure of 5 GPa or more. A phase transition of the low-pressure phase lithium aluminum oxide to the high-pressure phase spinel-type silicon oxynitride by instantaneous pressurization by a shock wave having a pressurization time of 5 microseconds or less. The high-pressure phase lithium aluminum oxide has the same chemical composition as the low-pressure phase lithium aluminum oxide as the starting powder compound.
The novel high-pressure phase compound obtained by the present invention is characterized in that it has a density as high as 3.50 g / cm 3 , that is, compounds having the same composition are known so far. An extremely high-density material was obtained. Of course, the present invention provides a novel compound. Therefore, the present invention itself is an industrially useful invention. At this stage, its physical properties have only been elucidated for its density and crystal structure, but other chemical, mechanical, or electrical properties have not been fully elucidated yet. It is excellent in stability, and we are convinced that further physical properties will be elucidated in the future, and that the development of its applications will also progress dramatically. In particular, applications for electronic materials and the like are greatly expected.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
In the method for synthesizing the lithium aluminum oxide of the high-pressure phase of the present invention, instantaneous shock compression is applied to the object to be processed, and the material is synthesized by utilizing the high-temperature and high-pressure state generated therein. A pressure method can be used. In this impact pressurization method, a device is used in which a projectile is made to collide with a starting material container at a high speed using explosives and pressure is applied to the starting material by propagation of a shock wave generated at that time. Alternatively, an impact pressure method using an explosive can be used.
FIG. 1 illustrates a shock wave generation and shock treatment sample for carrying out the method of the present invention. Specifically, the starting material 2 is placed in a copper recovery container 3 for protecting the starting material from shock wave destruction, pressed with a copper screw lid 4 from behind the starting material, and then embedded in a large iron circular container 1, and And On the other hand, an explosive gun is used to generate a shock wave due to a high-speed collision. In order to increase the impact pressure, the flying object 5 is configured by attaching a copper flying plate 7 to the front surface of a servo 6 made of high-density polyethylene.
[0007]
In this impact pressurization method, the conditions for forming the press-formed body and the impact pressurization conditions are important. The conditions for forming the pressed body include the selection of the low-pressure phase lithium aluminum oxide powder and the copper powder, which are the starting materials, the mixing conditions with the copper powder, the apparent density of the pressed body, Examples include the distribution of voids.
The lithium aluminum oxide as a starting material preferably has a γ phase and a particle size of 10 μm or less. This is because the change in volume due to the phase transition is largest from the γ phase and smallest from the α phase. This is because, when the grain size becomes large, thermal equilibrium does not occur within the time of impact compression, resulting in a non-uniform reaction.
[0008]
It is necessary to mix the lithium aluminum oxide as a starting material with the copper powder to form a pressed body in order to make the impact conditions uniform and to increase the impact pressure and the impact temperature. Copper powder is mixed with lithium aluminum oxide powder in an amount of about 99 to 80% by weight. As the copper powder, a commercially available product having a particle size of 100 μm or less is used.
The pressure molding is performed in the starting material container by using a pressure rod as a piston by a hydraulic pump. The recovery container 3 is preferably made of a metal that does not react with lithium aluminum oxide, but it must be able to sufficiently protect the sample from destruction from a shock wave, and a copper container is usually used.
[0009]
The apparent density of the green compact is important for controlling the impact temperature, and it must be sufficiently high to increase the reaction rate and below the temperature at which the lithium aluminum oxide does not decompose or melt. Of about 60% to 95% (the porosity is 5 to 40%).
Moreover, it is desirable that the distribution of voids in the compact is as uniform as possible. For this purpose, the particle size of the metal powder is desirably 50 microns or less. More preferably, it is about 10 μm.
[0010]
The impact environment conditions require a pressure of 5 GPa or more. When the pressure is increased to 80 GPa or more, the sample is decomposed or partially melted at the same time as the deformation of the container becomes large, and it becomes difficult to collect the sample when the pressure is released. The temperature is desirably 500 ° C to 1500 ° C.
[0011]
Example 1
A mixture of 10% by weight of γ-type lithium aluminum oxide (chemical formula LiAlO 2 ) powder having a particle size of 0.5 to 10 μm and 90% by weight of copper powder has a diameter of 12 mm having an apparent density of 6.10 g / cm 3 (porosity of 10%). X A 2 mm-thick press-formed body was prepared. The apparent density of the pressed body of the mixture of lithium aluminum oxide and copper powder was adjusted by increasing or decreasing the forming pressure by pressing. The pressurized form was accommodated in a cylindrical copper recovery container having a thickness of 6 mm, and the pressurized form was pressed from behind with no gap with a copper screw cap, and then embedded in the center of a large iron circular container to serve as a target.
A copper desk of a collision plate was attached to a body made of high-density polyethylene as a flying object, and used to generate necessary impact pressure. An impact treatment of 33 GPa was performed by accelerating the projectile speed to 1.5 Km / sec with a gunpowder and causing a collision. Impact temperature was calculated through thermodynamic analysis and was approximately 900 ° C. The impact pressure was calculated from the measurement of the flying object velocity and one-dimensional analysis by the impedance match method.
After the impact treatment, the pressurized form was taken out of the recovery container, and the pressurized molded body was removed in a nitric acid solution for 5 hours or more, and the precipitate was washed with water and dried to obtain a powder.
The resulting powder was identified by X-ray powder diffraction. The obtained diffraction pattern revealed that it was a novel high-pressure phase lithium aluminum oxide as shown in FIG. On the other hand, FIG. 2 (2) shows an X-ray diffraction diagram of a γ-phase lithium aluminum oxide as a starting material, and compares it. From the detailed analysis of the diffractogram obtained, a small amount of impurities are contained in the shock recovery sample, but the new high-density phase has a tetragonal crystal structure, and its lattice constant is a = 0.3879 nm and b = It was determined to be 0.8303 nm. As a result, the density was calculated to be 3.50 g / cm 3 . The particle size of the lithium aluminum oxide of the novel high-pressure phase synthesized from the results of observation of the sample obtained by the impact treatment with an electron microscope was composed of nanoparticles having a size of 100 nm or less. Electron energy loss spectroscopy confirmed that both lithium and aluminum were hexacoordinate in the new high pressure phase lithium aluminum oxide. Therefore, it was clarified that the obtained new LiAlO 2 was a compound that had never existed before.
[0012]
The present invention investigates how a substance is affected by applying a high-pressure treatment to a substance by a shock wave, in particular, investigates the state of the substance in a high-pressure phase, and conducts basic research on the substance, including conversion to a new substance. As part of our research, we were studying what happens when a high-pressure treatment with a shock wave is applied to a lithium aluminum compound composed of light elements. High-density lithium aluminum oxide crystals existed and could be synthesized, and this result was recognized to be of great significance academically, and was also identified as a novel compound per se. Therefore, this is an industrially useful invention. And it is expected that research and development will be greatly advanced in various fields in the future. At this stage, the physical properties and the like are not as described above, that is, a crystal having a high density can be produced. As a result, for example, solid electrolytes and battery materials, which are one of the fields of application of lithium compounds, are more effective than conventional materials in terms of durability and other properties. Is expected, and in this application, it is expected that a special action and effect can be exhibited. Of course, as shown above, the physical properties and properties of the lithium aluminum oxide of the present invention are extremely high-density, although the elucidation of the properties and properties is awaiting future research. Is expected to open the way for new application development.
[0013]
【The invention's effect】
As described in detail above, according to the present invention, a lithium aluminum oxide crystal having an extremely high density is provided, and a high pressure phase lithium aluminum oxide can be converted at a high conversion rate from a low pressure phase lithium aluminum oxide in a single impact treatment. It has become possible to produce it in large quantities, and has itself provided an extremely industrially useful invention.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an embodiment of an apparatus for the present invention.
FIG. 2 is a graph showing an X-ray powder diffraction pattern.
[Explanation of symbols]
1: Iron circular container 2: Starting material 3: Copper recovery container 4: Copper screw lid 5: Flying object 6: High density polyethylene servo 7: Copper flying plate

Claims (4)

化学式 LiAlOで表される密度3.50g/cm、正方晶系の結晶構造を有してなる高圧相の高密度リチウムアルミニウム酸化物。A high-density lithium aluminum oxide of a high-pressure phase having a density of 3.50 g / cm 3 represented by the chemical formula LiAlO 2 and a tetragonal crystal structure. 化学式LiAlOで示される低圧相リチウムアルミニウム酸化物粉末を銅粉と混合し、加圧成形し、得られた成形体に5GPa以上、加圧時間5マイクロ秒以下の衝撃波による瞬間的加圧力を付与し、該低圧相の結晶リチウムアルミニウム酸化物を化学式LiAlOで表される密度3.50g/cm、正方晶系の結晶構造を有する高圧相の高密度リチウムアルミニウム酸化物に転換することを特徴とする、衝撃波による高密度リチウムアルミニウム酸化物の合成方法。The low-pressure phase lithium aluminum oxide powder represented by the chemical formula LiAlO 2 is mixed with copper powder and pressed, and the resulting compact is given an instantaneous pressing force of 5 GPa or more and a pressing time of 5 μs or less by a shock wave. And converting the low-pressure crystalline lithium aluminum oxide to a high-pressure high-density lithium aluminum oxide having a tetragonal crystal structure with a density of 3.50 g / cm 3 represented by the chemical formula LiAlO 2. A method for synthesizing a high-density lithium aluminum oxide by a shock wave. 出発原料とする化学式LiAlOで表される低圧相の結晶リチウムアルミニウム酸化物として、α相、β相、γ相よりなる群の何れか一つの結晶リチウムアルミニウム酸化物を用いたことを特徴とする、請求項2記載の衝撃波による高密度リチウムアルミニウム酸化物の合成方法。As a low-pressure crystalline lithium aluminum oxide represented by the chemical formula LiAlO 2 as a starting material, any one of a group consisting of α phase, β phase and γ phase crystalline lithium aluminum oxide is used. A method for synthesizing a high density lithium aluminum oxide by a shock wave according to claim 2. 化学式LiAlOで表される低圧相の結晶リチウムアルミニウム酸化物として、特に密度2.61g/cm のγ相リチウムアルミニウム酸化物結晶粉末を選択したことを特徴とする、請求項3記載の衝撃波による高密度リチウムアルミニウム酸化物の合成方法。As crystals of lithium aluminum oxide of the low-pressure phase represented by the chemical formula LiAlO 2, in particular, characterized in that selects the γ phase lithium aluminum oxide crystal powder of density 2.61 g / cm 3, due to shock waves according to claim 3, wherein A method for synthesizing high density lithium aluminum oxide.
JP2002316958A 2002-10-31 2002-10-31 High density lithium aluminum oxide and synthesis method thereof Expired - Lifetime JP3843318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002316958A JP3843318B2 (en) 2002-10-31 2002-10-31 High density lithium aluminum oxide and synthesis method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002316958A JP3843318B2 (en) 2002-10-31 2002-10-31 High density lithium aluminum oxide and synthesis method thereof

Publications (2)

Publication Number Publication Date
JP2004149360A true JP2004149360A (en) 2004-05-27
JP3843318B2 JP3843318B2 (en) 2006-11-08

Family

ID=32460472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002316958A Expired - Lifetime JP3843318B2 (en) 2002-10-31 2002-10-31 High density lithium aluminum oxide and synthesis method thereof

Country Status (1)

Country Link
JP (1) JP3843318B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014169219A (en) * 2013-02-07 2014-09-18 Nippon Chem Ind Co Ltd METHOD FOR PRODUCING α-LITHIUM ALUMINATE
US10150678B2 (en) 2014-07-25 2018-12-11 Nippon Chemical Industrial Co., Ltd. Method for producing alpha-lithium aluminate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014169219A (en) * 2013-02-07 2014-09-18 Nippon Chem Ind Co Ltd METHOD FOR PRODUCING α-LITHIUM ALUMINATE
WO2015114840A1 (en) * 2013-02-07 2015-08-06 日本化学工業株式会社 METHOD FOR PRODUCING α-LITHIUM ALUMINATE
US9731977B2 (en) 2013-02-07 2017-08-15 Nippon Chemical Industrial Co., Ltd. Method for producing α-lithium aluminate
US10150678B2 (en) 2014-07-25 2018-12-11 Nippon Chemical Industrial Co., Ltd. Method for producing alpha-lithium aluminate

Also Published As

Publication number Publication date
JP3843318B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
JP2003208919A (en) Manufacturing method of lithium ion conductive sulfide glass and glass ceramics as well as all solid-type battery using same glass ceramics
JP7362332B2 (en) Microwave synthesis of lithium thiophosphate composite materials
JP4580149B2 (en) Lithium ion conductive sulfide glass manufacturing method and lithium ion conductive sulfide glass ceramic manufacturing method
CN1172012C (en) Method for synthesizing NiTi shape memory alloy porous material
JP2004149360A (en) High density lithium aluminum oxide and method for synthesizing the same
KR101352371B1 (en) Fabrication method of low oxygen titanium powders by Self-propagating High-temperature synthesis
US6589899B2 (en) Spinel type sialon, spinel type silicon oxynitride and methods for producing their powders
CN103979566A (en) Preparation method of vanadium diboride powder
JP3498138B2 (en) Method for producing spinel-type sialon and powder thereof
JP3493431B2 (en) Spinel-type silicon oxynitride powder and method for producing the same
JP3401560B2 (en) Synthesis method of spinel type silicon nitride powder
RU2682325C1 (en) METHOD FOR PRODUCING Li7La3Zr2O12 SOLID ELECTROLYTE DOPED WITH ALUMINUM
CN114829296A (en) Method for adjusting particle size of lithium peroxide and method for preparing lithium oxide having adjusted particle size
JPS63104641A (en) Method for synthesizing hexagonal diamond powder by shock-wave pressure method
JP2002255516A (en) Production method for spinel germanium nitride powder
CN108238609B (en) Preparation method of sodium octaborate tetrahydrate
JPH11157844A (en) Cobalt oxide for lithium secondary battery positive electrode active material
CN106365201B (en) A kind of preparation facilities and method of high-purity zinc arsenide
CN109704315A (en) A kind of preparation method of graphene
DE102011051647B4 (en) Method and use of a device for producing aluminum nitride with saline structure by means of shock wave synthesis
RU2791652C1 (en) Method of obtaining ceramics
Yamamoto et al. Effect of Input Energy on Si-C Reaction Milling and Sintering Process
CN105271402B (en) A kind of gadolinium zirconate raw powder&#39;s production technology of phase containing pyrochlore
JP2004115314A (en) Method for synthesizing spinel manganese
RU2209192C1 (en) Ceramic composite

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

R150 Certificate of patent or registration of utility model

Ref document number: 3843318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term