JPH0262955A - Air to fuel ratio detecting element - Google Patents

Air to fuel ratio detecting element

Info

Publication number
JPH0262955A
JPH0262955A JP1069832A JP6983289A JPH0262955A JP H0262955 A JPH0262955 A JP H0262955A JP 1069832 A JP1069832 A JP 1069832A JP 6983289 A JP6983289 A JP 6983289A JP H0262955 A JPH0262955 A JP H0262955A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
ratio detection
detection element
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1069832A
Other languages
Japanese (ja)
Other versions
JP2659793B2 (en
Inventor
Tetsumasa Yamada
哲正 山田
Akio Mizutani
昭夫 水谷
Nobuhiro Hayakawa
暢博 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP1069832A priority Critical patent/JP2659793B2/en
Priority to DE19893910272 priority patent/DE3910272C2/en
Publication of JPH0262955A publication Critical patent/JPH0262955A/en
Priority to US08/032,187 priority patent/US5288389A/en
Application granted granted Critical
Publication of JP2659793B2 publication Critical patent/JP2659793B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To provide the element which is strong to thermal shock, is compact and has the higher performance by specifying the sizes of the respective parts. CONSTITUTION:An oxygen concn. cell element 8 formed with porous electrodes 4, 6 on both sides of a solid electrolyte substrate 3, an oxygen pump element 16 similarly formed with porous electrodes 12, 14 on both sides of a solid electrolyte substrate 10 and a gas diffusion chamber 18 formed by lamination of internal spacers 20, 22 between the elements 8 and 16 are provided. The thickness of the element 1 is specified to 0.7 to 1.25mm and the width thereof to 2.8 to 4.0mm. The compact element 1 which has more than the specified strength and a small heat capacity is obtd. by such size specification. The expansion of the element itself is small in this way even if the temp. thereof rises sharply and, therefore, the element is not damaged by the thermal shock. The rapid heating at the time of start is, therefore, possible, and the element having the short starting time and excellent warming up characteristic is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えばエンジン等の空燃比を検出する空燃比
センサに用いられる空燃比検出素子に関し、特に酸素イ
オン伝導性の固体電解質を用いた空燃比検出素子に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an air-fuel ratio detection element used in an air-fuel ratio sensor for detecting the air-fuel ratio of an engine, etc., and particularly relates to an air-fuel ratio detection element using an oxygen ion conductive solid electrolyte. This relates to an air-fuel ratio detection element.

[従来の技術] 従来より、例えばエンジン等の空燃比を理論空燃比近傍
に制御して、燃費やエミッションの改善を図るために、
排気中の酸素濃度を検出する酸素センサが使用されてい
る。この種の酸素センサとして、例えばイオン伝導性の
固体電解質に多孔質電極層を被着した空燃比検出素子を
備え、排気の酸素分圧と空気の酸素分圧との差によって
生ずる起電力の変化によって理論空燃比近傍の燃焼状態
を検知する空燃比センサが知られている。
[Prior Art] Conventionally, for example, in order to improve fuel efficiency and emissions by controlling the air-fuel ratio of an engine, etc. to near the stoichiometric air-fuel ratio,
Oxygen sensors are used to detect the oxygen concentration in exhaust gas. This type of oxygen sensor is equipped with an air-fuel ratio detection element made of an ion-conducting solid electrolyte covered with a porous electrode layer, and changes in electromotive force caused by the difference between the oxygen partial pressure of exhaust gas and the oxygen partial pressure of air. An air-fuel ratio sensor that detects a combustion state near the stoichiometric air-fuel ratio is known.

また近年では、空燃比を単に理論空燃比近傍に制御する
だけでなく、エンジンの運転状態に応じて目標空燃比を
変化させてフィードバック制御することにより、燃費や
エミッションの改善及びエンジンの運転性能の向上が図
られている。そして、このようなフィードバック制御に
用いられる各種の空燃比センサが提案されている。
In addition, in recent years, in addition to simply controlling the air-fuel ratio to near the stoichiometric air-fuel ratio, feedback control by changing the target air-fuel ratio according to engine operating conditions has been developed to improve fuel efficiency and emissions, and improve engine operating performance. Improvements are being made. Various air-fuel ratio sensors have been proposed for use in such feedback control.

例え1′L  固体電解質の一方の電極面を含んで空間
を形成する室(ガス拡散室)を備え、両電極間に電圧を
印加して測定ガス中のガス成分を上記室内に拡散導入し
、その際に流れる電流量を測定することによって、測定
ガス中のガス成分濃度を検出する空燃比センサが提案さ
れている(特開昭52−72286号公報及び特開昭5
3−66292号公報参照)。
For example, 1'L is provided with a chamber (gas diffusion chamber) that includes one electrode surface of the solid electrolyte and forms a space, and a voltage is applied between both electrodes to diffuse and introduce gas components in the measurement gas into the chamber, An air-fuel ratio sensor has been proposed that detects the concentration of gas components in the measurement gas by measuring the amount of current flowing at that time (Japanese Patent Application Laid-Open Nos. 52-72286 and 1983).
3-66292).

また、固体電解質の両面に電極を設けて形成した酸素ポ
ンプ素子と酸素濃淡電池素子とを、ガス拡散室を挟んで
対向させl=空燃比検出素子を用い、酸素濃淡電池素子
の起電力が一定となるように酸素ポンプ素子に流す電流
量を調節することによって、酸素濃度を検出するものも
提案されている(特願昭60−36032号参照)。
In addition, an oxygen pump element formed by providing electrodes on both sides of a solid electrolyte and an oxygen concentration battery element are opposed to each other with a gas diffusion chamber in between, and an air-fuel ratio detection element is used, so that the electromotive force of the oxygen concentration battery element is constant. It has also been proposed to detect the oxygen concentration by adjusting the amount of current flowing through the oxygen pump element so that the following occurs (see Japanese Patent Application No. 60-36032).

[発明が解決しようとする課題] しかしながら、定常運転時以外、例えばエンジンの始動
時に上記フィードバック制御を行って、エミッション等
の低減を図ろうとしても、従来の空燃比検出素子は、暖
機時には使用可能の温度に達するまでに長い時間がかか
ってしまい、その間は空燃比センサを用いた制御ができ
なかった この対策として、ヒータを用いて空燃比検出
素子を急速に加熱して素子自体の温度を迅速に使用温度
まで上げると、サーマルショックによって素子が損なわ
れることがあるので、加熱速度を一定以上に上げること
ができないという問題があった本発明は、空燃比検出素
子の各部分の寸法を特定することにより、サーマルショ
ックに強く、コンパクトでかつ高性能な空燃比検出素子
を提供することを目的とする。
[Problems to be Solved by the Invention] However, even if the feedback control described above is performed at times other than steady operation, such as when the engine is started, in order to reduce emissions, the conventional air-fuel ratio detection element cannot be used during warm-up. It took a long time to reach the desired temperature, and control using the air-fuel ratio sensor was not possible during that time.As a countermeasure, the air-fuel ratio detection element was rapidly heated using a heater to lower the temperature of the element itself. The problem with this invention is that it is impossible to increase the heating rate above a certain level because if the temperature is quickly raised to the operating temperature, the element may be damaged by thermal shock. The purpose of this invention is to provide a compact, high-performance air-fuel ratio detection element that is resistant to thermal shock.

[課題を解決するための手段] かかる問題点を解決するための本発明の構成は、少なく
とも固体電解質基板の両側に多孔質電極を設けた酸素ポ
ンプ素子と、該酸素ポンプ素子の一方の多孔質電極を覆
うガス拡散室と、該ガス拡散室と測定雰囲気とを連通ず
るガス導入部とを設けた空燃比検出素子において、上記
空燃比検出素子の厚さを0.7mm〜+、25mmとし
、かつ該素子の幅を2.8mm〜4.0mmとしたこと
を特徴とする空燃比検出素子を要旨とする。
[Means for Solving the Problems] The configuration of the present invention for solving such problems includes an oxygen pump element in which porous electrodes are provided on both sides of at least a solid electrolyte substrate, and a porous electrode on one side of the oxygen pump element. In an air-fuel ratio detection element provided with a gas diffusion chamber that covers an electrode and a gas introduction part that communicates the gas diffusion chamber with a measurement atmosphere, the thickness of the air-fuel ratio detection element is 0.7 mm to +25 mm, The gist of the present invention is an air-fuel ratio detection element characterized in that the width of the element is 2.8 mm to 4.0 mm.

ここで、上記空燃比検出素子としては、ガス導入部でガ
ス律速するとともに、上記ガス拡散室の測定空間の間隙
を20μm〜100μmとし、かつ測定空間の容積をO
,05mm’ −1、0mm3としたものが、測定精度
及び応答性(二優れ一層好適である。
Here, as for the air-fuel ratio detection element, the gas rate is controlled by the gas introduction part, the gap of the measurement space of the gas diffusion chamber is set to 20 μm to 100 μm, and the volume of the measurement space is O
, 05 mm'-1, and 0 mm3 are more preferable because they are excellent in measurement accuracy and response.

固体電解質基板の材料としては、イツトリアジルコニア
固溶体、カルシア−ジルコニア固溶体が知られており、
更に二酸化セリウム、二酸化トノラム、二酸化ハフニウ
ムの各固溶体、ペロブスカイト型固溶体、 3価金属酸
化物固溶体等が使用できる。
Known materials for solid electrolyte substrates include yttriazirconia solid solution and calcia-zirconia solid solution.
Further, solid solutions of cerium dioxide, tonorum dioxide, hafnium dioxide, perovskite solid solutions, trivalent metal oxide solid solutions, etc. can be used.

多孔質電極の材料としては、白金、ロジウム等を用いる
ことができ、これら(よ 例えば原料粉末を主成分とし
てペースト化し厚膜技術を用いて印刷後、焼結して形成
する。
Platinum, rhodium, etc. can be used as the material for the porous electrode, and these materials (for example, raw material powder) are made into a paste, printed using a thick film technique, and then sintered.

測定ガスに直接に接する酸素ポンプ素子の外側の多孔質
電極は、その表面にアルミ力 スピネル。
The outer porous electrode of the oxygen pump element, which is in direct contact with the measuring gas, has an aluminum spinel on its surface.

ジルコニア、ムライト等の電極保護層を厚膜技術を用い
て形成することが好ましい。尚、ガス拡散室側の電極は
、ガス律速層を通過した測定ガスをより速く検出するた
めに、電極保護層は・不要である。
It is preferable to form the electrode protective layer of zirconia, mullite, etc. using thick film technology. Note that the electrode on the gas diffusion chamber side does not require an electrode protective layer in order to more quickly detect the measurement gas that has passed through the gas regulating layer.

ガス拡散室は、例えば多孔質電極を固体電解質基板の両
側に設けた酸素濃;炎電池素子を酸素ポンプ素子と対向
して配設し、該酸素濃淡電池素子と酸素ポンプ素子との
間に、ガス拡散室となる空所を有するスペーサを挟んで
接合することにより形成される。このスペーサの素材と
しては、アルミ力 スピネル、フォルステライト、ステ
アタイト。
The gas diffusion chamber includes, for example, an oxygen-concentrated flame cell element with porous electrodes provided on both sides of a solid electrolyte substrate, which is disposed opposite to an oxygen pump element, and between the oxygen-concentrated flame cell element and the oxygen pump element. It is formed by joining with a spacer having a cavity that becomes a gas diffusion chamber sandwiched therebetween. The materials for this spacer are aluminum spinel, forsterite, and steatite.

ジルコニア等が用いられる。Zirconia or the like is used.

ガス導入部はガス拡散室と測定雰囲気とを連通ずるもの
であり、このガス導入部には多孔質材を充填して拡散抵
抗を増すようにしてもよい。尚、上記測定空間とは、ガ
ス導入部の容積は除いたものである。この測定空間の容
積は、ガス拡散室内の酸素ポンプ素子の電極面積と上記
間隙の寸法によってほぼ定まるものである。
The gas introduction section communicates the gas diffusion chamber with the measurement atmosphere, and may be filled with a porous material to increase diffusion resistance. Note that the above measurement space excludes the volume of the gas introduction section. The volume of this measurement space is approximately determined by the electrode area of the oxygen pump element in the gas diffusion chamber and the size of the gap.

上記酸素ポンプ素子や酸素濃淡電池素子を加熱するため
に−船釣にヒータが設けられている。このヒータ(よ 
ヒータ自体からの電気的漏洩を防止するために、上記空
燃比検出素子本体とは労1体に製造されるものであり、
素子の外側に貼付けて使用される。また他の例として、
 ヒータのパターンを多孔質電極の周囲に口字状に配置
して素子と一体に成形してもよい。
A heater is provided on the boat to heat the oxygen pump element and oxygen concentration battery element. This heater
In order to prevent electrical leakage from the heater itself, the air-fuel ratio detection element body is manufactured in one piece,
It is used by pasting it on the outside of the device. As another example,
The heater pattern may be arranged around the porous electrode in the shape of an opening and molded integrally with the element.

本発明は少なくとも酸素ポンプ素子とガス拡散室を有す
る空燃比検出素子に適用できるものであり、この空燃比
検出素子として、次のような構成の素子に適用できるこ
とは勿論である。例えば、酸素ポンプ素子と対向した酸
素濃淡電池素子を備えた空燃比検出素子やその酸素濃淡
電池素子を備えていない空燃比検出素子、酸素濃淡電池
素子の代わりに、チタニアからなる検出素子を酸素ポン
プ素子と対向して配置した空燃比検出素子にも適用でき
る。また、酸素濃淡電池素子のガス拡散室とは接しない
外側の多孔質電極側に大気が導入される大気導入室と形
成した空燃比検出素子や、この多孔質電極を遮蔽板で閉
し、酸素を漏出するための漏出抵抗部を介して外部又は
ガス拡散室と連通された内部基準酸素源を形成してなる
空燃比検出素子等にも本発明は適用できる。
The present invention can be applied to an air-fuel ratio detection element having at least an oxygen pump element and a gas diffusion chamber, and it goes without saying that the invention can be applied to an element having the following configuration as the air-fuel ratio detection element. For example, an air-fuel ratio detection element equipped with an oxygen concentration battery element facing an oxygen pump element, an air-fuel ratio detection element without such an oxygen concentration battery element, or a detection element made of titania in place of an oxygen concentration battery element can be used in an oxygen pump. It can also be applied to an air-fuel ratio detection element placed opposite the element. In addition, the air-fuel ratio detection element is formed with an atmosphere introduction chamber into which the atmosphere is introduced to the outside porous electrode side that is not in contact with the gas diffusion chamber of the oxygen concentration battery element, and this porous electrode is closed with a shielding plate, and the oxygen The present invention can also be applied to an air-fuel ratio detection element, etc., which forms an internal reference oxygen source that is communicated with the outside or a gas diffusion chamber via a leakage resistor for leaking oxygen.

[作用1 本発明の空燃比検出素子は、空燃比検出素子の寸法を特
定することにより、−室以上の強度を有するとともに熱
容量の小さなコンパクトな空燃比検出素子が実現できる
。そして、このようにコンパクトにできることにより、
空燃比検出素子の温度がヒータ等の加熱によって急速に
上昇しても、素子自体の膨張等が少ないことからサーマ
ルショックによって素子が損なわれることがない。従っ
て、始動時に急加熱することができ、始動時間の短い暖
機特性の優れたものとなる。
[Operation 1] By specifying the dimensions of the air-fuel ratio detecting element of the present invention, it is possible to realize a compact air-fuel ratio detecting element that has strength greater than or equal to a -chamber and has a small heat capacity. And by being able to make it compact like this,
Even if the temperature of the air-fuel ratio detection element rises rapidly due to heating by a heater or the like, the element itself will not be damaged by thermal shock because the element itself will not expand much. Therefore, rapid heating can be performed at the time of starting, resulting in excellent warm-up characteristics with short starting time.

また、測定ガスの拡散速度の律速をガス導入部で行うも
のにおいては、空燃比検出素子の周波数に対する応答性
は、ガス拡散室の測定空間によって変化する。即ち測定
空間の間隙が狭くなると測定ガスの拡散速度がその間隙
で律速しで測定精度が低下し、一方、間隙が広すぎると
酸素ポンプ素子のポンピング能力が状態の変化に追いつ
かず応答性が低下する。従って、請求項2に記載した様
に所定の測定空間を設定することにより、測定精度や応
答性に優れた空燃比検出素子となる。
In addition, in the case where the diffusion rate of the measurement gas is controlled by the gas introduction section, the response of the air-fuel ratio detection element to the frequency changes depending on the measurement space of the gas diffusion chamber. In other words, if the gap in the measurement space becomes narrow, the diffusion rate of the gas to be measured will be limited by that gap, resulting in a decrease in measurement accuracy.On the other hand, if the gap is too wide, the pumping ability of the oxygen pump element will not be able to keep up with changes in the state, resulting in a decrease in responsiveness. do. Therefore, by setting a predetermined measurement space as described in claim 2, an air-fuel ratio detection element with excellent measurement accuracy and responsiveness can be obtained.

[実施例] 以下本発明の一実施例を図面に従って説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

第1図は本実施例の空燃比検出素子1の斜視図、第2図
は空燃比検出素子1及びそのヒータ2の一部破断斜視図
、第3図はそれらの分解斜視図を示している。
Fig. 1 is a perspective view of the air-fuel ratio detection element 1 of this embodiment, Fig. 2 is a partially cutaway perspective view of the air-fuel ratio detection element 1 and its heater 2, and Fig. 3 is an exploded perspective view thereof. .

第2図に示す様に、空燃比検出素子]の両側には、ヒー
タ2が空燃比検出素子]と一定の間隔を保って近接して
配置されている。
As shown in FIG. 2, heaters 2 are disposed on both sides of the air-fuel ratio detection element in close proximity to the air-fuel ratio detection element at a constant distance.

空燃比検出素子1は、固体電解質基板3の両側1:多孔
質電極4.6を形成した酸素濃淡電池素子8と、同じく
固体電解質基板10の両側に多孔質電極]2,14を形
成した酸素ポンプ素子16と、これらの画素子8.16
の間に積層されてガス拡散室18を形成する上下の2体
の内部スペーサ20、22とを備えている。更に、酸素
濃淡電池素子8の外側には、多孔質電極6を覆って遮蔽
体24が積層さね 一方、酸素ポンプ素子16の外側に
(上 多孔質電極14を覆って多孔質保護層19が積層
されている。
The air-fuel ratio detection element 1 includes an oxygen concentration battery element 8 on which porous electrodes 4 and 6 are formed on both sides 1 of a solid electrolyte substrate 3, and an oxygen concentration cell element 8 on which porous electrodes 2 and 14 are formed on both sides of a solid electrolyte substrate 10. Pump element 16 and these pixel elements 8.16
It includes two internal spacers 20 and 22, upper and lower, which are stacked in between to form a gas diffusion chamber 18. Furthermore, a shield 24 is laminated on the outside of the oxygen concentration battery element 8, covering the porous electrode 6. On the other hand, a porous protective layer 19 is laminated on the outside of the oxygen pump element 16 (top), covering the porous electrode 14. Laminated.

上記酸素ポンプ素子16は、後述する第1表に示す寸法
を有している(以下各部材の寸法は第1表に記す)。そ
の固体電解質基板10は主としてイツトリア−ジルコニ
ア固溶体からなり、一方、多孔質電極12.14は各々
8mm2の電極面積を有し、イツトリア−ジルコニア固
溶体と白金とから形成されている。また、多孔質保護層
]9は、主にアルミナから形成されている。
The oxygen pump element 16 has dimensions shown in Table 1, which will be described later (the dimensions of each member are shown in Table 1 below). The solid electrolyte substrate 10 consists primarily of yttria-zirconia solid solution, while the porous electrodes 12,14 each have an electrode area of 8 mm2 and are formed from yttria-zirconia solid solution and platinum. Further, the porous protective layer] 9 is mainly made of alumina.

一方、上記酸素濃淡電池素子8は、酸素ポンプ素子16
と同様に、イツトリア−ジルコニア固溶体からなる固体
電解質基板3の両面に、上記と同様な多孔質電極4,6
を形成したものである。
On the other hand, the oxygen concentration battery element 8 includes an oxygen pump element 16
Similarly, porous electrodes 4 and 6 similar to those described above are provided on both sides of a solid electrolyte substrate 3 made of an yttria-zirconia solid solution.
was formed.

また、遮蔽体24はジルコニアからなる固体電解質から
形成されている。この遮蔽体24は酸素濃淡電池素子8
の外側の多孔質電極6を内部基準酸素源Rとして用いる
ために、その多孔質電極6を外部の測定ガスより遮断す
るものである。
Moreover, the shielding body 24 is formed from a solid electrolyte made of zirconia. This shield 24 is the oxygen concentration battery element 8
In order to use the outer porous electrode 6 as the internal reference oxygen source R, the porous electrode 6 is isolated from the external measurement gas.

この外側の多孔質電極6は、内部基準酸素源Rとして用
いる際に、その内部に発生した酸素をガス拡散室18に
漏出できるように形成されている。
This outer porous electrode 6 is formed so that, when used as an internal reference oxygen source R, oxygen generated therein can leak into the gas diffusion chamber 18.

即ち、第3図に示すアルミナ等からなる多孔質絶縁体3
6.多孔質電極6と同じ材料からなる導電材38.スル
ーホール40及び内側の多孔質電極4のリード部42が
、漏出抵抗部として形成さ札外側の多孔質電極6内に発
生された酸素をこの漏出抵抗部を介してガス拡散室18
に漏出するようにされでいる。
That is, the porous insulator 3 made of alumina etc. shown in FIG.
6. A conductive material 38 made of the same material as the porous electrode 6. The through hole 40 and the lead part 42 of the inner porous electrode 4 are formed as a leak resistance part, and the oxygen generated in the outer porous electrode 6 is passed through the leak resistance part to the gas diffusion chamber 18.
It is supposed to leak.

更に、上記酸素ポンプ素子16と酸素濃淡電池素子8と
によって挟まれる内部スペーサ20,22は、アルミナ
を素材とするコ字状の部材20と凹状の部材22とから
なり、内側の多孔質電極4゜12と同径のガス拡散室1
8を形成する。このガス拡散室18の両側には 外部と
連通ずるガス導入孔46.48が設けられており、その
ガス導入孔46.48にはアルミナからなる多孔質の充
填剤が詰められて、ガス律速層50,52が形成されで
いる。
Furthermore, the internal spacers 20 and 22 sandwiched between the oxygen pump element 16 and the oxygen concentration battery element 8 are composed of a U-shaped member 20 and a concave member 22 made of alumina, and the inner porous electrode 4 Gas diffusion chamber 1 with the same diameter as ゜12
form 8. Gas introduction holes 46 and 48 communicating with the outside are provided on both sides of this gas diffusion chamber 18, and the gas introduction holes 46 and 48 are filled with a porous filler made of alumina to form a gas rate controlling layer. 50 and 52 are already formed.

第1表 尚、上述した空燃比検出素子1の外側の表面には、多孔
質電極14の表面を除いて、通常厚さ10〜20μmの
図示しない絶縁被膜が形成されている。
Table 1 Note that an insulating coating (not shown) having a thickness of usually 10 to 20 μm is formed on the outer surface of the air-fuel ratio detection element 1 described above, except for the surface of the porous electrode 14.

一方、 ヒータ2は第2表に示す寸法を有し、第2図に
示すように、空燃比検出素子1の両側に、各々耐熱セメ
ントからなる厚さ約100μmの外部スペーサ60を介
して、空燃比検出素子1と平行に配置されている。この
ヒータ2【表 第4図に示すように、アルミナからなる
母体シート64の方の0!11  即ち空燃比検出素子
1側に、蛇行したU字状の発熱パターン66を備えてお
り、その発熱パターン66はアルミナからなる内側ラミ
ネートシート68に覆われている。また、母体シート6
4の他方の側には、スルーホール70を介して発熱パタ
ーン66と接続されたマイグレーション防止パターン7
2を備え、そのマイグレーション防止パターン72は外
側ラミネートシート74に覆われている。
On the other hand, the heater 2 has the dimensions shown in Table 2, and as shown in FIG. It is arranged parallel to the fuel ratio detection element 1. As shown in FIG. 4, this heater 2 is provided with a meandering U-shaped heat generation pattern 66 on the 0!11 side of the base sheet 64 made of alumina, that is, on the air-fuel ratio detection element 1 side, and the heat generated by the heater 2 is Pattern 66 is covered by an inner laminate sheet 68 of alumina. In addition, the mother sheet 6
On the other side of 4, a migration prevention pattern 7 is connected to a heat generating pattern 66 through a through hole 70.
2, the migration prevention pattern 72 of which is covered with an outer laminate sheet 74.

第2表 尚、上記マイグレーション防止パターン72は、発熱パ
ターン66とほぼ同形に形成さ札 スルーホールア0を
介してヒータ電源のマイナス極(二のみ接続されている
。このマイグレーション防止パターン72は、母体シー
ト64に含有されているSiC2,Cab、MgO等の
微量のフラックスが、高温及び大きな電位差によって移
動して、発熱パターン66を損傷することを防ぐための
ものである。即ち、発熱パターン66とマイグレーショ
ン防止パターン72との間で積極的にマイグレーション
を行わせることによって、発熱パターン66の正負の電
極間でのマイグレーションを防止するものである。
Table 2 Note that the migration prevention pattern 72 is formed in almost the same shape as the heat generation pattern 66. Only the negative pole (2) of the heater power source is connected through the through hole A0. This is to prevent trace amounts of flux such as SiC2, Cab, MgO, etc. contained in the sheet 64 from moving due to high temperature and large potential difference and damaging the heat generating pattern 66. That is, the heat generating pattern 66 and migration By actively causing migration with the prevention pattern 72, migration between the positive and negative electrodes of the heat generating pattern 66 is prevented.

次に、上述した各部材からなる空燃比検出素子1及びヒ
ータ2の製造手順を第3図に基づいて説明する。
Next, the manufacturing procedure of the air-fuel ratio detection element 1 and the heater 2 made up of the above-mentioned members will be explained based on FIG. 3.

まず、酸素ポンプ素子8及び酸素濃淡電池素子16の固
体電解質基板3.]oとなるシートを、イツトリア−ジ
ルコニア系の粉末に焼結助剤としてシリカを約2.5重
量%添加し、PVB系のバインダと有機溶剤とを用い、
 ドクターブレード法により製造する。
First, the solid electrolyte substrate 3 of the oxygen pump element 8 and the oxygen concentration battery element 16. ] o was prepared by adding about 2.5% by weight of silica as a sintering aid to yttria-zirconia powder, using a PVB binder and an organic solvent,
Manufactured by the doctor blade method.

そして、上記シート上に多孔質電極4. 6. 12、
14を形成するため、共素地16重量%と、比表面積1
0+n2/g以下(例えば4〜6m2/g)の白金粉末
とを、セルロース系或はPVB系のバインダ、及びブチ
ルカルピトールの様な溶剤を用いてペースト化し、この
ペーストをスクリーンによってシート上に印刷する。更
に酸素ポンプ素子]6の外側の多孔質電極]4の表面を
、多孔質保護層19となるペースト化したアルミナで印
刷して覆う。
Then, a porous electrode 4. 6. 12,
14, the co-base material is 16% by weight and the specific surface area is 1.
0+n2/g or less (e.g. 4 to 6 m2/g) of platinum powder is made into a paste using a cellulose-based or PVB-based binder and a solvent such as butyl calpitol, and this paste is printed on a sheet using a screen. do. Further, the surface of the outer porous electrode 4 of the oxygen pump element 6 is printed and covered with paste-formed alumina that will become the porous protective layer 19.

また、内部スペーサ20. 2”2として、アルミナか
らなるシートを形成して、酸素ポンプ素子8上に配置し
、ガス導入孔46.48となる切欠部分1ニ ペースト
化したアルミナを印刷してガス律速層50,52を形成
する。
In addition, the internal spacer 20. 2"2, a sheet made of alumina is formed and placed on the oxygen pump element 8, and the notched portion 12, which will become the gas introduction hole 46. Form.

そして、上記酸素濃淡電池素子8.酸素ポンプ素子16
.内部スペーサ20.22等を積層するとともに、遮蔽
体24のシートを圧着した後に、約1500℃で1時間
通常の焼成を行って、空燃比検出素子]を製造する。
And the oxygen concentration battery element 8. Oxygen pump element 16
.. After laminating the internal spacers 20, 22, etc. and crimping the sheet of the shield 24, normal firing is performed at about 1500° C. for 1 hour to produce an air-fuel ratio detection element.

ヒータ2は、空燃比検出素子1とは別体に製造されるも
のであり、母体シート64に発熱パターン66及びマイ
グレーション防止パターン70を印刷し、更にその両側
にラミネートシート74を積層したものを焼成して製造
する。
The heater 2 is manufactured separately from the air-fuel ratio detection element 1, and is made by printing a heat generation pattern 66 and a migration prevention pattern 70 on a base sheet 64, and then laminating a laminate sheet 74 on both sides of the base sheet 64 and then firing it. and manufacture it.

そして、このヒータ2は、上記焼成した空燃比検出素子
1の両側に、外部スペーサ60を挟んで耐熱性無機接着
剤を用いて貼付けられる。
Then, this heater 2 is attached to both sides of the fired air-fuel ratio detection element 1 with an external spacer 60 in between, using a heat-resistant inorganic adhesive.

次に、空燃比検出素子1の動作を説明する。Next, the operation of the air-fuel ratio detection element 1 will be explained.

まず、酸素濃淡電池素子8の多孔質電極4,6間に、外
側の多孔質電極6を正極とし内側の多孔質電極4を負極
とするように所定の電圧(例えば5V)を抵抗(例えば
250にΩ)を介して印加することにより所定電流永流
して、ガス拡散室18内から内部基準酸素源R(外側の
多孔質電極6)二酸素を輸送する。
First, a predetermined voltage (for example, 5 V) is applied between the porous electrodes 4 and 6 of the oxygen concentration battery element 8 with a resistance (for example, 250 V) so that the outer porous electrode 6 is the positive electrode and the inner porous electrode 4 is the negative electrode. Ω) to transport dioxygen from the internal reference oxygen source R (outer porous electrode 6) from within the gas diffusion chamber 18.

次いで、内部基準酸素源Rの酸素ガス分圧がガス拡散室
18内の酸素ガス分圧より高くなると、この酸素ガス分
圧比によって、多孔質電極4,6間に起電力が生ずる。
Next, when the oxygen gas partial pressure of the internal reference oxygen source R becomes higher than the oxygen gas partial pressure in the gas diffusion chamber 18, an electromotive force is generated between the porous electrodes 4 and 6 due to this oxygen gas partial pressure ratio.

この端子間電圧はガス拡散室18内のガスがリッチ域の
場合とリーン域の場合との間で数百mVの差が生じ、か
つその差はリッチ域とリーン域との境すなわち理論空燃
比でステップ状に変化する。
A difference of several hundred mV occurs between this voltage between the terminals when the gas in the gas diffusion chamber 18 is in the rich region and in the lean region, and the difference is at the boundary between the rich region and the lean region, that is, at the stoichiometric air-fuel ratio. changes in steps.

酸素ポンプ素子16は、この酸素濃淡電池素子8の特性
変化を利用して、ガス拡散室18内の空燃比状態が周囲
測定ガスの空燃比状態の如何にかかわらず常にほぼ理論
空燃比(λ=1)となるように、ガス拡散室18内に外
部から酸素をくみ入れたりくみ出したりする。
The oxygen pump element 16 utilizes this change in the characteristics of the oxygen concentration cell element 8 so that the air-fuel ratio state in the gas diffusion chamber 18 is always approximately the stoichiometric air-fuel ratio (λ= 1) Oxygen is pumped into and out of the gas diffusion chamber 18 from the outside.

即ち、酸素濃淡電池素子8の両端子間の電圧が所定の一
定値になるように、酸素ポンプ素子16を用いてガス拡
散室18の酸素をくみ出したりくみ入れたりさせ、その
時の酸素ポンプ素子16(:流れる電流(ポンプ電流l
p)を検出して排ガスの空燃比出力とする。
That is, the oxygen pump element 16 is used to pump out or pump oxygen into the gas diffusion chamber 18 so that the voltage between both terminals of the oxygen concentration battery element 8 becomes a predetermined constant value, and the oxygen pump element 16 at that time (: flowing current (pump current l
p) is detected and used as the air-fuel ratio output of the exhaust gas.

あるいは、その逆に酸素ポンプ素子16のポンプ電流1
pを一定値に実制御してガス拡散室18の酸素を所定量
だけくみ出すかくみ入札 その時の酸素濃淡電池素子8
の電極間の電圧を検出することにより、排ガスの空燃比
に応じた信号を検出することができる。
Or, conversely, the pump current 1 of the oxygen pump element 16
Hidden bidding to pump out a predetermined amount of oxygen from the gas diffusion chamber 18 by actually controlling p to a constant value.Oxygen concentration battery element 8 at that time
By detecting the voltage between the electrodes, a signal corresponding to the air-fuel ratio of the exhaust gas can be detected.

次に、本発明の効果を確認するために行った実験例につ
いて説明するが、下記(実験例1〜2)は空燃比検出素
子の寸法を変えてサーマルショックによる影響を調べた
ものである。またく実験例3〜5)は空燃比検出素子の
暖機特性を調べたものであり、 (実験例6〜8)は空
燃比検出素子の測定空間の寸法を変えて応答性等1:つ
いて調べたものである。更に(実験例9)は接着幅aに
ついての実験例である。
Next, experimental examples conducted to confirm the effects of the present invention will be described. In the following (experimental examples 1 and 2), the influence of thermal shock was investigated by changing the dimensions of the air-fuel ratio detection element. In addition, Experimental Examples 3 to 5) investigated the warm-up characteristics of the air-fuel ratio detection element, and Experimental Examples 6 to 8) investigated the response, etc. by changing the dimensions of the measurement space of the air-fuel ratio detection element. This is what I researched. Furthermore, (Experimental Example 9) is an experimental example regarding the adhesive width a.

(実験例]) 第1図に示す空燃比検出素子の厚さ(素子厚さ)tと幅
(素子幅)Wを変えて、各種の空燃比検出素子を製造し
Lム この空燃比検出素子を用いて急熱急冷サイクル試
験を行っL この急熱急冷サイクル試験とは第5図で示
すように、最初の60秒間は約1250°C+SO°C
で加熱し、次17)60秒間は20°C±10°Cで放
冷し、次の60秒間は20′C±10℃の空気を送って
強制空冷するものであり、この180秒間を1サイクル
とする。
(Experimental example) Various air-fuel ratio sensing elements were manufactured by changing the thickness (element thickness) t and width (element width) W of the air-fuel ratio sensing element shown in Fig. 1. A rapid heating and cooling cycle test was carried out using
17) Then, for 60 seconds, it is left to cool at 20°C ± 10°C, and for the next 60 seconds, air at 20'C ± 10°C is sent for forced air cooling. Cycle.

そして、耐サーマルショック性を調べるため1三、素子
幅Wを4.0mmで一定とし、素子厚さtとサイクル数
とを変えて、その時の素子のシートの厚さ方向のガス透
過性の有無を調べ札 即ち、素子の厚さ方向にガス透過
性があれ(瓜 サーマルショックによって空燃比検出素
子が損傷を受けたと判断するものである。このガス透過
性の判定方法は、空燃比検出素子の温度が800℃のり
フチガス中では、ポンプ電流1pをOmAとした時、酸
素濃淡電池素子の電圧(電池電圧)Vsが800mVを
超えるのが正常なので、電池電圧がVsが800mVを
下回る場合をガスの透過と判定したものである。
In order to investigate the thermal shock resistance, the element width W was kept constant at 4.0 mm, the element thickness t and the number of cycles were changed, and the gas permeability in the thickness direction of the element sheet at that time was determined. In other words, if there is gas permeability in the thickness direction of the element, it is determined that the air-fuel ratio detection element has been damaged by thermal shock. When the temperature is 800℃ and the temperature is 800℃, when the pump current 1p is OmA, it is normal for the voltage of the oxygen concentration battery element (cell voltage) Vs to exceed 800mV. This is determined to be transparent.

その結果ti軸にサイクル数をとり横軸に素子厚さtを
とった第6図に示す。図から明らかなように、耐サーマ
ルショック性は素子厚さtが1゜25mm以下の範囲の
ときに高く好適である。
The results are shown in FIG. 6, where the ti axis represents the number of cycles and the horizontal axis represents the element thickness t. As is clear from the figure, the thermal shock resistance is high and suitable when the element thickness t is in the range of 1° to 25 mm or less.

(実験例2) 次に、様々な素子厚さtと素子幅Wの空燃比検出素子を
用いて、200サイクル前後の急熱急冷の試験を行い、
その時の素子の厚さ方向のガス透過↑上 即ち耐サーマ
ルショックの過 不適を、200サイクル以上と200
サイクル未満に分けて調べん その結果を第7図に示す
が、この図に用いた記号の意味は第3表に示す通りであ
り、第7図の境界の下側が200サイクル以上の実験デ
ータを示している。
(Experimental Example 2) Next, using air-fuel ratio detection elements with various element thicknesses t and element widths W, rapid heating and cooling tests were conducted for around 200 cycles.
At that time, the gas permeation in the thickness direction of the element is ↑.
The results are shown in Figure 7. The meanings of the symbols used in this figure are as shown in Table 3. It shows.

第3表 この図から明らかなように、 200サイクル以上の時
でも、素子厚さtが0.7mm−1、25rrm。
Table 3 As is clear from this figure, the element thickness t is 0.7 mm-1, 25 rrm even after 200 cycles or more.

好ましくは0.9mm〜1.15眼 かつ素子幅Wが2
.8mm〜4.0mmの寸法の範囲では、効果的fニガ
スの透過を防止できる。即ち、上記寸法の空燃比検出素
子は、高い耐サーマルショック性を備えている。ここで
、素子厚さtが0.7未満てガスの透過量が多いのは、
素子が薄すぎるためと考えられ素子として不適である。
Preferably 0.9 mm to 1.15 eyes and element width W of 2
.. A size range of 8 mm to 4.0 mm can effectively prevent the permeation of gases. That is, the air-fuel ratio detection element having the above dimensions has high thermal shock resistance. Here, when the element thickness t is less than 0.7, the amount of gas permeation is large because
This is thought to be because the element is too thin, making it unsuitable as an element.

尚、素子幅Wの下限値2.8mmは、設計上の制約によ
るものであり、以下にその理由を説明する。
Note that the lower limit value of 2.8 mm for the element width W is due to design constraints, and the reason will be explained below.

第8図(二示すように、上述したマイグレーション防止
の効果を発揮するためには、発熱パターンの中央の間隔
w1が母体シートの厚さtbの1.5倍以上 具体的に
は0.8mm以上であることが望ましい。また、蛇行す
る発熱パターン(表 印刷精度及び抵抗値との関係で0
.4mmの線幅が必要であり、かつ有効な発熱面積を得
るためには、蛇行幅w2として0.8mmが必要とされ
る。また接着幅W3として0.5mm必要とされる。従
って、 ヒータの幅whは、 wh =w、+w2X 2 +W3.X 2=o、a+
o、8X2+0,5X2 =3 4mm となる。ここで、焼成後の割掛が1.23〜1゜24で
あるから、 ヒータの幅whは2゜8mmとなる。
As shown in Figure 8 (2), in order to exhibit the above-mentioned migration prevention effect, the interval w1 between the centers of the heating patterns must be at least 1.5 times the thickness tb of the base sheet, specifically at least 0.8 mm. In addition, it is desirable that the meandering heating pattern (table 0
.. A line width of 4 mm is required, and in order to obtain an effective heat generating area, a meandering width w2 of 0.8 mm is required. Further, a bonding width W3 of 0.5 mm is required. Therefore, the width wh of the heater is wh = w, +w2X 2 +W3. X 2=o, a+
o, 8X2+0,5X2 = 3 4mm. Here, since the firing ratio after firing is 1.23 to 1°24, the width wh of the heater is 2°8 mm.

また、空燃比検出素子の多孔質電極から引き出されるリ
ード線の幅は最小0.5mmであり、電極部分の幅はそ
の1.5倍、即ち0.75mnnが必要とされる。従っ
て、電極の両側の接着幅aとして0.7mmX2を考慮
すると、素子幅Wは計2.15mm(約2.2mm)と
なるが、空燃比検出素子はヒータと平行に配置されるこ
とから、酸素ポンプ素子を有効に加熱して優れた応答性
を得るためには、空燃比検出素子の最小幅はヒータと同
様な寸法の2.8mmが必要とされる。
Further, the width of the lead wire drawn out from the porous electrode of the air-fuel ratio detection element is at least 0.5 mm, and the width of the electrode portion is required to be 1.5 times that width, that is, 0.75 mnn. Therefore, considering 0.7 mm x 2 as the adhesive width a on both sides of the electrode, the element width W will be 2.15 mm (approximately 2.2 mm) in total, but since the air-fuel ratio detection element is arranged parallel to the heater, In order to effectively heat the oxygen pump element and obtain excellent responsiveness, the minimum width of the air-fuel ratio detection element is required to be 2.8 mm, which is the same size as the heater.

(実験例3) 次に、暖機特性を調べるために、素子厚さtを1.25
mmで一定とし素子幅Wを変えて、発生する電池電圧V
sが始動時から作動時の450mVになるまでの時間を
測定し旭 この結果を第9図に示す、これは縦軸に電池
電圧Vsが450mVになるまでの時間をとり横軸に素
子幅Wをとったものである。図から明らかなように、素
子幅Wが40mm以下のときは、電池電圧Vsが450
mVになるまでの時間は25秒前後であり、暖機特性に
優れていることを示している。尚、同じ構造の従来の空
燃比検出素子の寸法(友 通常素子厚さtが1.45m
m〜1.8ffrr1.素子幅Wが5.5mm〜7mm
であり、上記450mVになるまでには約90秒以上か
かっていた (実験例4) 同様に暖機特性を調べるために、素子厚さtを1.25
mmで一定とし素子幅we変えて、発生するポンプ電圧
Vpが始動時から1.5vになるまでの時間を測定し九
 この結果を第10図に示すが、これは縦軸にポンプ電
圧Vpが1.5vになるまでの時間乞とり横軸に素子幅
Wをとったものである。図から明らかなように、素子幅
Wが4゜0mm以下のときは、ポンプ電圧vpが1 5
Vになるまでの時間も約42秒と少なく暖機特性に優れ
ている。尚、上記寸法の従来例では、約120秒以上か
かっていた (実験例5) 更1:、  1600 c c、  4サイクルエンジ
ンを用いて暖機特性の実験を行っ九 本実施例の寸法の
素子を用いた全領域空燃比センサとして、始動時13V
を印加してヒータをオンするもの(1)を用い、比較例
として常時ヒータオンのもの(11) 。
(Experimental Example 3) Next, in order to investigate the warm-up characteristics, the element thickness t was set to 1.25.
The battery voltage V generated by changing the element width W while keeping it constant in mm
The time required for s to reach 450 mV from startup to operation was measured. The results are shown in Figure 9, where the vertical axis represents the time it takes for the battery voltage Vs to reach 450 mV, and the horizontal axis represents the element width W. This is the one taken. As is clear from the figure, when the element width W is 40 mm or less, the battery voltage Vs is 450 mm or less.
The time it took to reach mV was around 25 seconds, indicating excellent warm-up characteristics. In addition, the dimensions of a conventional air-fuel ratio detection element with the same structure (normal element thickness t is 1.45 m).
m~1.8ffrr1. Element width W is 5.5mm to 7mm
It took about 90 seconds or more to reach the above 450 mV (Experimental Example 4) Similarly, in order to investigate the warm-up characteristics, the element thickness t was set to 1.25 mV.
The time taken for the generated pump voltage Vp to reach 1.5 V from the time of startup was measured by changing the element width (we) while keeping it constant in mm.9 The results are shown in Figure 10, where the vertical axis shows the pump voltage Vp. The horizontal axis represents the time taken to reach 1.5V and the element width W. As is clear from the figure, when the element width W is 4°0 mm or less, the pump voltage vp is 15
The time it takes to reach V is only about 42 seconds, and the warm-up characteristics are excellent. In addition, in the conventional example with the above dimensions, it took about 120 seconds or more (Experiment Example 5).Furthermore, an experiment was conducted on the warm-up characteristics using a 1600 cc, 4-cycle engine. As a full-range air-fuel ratio sensor using
(1) in which the heater is turned on by applying a voltage is used, and (11) in which the heater is always on as a comparative example.

ヒータ付のλセンサ(Ill ) 、  ヒータ無しの
λセンサ(IV)を用い翫 その結果を、第11図に示
す。
The results are shown in FIG. 11 using a λ sensor with a heater (Ill) and a λ sensor without a heater (IV).

この第11図は、始動時からの経過時間にしたがって、
画素子のポンプ電圧Vpや電池電圧Vs、水温や排気温
の変化等を示したものである。図から明らかなように、
本実施例の検出素子を用いたセンサ(+)li  電池
電圧Vsが450mVに達する時間が約26秒、ポンプ
電圧Vpが1.5vに達する時間が約30秒、即ち暖機
活性化時間が約30秒と短く好適である。尚、この暖機
活性化時間とは、常に測定雰囲気を示す比較例の常時ヒ
ータオンのセンサ(11)の出力と、本実施例のセンサ
(1)の出力とが一致するまでの時間である。
This FIG. 11 shows that according to the elapsed time from the time of startup,
It shows changes in the pump voltage Vp of the pixel element, the battery voltage Vs, the water temperature, the exhaust temperature, etc. As is clear from the figure,
Sensor (+)li using the detection element of this example: The time for the battery voltage Vs to reach 450 mV is approximately 26 seconds, and the time for the pump voltage Vp to reach 1.5V is approximately 30 seconds, that is, the warm-up activation time is approximately It is suitable as it is as short as 30 seconds. Note that this warm-up activation time is the time until the output of the sensor (11) of the comparative example whose heater is always on, which always indicates the measurement atmosphere, and the output of the sensor (1) of the present example match.

また、比較例のλセンサ(Ill ) 、  (IV 
)の暖機活性化時間(出力が450mVに達する時間)
(上  構造が簡単であるにも係わらずそれぞれ42秒
、88秒と遅い。
In addition, the λ sensors (Ill) and (IV
) warm-up activation time (time for output to reach 450mV)
(Despite their simple structure, they are slow at 42 seconds and 88 seconds, respectively.

次に、ガス拡散室(測定空間)の多孔質電極の面積やガ
ス拡散室の間隙の寸法を変えて、周波数二対する応答や
測定精度について調べた実験例について説明する。これ
らの実験から、応答性や測定精度に優れた測定空間とし
て好適な寸法が見いだされ九 (実験例6) まず、好適な酸素ポンプ素子の電極面積を求めるため(
二行った実験について説明する。この実験は、空燃比λ
二0.8、測定温度を800℃として、ポンプ電圧Vp
と酸素ポンプ素子の電極面積との関係を求めん その結
果を縦軸にポンプ電圧Vpuとり横軸に酸素ポンプ素子
の電極面積をとった第12図に示す。図から明らかなよ
うに、ポンプ電圧Vpとして好適な2.OV以下となる
酸素ポンプ素子の電極面積は、3,0mm2以上である
Next, an experimental example will be described in which the response to two frequencies and measurement accuracy were investigated by changing the area of the porous electrode in the gas diffusion chamber (measurement space) and the gap size of the gas diffusion chamber. From these experiments, suitable dimensions for a measurement space with excellent responsiveness and measurement accuracy were found (Experiment Example 6).
2. I will explain the experiment I conducted. In this experiment, the air-fuel ratio λ
20.8, when the measurement temperature is 800°C, the pump voltage Vp
The relationship between V and the electrode area of the oxygen pump element is determined. The results are shown in FIG. 12, where the vertical axis is the pump voltage Vpu and the horizontal axis is the electrode area of the oxygen pump element. As is clear from the figure, 2. The electrode area of the oxygen pump element that is below OV is 3.0 mm2 or more.

また通常多孔質電極の幅は電極から伸びるリード線の幅
の1.5倍を必要とするので、例えば0゜5mmの幅の
リード線の1.5倍の0.75mmが必要となる。従っ
て電極面積が3,0mm2の場合は、電極の長さは3.
0mm270.75mm 24mmとなる。
Further, the width of the porous electrode is usually required to be 1.5 times the width of the lead wire extending from the electrode, so for example, the width of the porous electrode is 0.75 mm, which is 1.5 times the width of the lead wire having a width of 0.5 mm. Therefore, if the electrode area is 3.0 mm2, the length of the electrode is 3.0 mm2.
0mm270.75mm 24mm.

(実験例7) 次に、ガス拡散室の測定空間と周波数に対する応答性(
応答特性)との関係について調べるため二、周波数に対
するゲイン(△Vp/△1pデシベル(dB))を求め
、応答性の限界としてゲインがOdBのときの周波数を
調べた 尚、ゲインOdBとは△Vp/Δ1p=1で増
幅度1であり、それ以下では信号は減衰される。この結
果左横軸に測定空間をとり縦軸にゲインOdBとなる周
波数をとった第13図に示す。図から明らかなように、
測定空間が小さくなるほど周波数特性が向上することが
わかる。また、例えばエンジンでは実用上10Hz以上
を必要とするので、測定空間の容積は0 、05mm3
〜]、 0mm3としたものが、空燃比検出素子の応答
性がよく好適である。
(Experiment Example 7) Next, the measurement space of the gas diffusion chamber and the response to frequency (
In order to investigate the relationship with response characteristics), we calculated the gain (△Vp/△1p decibel (dB)) with respect to frequency, and investigated the frequency when the gain is OdB as the limit of response.In addition, gain OdB is △ When Vp/Δ1p=1, the amplification degree is 1, and below that, the signal is attenuated. The results are shown in FIG. 13, in which the left horizontal axis represents the measurement space and the vertical axis represents the frequency at which the gain is O dB. As is clear from the figure,
It can be seen that the smaller the measurement space, the better the frequency characteristics. In addition, for example, engines require a frequency of 10 Hz or higher in practice, so the volume of the measurement space is 0.05 mm3.
], 0 mm3 is preferable because the air-fuel ratio detection element has good responsiveness.

(実験例8) また、上記実験例7の測定空間の容積の範囲内で、ポン
プ電流ipと電池電圧Vsとの関係から急峻な7カーブ
、即ち良好な測定精度が得られるか否かを調べた その
結果を第14図(測定空間0 、23mm3)及び第1
5図(測定空間0.75mm3)に示すが、それぞれ縦
軸にポンプ電流1pをとり横軸に電池電圧Vstとった
グラフである。
(Experiment Example 8) Also, it was investigated whether a steep 7 curve, that is, good measurement accuracy could be obtained from the relationship between the pump current ip and the battery voltage Vs within the volume of the measurement space in Experiment Example 7 above. The results are shown in Figure 14 (measurement space 0, 23mm3) and Figure 1.
Figure 5 (measurement space 0.75 mm3) is a graph in which the vertical axis represents the pump current 1p and the horizontal axis represents the battery voltage Vst.

両図から明らかなように上記測定空間の容積の範囲内の
試料では急峻なZカーブ、即ち良好な測定精度が得られ
る。
As is clear from both figures, a steep Z curve, that is, good measurement accuracy can be obtained for the sample within the volume of the measurement space.

特に、上記実験例6で述べたように、電極面積は3 m
m2以上が望ましいので、測定空間の間隙は20μm〜
100μへ 特にそのうちでも3.0 B mm100
μmが測定精度及び応答性に優れ好適である。
In particular, as mentioned in Experimental Example 6 above, the electrode area is 3 m
The gap in the measurement space is preferably 20 μm or more, as it is desirable to have a gap of 20 μm or more.
To 100μ, especially 3.0 B mm100
μm is preferable because of its excellent measurement accuracy and responsiveness.

尚、測定空間の間隙が20μmを下回ると、ガス拡散が
狭い間隙により律速されてVs−lp特性が急峻でなく
なるので、間隙の下限値は20μmとされる。
Note that when the gap in the measurement space is less than 20 μm, gas diffusion is rate-limited by the narrow gap and the Vs-lp characteristic becomes less steep, so the lower limit of the gap is set to 20 μm.

(実験例9) 次に、その他の実験例として、電極の外周と、固体電解
質及び遮蔽体との外周の差、即ち接着幅a(第1図)の
適正値を求めるために行った実験について説明する。こ
の実験では素子幅Wを4゜0唾 素子厚さtを1.25
mmで一定にし、接着幅aとサイクル数とを変えて、サ
ーマルショックによる剥離等を調べた その結果を縦軸
にサイクル数をとり横軸1こ接着幅aをとった第16図
に示す。図から明らかなように、接着幅ah<0.7m
m以上であれば、200サイクル以上の急熱急冷試験を
行なっても剥離等もなくサーマルショックにも強く好適
である。
(Experiment Example 9) Next, as another example of an experiment, an experiment was conducted to find the appropriate value of the difference between the outer circumference of the electrode and the outer circumference of the solid electrolyte and the shield, that is, the adhesive width a (Fig. 1). explain. In this experiment, the element width W was 4°0, and the element thickness t was 1.25.
The adhesive width a and the number of cycles were kept constant in mm, and peeling due to thermal shock was investigated by varying the adhesive width a and the number of cycles. The results are shown in Figure 16, where the vertical axis represents the number of cycles and the horizontal axis represents the adhesive width a. As is clear from the figure, the adhesive width ah<0.7m
If it is at least m, it is suitable for being resistant to thermal shock without peeling even after 200 cycles or more of rapid heating and cooling tests.

以上の実験例から明らかなように、始動時などこヒータ
で急速に加熱しても、す〜マルショック二よって空燃比
検出素子が損なわれて、空燃比を検出する能力や耐久性
が損なわれることがない。
As is clear from the above experimental examples, even if it is rapidly heated by a heater during startup, the air-fuel ratio detection element is damaged by the shock 2, which impairs its ability to detect the air-fuel ratio and its durability. Never.

更に、ヒータを用いて急加熱できるので、始動開始温度
になるまでの時間が短く、始動時に迅速に空燃比の測定
が可能になる。また、ガス拡散室も小さくでき空燃比セ
ンサの応答性も向上する。
Furthermore, since rapid heating can be performed using a heater, the time required to reach the starting temperature is short, and the air-fuel ratio can be quickly measured at the time of starting. Furthermore, the gas diffusion chamber can also be made smaller, and the responsiveness of the air-fuel ratio sensor can also be improved.

また特に空燃比検出素子の厚さth<0.7mm〜1.
25凧 好ましくはO’、9mm〜1.15mmの範囲
であり、かつ素子幅Wが2.8mm〜4.0mmの範囲
であれ]f、、顕著な耐サーマルショック性があるので
、測定ガスがリークすることもない。またこの寸法の範
囲の空燃比検出素子は、暖機特性も優れているので始動
後に極めて迅速に測定を開始できる利点がある。更に、
空燃比検出素子の寸法が上記範囲内では、寸法が小さす
ぎることによる製造時の間坦 即ち印刷工程で多孔質電
極のペースト内の溶剤が、固体電解質基板等のシートに
浸入することによって生ずるシート印刷部の歪みを生ず
ることもなく印刷精度が低下することもない。またガス
拡散室の測定空間の間隙が20μm〜100μmの範囲
であり、かつ測定空間の容積が0、05mm3−1 、
0mm3の範囲であれば、周波数特性や測定精度もよく
好適である。更に、接着幅が0.7mm以上であればサ
ーマルショックによって剥離が生ずることもない。
In particular, the thickness of the air-fuel ratio detection element th<0.7 mm to 1.
25 kite Preferably O' is in the range of 9 mm to 1.15 mm, and the element width W is in the range of 2.8 mm to 4.0 mm] f, has remarkable thermal shock resistance, so that the measurement gas No leaks. Furthermore, the air-fuel ratio detection element within this size range has excellent warm-up characteristics, so it has the advantage of being able to start measurement extremely quickly after startup. Furthermore,
If the dimensions of the air-fuel ratio detection element are within the above range, there will be problems during manufacturing due to the dimensions being too small.In other words, the sheet printed portion will be damaged due to the solvent in the paste of the porous electrode penetrating into the sheet of the solid electrolyte substrate during the printing process. No distortion occurs, and printing accuracy does not deteriorate. In addition, the gap between the measurement spaces of the gas diffusion chamber is in the range of 20 μm to 100 μm, and the volume of the measurement space is 0.05 mm3-1,
A range of 0 mm3 is suitable for good frequency characteristics and measurement accuracy. Furthermore, if the adhesive width is 0.7 mm or more, peeling will not occur due to thermal shock.

[発明の効果] 以上説明したように、本発明の空燃比検出素子は、寸法
が特定されているので、耐サーマルショック性に優れか
つ十分な強度を備えている。従って、始動時にヒータ等
で急加熱することができるので暖機特性が向上し、かつ
応答性や測定精度も優れたものとなる。
[Effects of the Invention] As explained above, since the air-fuel ratio detection element of the present invention has specified dimensions, it has excellent thermal shock resistance and sufficient strength. Therefore, since it is possible to rapidly heat the engine with a heater or the like at the time of starting, warm-up characteristics are improved, and responsiveness and measurement accuracy are also excellent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本実施例の空燃比検出素子の斜視図、第2図は
空燃比検出素子及びヒータの一部破断斜視図、第3図は
その分解斜視図、第4図はヒータの分解斜視図、第5図
は急熱急冷サイクルの実験方法を示す説明は 第6図は
急熱急冷サイクルと素子厚さとの関係を示すグラフ、第
7図は急熱急冷サイクルと素子幅及び素子厚さとの関係
を示すグラフ、第8図は発熱パターンを示す平面は 第
9図は所定Vsに至る経過時間と素子幅との関係を示す
グラフ、第10図は所定Vpに至る経過時間と素子幅と
の関係を示すグラフ、第11図は暖機特性を示すグラフ
、第12図はVpと1p電極面積との関係を示すグラフ
、第13図は周波数と測定空間との関係を示すグラフ、
第14図及び第15図はVsと1pによる測定精度を示
すグラフ、第16図は急熱急冷サイクルと接着幅どの関
係を示すグラフである。 1・・・空燃比検出素子 2・・・ヒータ 3、1o・−国体電解質基板 4、 6. 12. 14・・多孔質電極8・・酸素濃
淡電池素子 ]6−・−酸素ポンプ素子 18・・ガス拡散室 20.22・・・内部スペーサ 60 ・外部スペーサ
Fig. 1 is a perspective view of the air-fuel ratio detection element of this embodiment, Fig. 2 is a partially cutaway perspective view of the air-fuel ratio detection element and heater, Fig. 3 is an exploded perspective view thereof, and Fig. 4 is an exploded perspective view of the heater. Figure 5 shows the experimental method for the rapid heating and cooling cycle. Figure 6 is a graph showing the relationship between the rapid heating and cooling cycle and the element thickness. Figure 7 shows the relationship between the rapid heating and cooling cycle and the element width and element thickness. Figure 8 is a graph showing the relationship between the heat generation pattern and Figure 9 is a graph showing the relationship between the elapsed time to reach a predetermined Vs and the element width. 11 is a graph showing the warm-up characteristic, FIG. 12 is a graph showing the relationship between Vp and 1p electrode area, FIG. 13 is a graph showing the relationship between frequency and measurement space,
FIGS. 14 and 15 are graphs showing the measurement accuracy based on Vs and 1p, and FIG. 16 is a graph showing the relationship between the rapid heating and cooling cycle and the adhesive width. 1...Air-fuel ratio detection element 2...Heater 3, 1o-National electrolyte board 4, 6. 12. 14... Porous electrode 8... Oxygen concentration battery element] 6-... Oxygen pump element 18... Gas diffusion chamber 20. 22... Internal spacer 60 - External spacer

Claims (1)

【特許請求の範囲】 1 少なくとも固体電解質基板の両側に多孔質電極を設
けた酸素ポンプ素子と、該酸素ポンプ素子の一方の多孔
質電極を覆うガス拡散室と、該ガス拡散室と測定雰囲気
とを連通するガス導入部とを設けた空燃比検出素子にお
いて、上記空燃比検出素子の厚さを0.7mm〜1.2
5mmとし、かつ該素子の幅を2.8mm〜4.0mm
としたことを特徴とする空燃比検出素子。 2 上記空燃比検出素子のガス導入部でガス律速すると
ともに、上記ガス拡散室の測定空間の間隙を20μm〜
100μmとし、かつ測定空間の容積を0.05mm^
3〜1.0mm^3としたことを特徴とする請求項1記
載の空燃比検出素子。
[Claims] 1. An oxygen pump element having porous electrodes on both sides of at least a solid electrolyte substrate, a gas diffusion chamber covering one porous electrode of the oxygen pump element, and a connection between the gas diffusion chamber and a measurement atmosphere. In the air-fuel ratio detection element provided with a gas introduction part that communicates with the
5 mm, and the width of the element is 2.8 mm to 4.0 mm.
An air-fuel ratio detection element characterized by: 2 The gas rate is controlled by the gas introduction part of the air-fuel ratio detection element, and the gap in the measurement space of the gas diffusion chamber is set to 20 μm or more.
100μm, and the volume of the measurement space is 0.05mm^
The air-fuel ratio detection element according to claim 1, characterized in that the diameter is 3 to 1.0 mm^3.
JP1069832A 1988-04-01 1989-03-22 Air-fuel ratio detection element Expired - Lifetime JP2659793B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1069832A JP2659793B2 (en) 1988-04-01 1989-03-22 Air-fuel ratio detection element
DE19893910272 DE3910272C2 (en) 1988-04-01 1989-03-30 Oxygen sensor with higher resistance to repeated thermal shocks and with a shorter warm-up time
US08/032,187 US5288389A (en) 1988-04-01 1993-03-15 Oxygen sensor with higher resistance to repeated thermal-shocks and shorter warm-up time

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8178588 1988-04-01
JP63-81785 1988-04-01
JP1069832A JP2659793B2 (en) 1988-04-01 1989-03-22 Air-fuel ratio detection element

Publications (2)

Publication Number Publication Date
JPH0262955A true JPH0262955A (en) 1990-03-02
JP2659793B2 JP2659793B2 (en) 1997-09-30

Family

ID=26411017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1069832A Expired - Lifetime JP2659793B2 (en) 1988-04-01 1989-03-22 Air-fuel ratio detection element

Country Status (2)

Country Link
JP (1) JP2659793B2 (en)
DE (1) DE3910272C2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194762A (en) * 2001-12-21 2003-07-09 Kyocera Corp Oxygen sensor
US7504012B2 (en) 2003-05-01 2009-03-17 Denso Corporation Quickly activatable structure of gas sensor element
JP2010112740A (en) * 2008-11-04 2010-05-20 Ngk Spark Plug Co Ltd Ceramic heater, gas sensor element and gas sensor
US7824531B2 (en) 1997-06-19 2010-11-02 Denso Corporation Multilayered air-fuel ratio sensor
JP2011038958A (en) * 2009-08-17 2011-02-24 Ngk Insulators Ltd Gas sensor
JP2011102797A (en) * 2009-10-15 2011-05-26 Ngk Insulators Ltd Gas sensor and method for manufacturing sensor element
JP2014029350A (en) * 2010-03-29 2014-02-13 Ngk Insulators Ltd Gas sensor
US9110012B2 (en) 2010-03-29 2015-08-18 Ngk Insulators, Ltd. Gas sensor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2744088B2 (en) * 1989-10-13 1998-04-28 日本特殊陶業株式会社 Air-fuel ratio sensor
DE4313251C2 (en) * 1993-04-23 2003-03-27 Bosch Gmbh Robert Sensor element for determining the gas component concentration
JP4172279B2 (en) 2002-04-03 2008-10-29 株式会社デンソー Gas sensor
JP4050593B2 (en) * 2002-11-01 2008-02-20 日本特殊陶業株式会社 Gas sensor element and gas sensor using the same
DE102022115912A1 (en) * 2022-06-27 2023-12-28 Universität Stuttgart, Körperschaft Des Öffentlichen Rechts Method for producing an electrical component by successive printing and sintering of particle-containing ink

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814570B2 (en) * 1986-02-07 1996-02-14 日本特殊陶業株式会社 Air-fuel ratio sensor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7824531B2 (en) 1997-06-19 2010-11-02 Denso Corporation Multilayered air-fuel ratio sensor
JP2003194762A (en) * 2001-12-21 2003-07-09 Kyocera Corp Oxygen sensor
US7504012B2 (en) 2003-05-01 2009-03-17 Denso Corporation Quickly activatable structure of gas sensor element
JP2010112740A (en) * 2008-11-04 2010-05-20 Ngk Spark Plug Co Ltd Ceramic heater, gas sensor element and gas sensor
JP2011038958A (en) * 2009-08-17 2011-02-24 Ngk Insulators Ltd Gas sensor
US8398836B2 (en) 2009-08-17 2013-03-19 Ngk Insulators, Ltd. Gas sensor
JP2011102797A (en) * 2009-10-15 2011-05-26 Ngk Insulators Ltd Gas sensor and method for manufacturing sensor element
JP2014029350A (en) * 2010-03-29 2014-02-13 Ngk Insulators Ltd Gas sensor
JP2014029348A (en) * 2010-03-29 2014-02-13 Ngk Insulators Ltd Gas sensor
JP2014029349A (en) * 2010-03-29 2014-02-13 Ngk Insulators Ltd Gas sensor
US9110012B2 (en) 2010-03-29 2015-08-18 Ngk Insulators, Ltd. Gas sensor

Also Published As

Publication number Publication date
DE3910272A1 (en) 1989-10-19
DE3910272C2 (en) 1998-01-15
JP2659793B2 (en) 1997-09-30

Similar Documents

Publication Publication Date Title
US5288389A (en) Oxygen sensor with higher resistance to repeated thermal-shocks and shorter warm-up time
JP3855483B2 (en) Stacked air-fuel ratio sensor element
JP2669699B2 (en) Air-fuel ratio sensor
JP2004156929A (en) Gas sensor element and gas sensor employing the same
JPH10160704A (en) Oxygen sensor and air-fuel ratio detecting method
JPS62228155A (en) Gas sensor element
JPH0262955A (en) Air to fuel ratio detecting element
JPS61170650A (en) Oxygen concentration sensor
JPH0473551B2 (en)
JP4172279B2 (en) Gas sensor
US4897174A (en) Gas sensing apparatus
US4880519A (en) Gas sensor element
JPH0612354B2 (en) Method for manufacturing oxygen concentration measuring device
JPH05126793A (en) Oxygen concentration detector
JP6805033B2 (en) Sensor element, its manufacturing method and gas sensor
JP7339896B2 (en) gas sensor
JPH0417382B2 (en)
JP2009244113A (en) Gas sensor
JP2002357589A (en) Gas sensor element and gas sensor
JPH0618292Y2 (en) Oxygen sensor with heater
JPH01262458A (en) Air fuel ratio sensor
JP3314439B2 (en) Air-fuel ratio detection device
JP3509329B2 (en) Oxygen concentration detection element
JP2607909B2 (en) Oxygen sensor
JP3783375B2 (en) Air-fuel ratio sensor element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 12