JPH0262943A - Method of measuring material in cell - Google Patents

Method of measuring material in cell

Info

Publication number
JPH0262943A
JPH0262943A JP21600388A JP21600388A JPH0262943A JP H0262943 A JPH0262943 A JP H0262943A JP 21600388 A JP21600388 A JP 21600388A JP 21600388 A JP21600388 A JP 21600388A JP H0262943 A JPH0262943 A JP H0262943A
Authority
JP
Japan
Prior art keywords
measured
cells
contg
soln
ultrasonic waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21600388A
Other languages
Japanese (ja)
Inventor
Masayoshi Fukuoka
正芳 福岡
Masahito Sugizaki
杉崎 雅人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP21600388A priority Critical patent/JPH0262943A/en
Publication of JPH0262943A publication Critical patent/JPH0262943A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To simplify a treating stage and to shorten the time for analysis as well as to allow the analysis of a desired material with high accuracy by irradiating a soln. contg. cells with ultrasonic waves. CONSTITUTION:The cell membranes are broken and the material to be measured in the cells is extracted by irradiating the soln. contg. the cells with the ultrasonic waves. The material to be measured is then measured. For example, a freeze-preserved sample liquid contg. coliform bacilli is thawed and 0.6ml sample liquid is fraction-collected into a test tube by using a manual dispenser such as pipette. After 5.7ml buffer soln. of 0.1ml/l phosphoric acid (7.0 pH) is added to this test tube, the liquid is irradiated with 30W ultrasonic waves for 1 to 2 minutes to break the cell membranes of the coliform bacilli and to extract ATP. In succession, 0.5ml this soln. is fraction-collected into a vial bottle to be exclusively used for a measuring instrument by a pipette and 0.5ml reaction reagent contg. a light emitting reagent is automatically dispensed thereon. The quantity of the light emitted for 30 seconds right after the dispensing is measured.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、体細胞や菌体内に存在する物質を測定する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for measuring substances present in somatic cells and microbial cells.

B2発明の概要 本発明は、細胞膜を破壊して細胞内の被測定物質を抽出
し、その後この物質を例えば光学的手法超音波を照射し
、細胞膜を破壊することによりて、 測定に要するる時間が短く、かつ簡単な操作で済むよう
にしたちのである。
B2 Overview of the Invention The present invention extracts the substance to be measured inside the cell by destroying the cell membrane, and then irradiates this substance with, for example, optical ultrasonic waves to destroy the cell membrane. The purpose is to make the process short and easy to operate.

C1従来の技術 細胞内や菌体内に存在する物質を定性的あるいは定型的
に測定することにより何効な知見を得ることができる。
C1 Conventional Techniques Effective knowledge can be obtained by qualitatively or conventionally measuring substances existing within cells or microbial cells.

例えば生体細胞中には、生体のリン酸代謝及びエネルギ
ー代謝の役割を果たしているアデノンン三リン酸(AT
P)が必ず存在し、死細胞中にはATPが存在しないこ
とが知られている。また1個の細胞中に存在するATP
ffiは、同一細胞では同一濃度のATPが存在する。
For example, in living cells, adenone triphosphate (AT), which plays a role in phosphate metabolism and energy metabolism, is present in living cells.
P) is always present, and it is known that ATP is not present in dead cells. Also, ATP present in one cell
ffi, ATP exists at the same concentration in the same cell.

従ってA T Pが定量できれば、細胞の数及び生細胞
が死細胞かの判定や細胞の活性度が測定できることにな
る。
Therefore, if ATP can be quantified, it will be possible to determine the number of cells, determine whether living cells are dead cells, and measure the activity of cells.

また水道原水中や大気浮遊粉塵中には、種々の発癌関連
物質が含まれており、これらのモニタリングや検出法に
A mes法またはその変法を用いた復帰突然変異試験
が広く使用されている。これらの短期間テストは方法が
簡便で、定量性も比較的高い。最近になって、化学物質
のDNA傷害を短時間に検出する有効な短期テストがい
くつか提出されている。これらの短期テストは、特定の
菌と化学物質を反応させた時に、菌体内で化学物質がD
NA傷害を誘起し、それに伴って生ずるSO8反応をβ
−D−ガラクトシダーゼ活性から求められる方法である
。従って菌体内に発生したβ−D−ガラクトシダーゼ活
性を測定することができれば、化学物質が発癌関連物質
であるか否かの判定ができることになる。
In addition, various cancer-related substances are contained in raw water water and airborne dust, and the Ames method or its modified reverse mutation test is widely used for monitoring and detecting these substances. . These short-term tests are simple and quantitative. Recently, several effective short-term tests have been proposed to quickly detect chemical DNA damage. These short-term tests are based on the fact that when a specific bacteria is reacted with a chemical substance, the chemical substance is released inside the bacteria.
β induces NA injury and suppresses the accompanying SO8 reaction.
-D-galactosidase activity. Therefore, if it is possible to measure the activity of β-D-galactosidase generated within the bacterial cells, it will be possible to determine whether a chemical substance is a carcinogenic substance or not.

このように細胞内に存在する物質または生成した物質を
測定するためには、多くの場合細胞に何らかの処理を施
し、細胞膜を破壊し、細胞外にその物質を放出させるこ
と、いわゆる抽出操作を行う必要がある。そこで細胞膜
を破壊する方法として、界面活性剤、有機酸、無機酸あ
るいは有機溶媒等の抽出剤を用いる方法を検討している
。例えば有機溶剤を用いる方法を簡単に説明すると、先
ず試料1m(2に有機溶剤であるエタノール(99゜5
%)5xQを混合し、この混合液を沸騰(78℃)させ
ながら1分間振盪して目的物質を抽出する。
In order to measure the substances present or produced within a cell, in many cases the cell is subjected to some kind of treatment to destroy the cell membrane and release the substance outside the cell, a so-called extraction operation. There is a need. Therefore, methods using extractants such as surfactants, organic acids, inorganic acids, or organic solvents are being considered as a method for destroying cell membranes. For example, to briefly explain the method using an organic solvent, first, 1 m of a sample (2) is mixed with ethanol (99°5), which is an organic solvent.
%) 5xQ and shaken for 1 minute while boiling (78°C) this mixture to extract the target substance.

次いで有機溶剤を除去するために10分間送風乾燥処理
を行い、5zCの蒸留水に溶解して抽出液を希釈し、試
料中の目的物質を測定する。
Next, a blow drying process is performed for 10 minutes to remove the organic solvent, the extract is diluted by dissolving it in 5zC distilled water, and the target substance in the sample is measured.

D1発明が解決しようとする課題 しかしながら抽出剤を用いる方法は、試薬処理を伴うた
め次のような問題点がある。
D1 Problems to be Solved by the Invention However, since the method using an extractant involves reagent treatment, there are the following problems.

■これらの試薬が最終検出系に影響を及ぼし、検出感度
を低下させるために、その阻害を避ける方法として、処
理工程の中に中和、抽出、遠心分離、希釈などの操作が
必要であり、分析に時間がかかる。
■Since these reagents affect the final detection system and reduce detection sensitivity, operations such as neutralization, extraction, centrifugation, and dilution are required during the processing process to avoid their inhibition. Analysis takes time.

■使用する試薬濃度により膜破壊効率が大きく左右され
るので、試薬の調整作業が必要となり、労力と時間がか
かる。
■Membrane destruction efficiency is greatly affected by the concentration of the reagent used, so adjustment of the reagent is required, which takes time and effort.

■分析工程に中和、抽出、遠心分離、希釈などのうちい
くつかの操作が必要であるため、その−連の操作を自動
化する場合に複雑な機構が必要となる。
(2) Since the analysis process requires several operations such as neutralization, extraction, centrifugation, and dilution, a complicated mechanism is required to automate these operations.

本発明の目的は、処理工程が簡単であり、分析に要する
時間が短く、しかも目的物質についての分析精度の高い
測定方法を提供することにある。
An object of the present invention is to provide a method for measuring a target substance with simple processing steps, short time required for analysis, and high analytical precision for a target substance.

E1課題を解決するための手段 超音波は従来から高分子の化学結合の切断などいろいろ
な応用面があることが知られている。ここに細胞などの
膜は主に蛋白質や脂質から構成されているので、高分子
の高次構造から成る膜の破壊にも適用できると考えた。
Means for Solving Problem E1 Ultrasound has long been known to have various applications such as breaking chemical bonds in polymers. Since membranes such as cells are mainly composed of proteins and lipids, we thought that this method could also be applied to the destruction of membranes made of higher-order structures of polymers.

具体的には本発明は、細胞を含む溶液に超音波を照射す
ることにより細胞膜を破壊して細胞内の被測定物質を抽
出し、次いでこの被測定物質を測定することを特徴とす
る。
Specifically, the present invention is characterized in that a solution containing cells is irradiated with ultrasound to destroy cell membranes and a substance to be measured inside the cells is extracted, and then this substance to be measured is measured.

F、実施例 (実施例1) 凍結保存された大腸菌を含む試料液を解凍し、試料液0
 、6 mQを試験管にピペット等の手動式分注器を用
いて分取する。次いでこの試験管に0゜1i+!#!の
リン酸緩衝液(pH7,0)を5’ 、 7 mQ添加
した後30Wの超音波を1〜2分間照射し、これにより
大腸菌の細胞膜を破壊してATPを抽出する。続いてこ
の溶液0 、5 mQをピペットで測定装置専用のバイ
ヤルビンに分取し、発光試薬を含む反応試薬を0 、5
 mQ自動的に分注して、分注直後から30秒間の発光
量を計測する。
F. Example (Example 1) Thaw a cryopreserved sample solution containing E. coli, and make the sample solution 0.
, 6 mQ into a test tube using a manual dispenser such as a pipette. Next, add 0°1i+ to this test tube! #! After adding 5', 7 mQ of phosphate buffer (pH 7.0), 30 W ultrasonic waves are applied for 1 to 2 minutes to destroy the cell membrane of E. coli and extract ATP. Next, 0,5 mQ of this solution was pipetted into a vial dedicated to the measuring device, and the reaction reagent containing the luminescent reagent was added to 0,5 mQ.
mQ is automatically dispensed and the luminescence amount is measured for 30 seconds immediately after dispensing.

以上において上記の発光法は、生物発光法と呼ばれ、以
下に示すようにATPとルシフェリンとルシフェラーゼ
との反応により発生する光の量にもとずいてATPの量
を知る方法であり、簡便で高感度な測定法である。なお
ホタルの光はこれに相当する。
The luminescence method described above is called the bioluminescence method, and as shown below, it is a simple method for determining the amount of ATP based on the amount of light generated by the reaction between ATP, luciferin, and luciferase. It is a highly sensitive measurement method. The light of fireflies corresponds to this.

アデニルルシフェリン+O*            
>   7デニルオNシルシフエリン+先このようにし
て種々の大腸菌濃度におけるATPffiを測定し、そ
れらの関係を表す検量線を第1図に示す。大腸菌濃度が
未知な試料液については、ATPfflを測定し、その
値と検量線とにもとすいて大腸菌濃度を知ることができ
る。
Adenylluciferin + O*
>7denyloN silcipherin+ATPffi was measured in this way at various concentrations of E. coli, and a calibration curve representing the relationship is shown in FIG. For a sample solution in which the E. coli concentration is unknown, the ATPffl can be measured and the E. coli concentration can be determined based on that value and a calibration curve.

(実施例2) サルモネラ菌をLB倍倍地各種の栄養分を備えた信地)
で−夜培養し、その培養液を波長600nmにおける吸
光度0.1になるようにLB倍倍地希釈調製する。こう
して得られた試験液3.0.vρにDNA損傷を引き起
こす化学物質(4−ニトロキノリン−N−オキシド(4
NOQ))0.051を加え、37℃で2時間培養する
。これにより大腸菌中にβ−D−ガラクトシダーゼが生
成する。
(Example 2) Salmonella bacterium was added to LB double base with various nutrients)
The culture was cultured overnight, and the culture solution was diluted to LB times so that the absorbance at a wavelength of 600 nm was 0.1. Test solution 3.0. thus obtained. Chemicals that cause DNA damage to vρ (4-nitroquinoline-N-oxide (4-nitroquinoline-N-oxide)
Add NOQ)) 0.051 and incubate at 37°C for 2 hours. This produces β-D-galactosidase in E. coli.

次いで培養した試験液0゜6mQにO、l mQ/Qの
リン酸緩衝液(pH7、0)を5.71添加した後30
Wの超音波を1〜2分間照射する。しかる後にこの反応
液0.25z12に0.1mQ/QのNa−PBS(リ
ン酸緩衝液) 2.25mf2.0 、 l肩Q/Qの
N a N30.5mQ、0.25iof2/12のラ
クトースl。
Next, 5.71 of O, l mQ/Q of phosphate buffer (pH 7, 0) was added to the cultured test solution 0°6 mQ, and then 30
Apply W ultrasonic waves for 1 to 2 minutes. After that, add 0.25z12 of this reaction solution, 2.25mf2.0 of Na-PBS (phosphate buffer) of 0.1mQ/Q, 30.5mQ of NaN of shoulder Q/Q, and lactose of 0.25iof2/12. .

OmQ及び6U/xQ(Uとは酵素活性を表す単位であ
る。)のグルコースオキシダーゼlIN、Qを加え、3
7℃で2時間酵素反応させた。なおNa−PBS2.2
5mQを加えた理由は、ラクトースとクシレコースオキ
ンダーゼと反応液との比率を一定にするためである。そ
の後この酵素反応液0 、2 m(1を化学発光測定装
置(明電舎製ルミノメータUPD−8000)専用バイ
ヤルビンに分取し、これに2 X I O−7no(1
/Qのルミノール0 、5 m(lと6×10−3no
 (1/Qのフェリシアン化カリウム051を加え、1
秒後から30秒間の発光量を計測した。
Add OmQ and 6U/xQ (U is a unit representing enzyme activity) of glucose oxidase IN, Q, and add 3
Enzyme reaction was performed at 7°C for 2 hours. In addition, Na-PBS2.2
The reason why 5 mQ was added was to keep the ratio of lactose, xirecose okindase, and reaction solution constant. Thereafter, 0.2 m (1 m) of this enzyme reaction solution was dispensed into a vial dedicated to a chemiluminescence measurement device (Meidensha Luminometer UPD-8000), and 2
Luminol of /Q 0,5 m (l and 6 x 10-3 no
(Add 1/Q potassium ferricyanide 051,
After 30 seconds, the amount of light emitted was measured.

ここで上記のプロセス中の酵素反応と化学発光反応とは
次の通りである。
Here, the enzymatic reaction and chemiluminescence reaction in the above process are as follows.

〈酵素反応〉 β−D−カラクトゾダーゼ ラクトース十HzO>  a−D−グルコ−人−十β−
D−力ンクトースa−D−グルコース 〈□〉  β−
D−グルコースグルコづオキシダーゼ β−D−グルコー人十〇t+HtO−>  D−ゲルコ
ント11202く化学発光反応〉 7エリゾアン化カリウム N20.+ルミノール □〉 アミノフタル1N2+N
20+老第2図は既知量のβ−D−ガラクトシダーゼ活
性と発光量との関係を示す検量線であり、この検量線を
利用して4−ニトロキノリン−N−オキシトの定量を行
った結果を第3図に示す。なおβ−D−ガラクトシダー
ゼ活性濃度と4−ニトロキノリン−N−オキシド濃度は
比例関係にあり、その定数は酵素反応の種類及び反応時
間等により定まる。
<Enzyme reaction> β-D-Calactosodase lactose 10HzO> a-D-gluco-human-10β-
D-Nuctose a-D-Glucose 〈□〉 β-
D-glucose glucodoxide oxidase β-D-glucone 10t+HtO-> D-Gelconte 11202 Chemiluminescent reaction> 7 Potassium eryzoanide N20. + Luminol □〉 Aminophthal 1N2 + N
20+ Figure 2 is a calibration curve showing the relationship between a known amount of β-D-galactosidase activity and the amount of luminescence, and the results of quantifying 4-nitroquinoline-N-oxyto using this calibration curve. It is shown in Figure 3. Note that the β-D-galactosidase activity concentration and the 4-nitroquinoline-N-oxide concentration are in a proportional relationship, and the constant is determined by the type of enzyme reaction, reaction time, etc.

(実施例3) 超音波を照射する工程までは実施例2と全く同槌の操作
を行い、その後は反応液2 、171(lに0ニトロフ
ェニル−β−D−ガラクトピラノシド(ONPC)0.
2mNを加え、37℃で10分間培養する。培養後反応
停止液として1λ0ρ/QのNa。
(Example 3) The same operation as in Example 2 was performed up to the step of irradiating ultrasonic waves, and after that, 0 nitrophenyl-β-D-galactopyranoside (ONPC) was added to the reaction solution 2, 171 (l). 0.
Add 2 mN and incubate at 37°C for 10 minutes. 1λ0ρ/Q of Na as a reaction stop solution after culturing.

CO3をlπg加え、420nmにおいて吸光度を計測
する。測定結果は第4図に示す通りであり、この図に示
す検量線と吸光度とを調べることにより4NQOの量が
求まる。
lπg of CO3 is added and the absorbance is measured at 420 nm. The measurement results are shown in FIG. 4, and the amount of 4NQO can be determined by examining the calibration curve shown in this figure and the absorbance.

(実施例4) サルモネラ閑をL B借地(各種の栄養分を備えた信地
)で−夜培養し、その培養液を波長600nmにおける
吸光度が0.1になるようにLB倍倍地希釈調製する。
(Example 4) Salmonella sinensis was cultured overnight in LB leased land (trusted land equipped with various nutrients), and the culture solution was diluted with LB times so that the absorbance at a wavelength of 600 nm was 0.1. .

こうして得られた試験液3゜0tttQにDNA損傷を
引き起こす化学物質(4−ニトロキノリン−N−オキシ
ド(4NQO))00511(!を加え、37℃で2時
間培養する。これにより菌中にβ−D−ガラクトシダー
ゼが生成する。
A chemical substance (4-nitroquinoline-N-oxide (4NQO)) 00511 (!) that causes DNA damage is added to the test solution 3°0tttQ obtained in this way, and the mixture is incubated at 37°C for 2 hours. D-galactosidase is produced.

次いで培養した試験液0.61をバイヤルビンに分取し
、これに0.Imo(1/Qのリン酸緩衝液(pH7,
0)を1.9mg添加する。このようにして得られる試
料液の入ったバイヤルビンを12個用意し、そのうち6
個についてはIOWの超音波を照射すると共に残りの6
個については30Wの超音波を照射し、分tJられた6
個についての照射時間を0゜1.2,3.5.10分間
とした。次いで各バイヤルビンに0NPC0,2dを加
え、37℃で20分間培養する。その後反応停止液とし
てll/12のN a 2 CO3を1m(i加え、4
20nmにおいて吸光度を計測する。測定結果は第5図
に示す通りである。図中黒丸は超音波の出力が30Wの
場合であり、白丸はIOWの場合である。この図かられ
かるように超音波の出力が30Wであってかつその照射
時間が1〜2分間のときに吸光度が最も大きい。
Next, 0.61 of the cultured test solution was dispensed into a vial, and 0.61 was added to the vial. Imo (1/Q phosphate buffer (pH 7,
Add 1.9 mg of 0). Prepare 12 vials containing the sample solution obtained in this way, and 6 of them
The remaining 6 pieces will be irradiated with IOW ultrasound and the remaining 6 pieces will be irradiated with IOW ultrasound.
For each piece, 30W ultrasonic waves were irradiated and tJ was applied for 6 minutes.
The irradiation time for each sample was set at 0°1.2, 3.5, and 10 minutes. Next, add 0NPC0.2d to each vial and incubate at 37°C for 20 minutes. After that, 1 m (i) of 1/12 Na 2 CO3 was added as a reaction stop solution, and 4
Measure the absorbance at 20 nm. The measurement results are shown in FIG. In the figure, the black circles are for the case where the ultrasonic output is 30W, and the white circles are for the case of IOW. As can be seen from this figure, the absorbance is highest when the ultrasonic output is 30 W and the irradiation time is 1 to 2 minutes.

以上において、本発明の対象となる細胞は、微生物ある
いは体細胞のいずれであってもよく、微生物としては大
腸菌やサルモネラ菌等の細菌、糸状菌、酵母、変形菌、
単細胞の藻類あるいは原生動物等が挙げられる。
In the above, the cells targeted by the present invention may be either microorganisms or somatic cells, and examples of the microorganisms include bacteria such as Escherichia coli and Salmonella, filamentous fungi, yeast, amphiphiles,
Examples include unicellular algae and protozoa.

抽出すべき物質としては、元から細胞内に存在する物質
及び外部からの刺激により生成する物質のいずれをも含
む。前者の元から細胞内に存在する物質とは、代謝物質
、蛋白質、核酸あるいは脂質等であり、このうち代謝物
質とは、アデノシン三リン酸等のヌクレオチド、ヌクレ
オシド、アミノ酸あるいはホルモン等である。後者の物
質とは、β−D−ガラクトシダーゼ等の酵素である。
Substances to be extracted include both substances originally existing within cells and substances produced by external stimulation. The former substances originally existing in cells include metabolites, proteins, nucleic acids, lipids, etc. Among these, metabolites include nucleotides such as adenosine triphosphate, nucleosides, amino acids, hormones, and the like. The latter substance is an enzyme such as β-D-galactosidase.

目的とする物質を定性あるいは定量するためには、吸光
光度法、蛍光光度法、生物発光法または化学発光法等を
利用することができる。
In order to qualitatively or quantitatively quantify a target substance, an absorption method, a fluorescence method, a bioluminescence method, a chemiluminescence method, or the like can be used.

I−I 、発明の効果 本発明によれば、超音波の照射により細胞膜を破壊して
細胞内の物質を抽出しているため、処理工程が簡単であ
り、従って自動化が容易であると共に複雑な処理機構を
必要としない。また試薬の調製や取り扱い等に要する時
間が短縮でき、しかも高い精度で目的とする物質を測定
することかできる。
I-I. Effects of the Invention According to the present invention, since the cell membrane is destroyed by ultrasonic irradiation to extract intracellular substances, the processing process is simple, and therefore it is easy to automate and does not require complicated processing. No processing mechanism required. In addition, the time required for preparing and handling reagents can be shortened, and the target substance can be measured with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はATP濃度と菌体濃度との関係を示すグラフ、
第2図は発光量とβ−D−ガラクトシダーゼ活性との関
係を示すグラフ、第3図は発光量と4NQOitとの関
係を示すグラフ、第4図は吸光度と4NQOとの関係を
示すグラフ、第5図は吸光度と超音波照射時間との関係
を示すグラフである。 第1図 ATPa度と菌体濃度との関係図 菌体濃度(cells/lube) 発光量と4 N Q O備との関係図 4 N Q o m (r+g/ tube)第4図 吸光量と4NQO量との関係図 4NQO量(ng/cell)
Figure 1 is a graph showing the relationship between ATP concentration and bacterial cell concentration.
Figure 2 is a graph showing the relationship between luminescence amount and β-D-galactosidase activity; Figure 3 is a graph showing the relationship between luminescence amount and 4NQOit; Figure 4 is a graph showing the relationship between absorbance and 4NQO; FIG. 5 is a graph showing the relationship between absorbance and ultrasound irradiation time. Figure 1 Relationship diagram between ATPa level and bacterial cell concentration Figure 4 Relationship diagram between luminescence amount and 4 N Q O Relationship diagram with amount 4 NQO amount (ng/cell)

Claims (1)

【特許請求の範囲】[Claims] (1)細胞を含む溶液に超音波を照射することにより細
胞膜を破壊して細胞内の被測定物質を抽出し、次いでこ
の被測定物質を測定することを特徴とする細胞内の物質
測定方法。
(1) A method for measuring a substance in a cell, which comprises irradiating a solution containing cells with ultrasound to destroy the cell membrane and extracting a substance to be measured inside the cell, and then measuring the substance to be measured.
JP21600388A 1988-08-30 1988-08-30 Method of measuring material in cell Pending JPH0262943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21600388A JPH0262943A (en) 1988-08-30 1988-08-30 Method of measuring material in cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21600388A JPH0262943A (en) 1988-08-30 1988-08-30 Method of measuring material in cell

Publications (1)

Publication Number Publication Date
JPH0262943A true JPH0262943A (en) 1990-03-02

Family

ID=16681784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21600388A Pending JPH0262943A (en) 1988-08-30 1988-08-30 Method of measuring material in cell

Country Status (1)

Country Link
JP (1) JPH0262943A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1089113C (en) * 1997-12-19 2002-08-14 大连理工大学 Breakage of cell by microwave and separation of intracellular products
JP2007182803A (en) * 2006-01-06 2007-07-19 Hino Motors Ltd Exhaust emission control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1089113C (en) * 1997-12-19 2002-08-14 大连理工大学 Breakage of cell by microwave and separation of intracellular products
JP2007182803A (en) * 2006-01-06 2007-07-19 Hino Motors Ltd Exhaust emission control device

Similar Documents

Publication Publication Date Title
JP3122468B2 (en) Electrochemiluminescence assay
CA2373160C (en) Methods for monitoring eukaryotic cell integrity, growth and/or division
GB2288232A (en) Photosensitive derivatives of ATP as assay control standards
US10458916B2 (en) Rapid tests for the detection of inhibitors of enzymes and human exposure to the same
Lever Improved fluorometric determination of tetracyclines
CN112941208B (en) On-site rapid detection method for salmonella in food
JP2008228637A (en) Method for measuring amount of hydrogen peroxide by using fluorescence correlation spectrometry, and method for utilizing the same
JPH0262943A (en) Method of measuring material in cell
Pinto et al. Determination of papain activity in topical dosage forms: single laboratory validation assay
JP2735901B2 (en) Method for measuring the number of living cells, dead cells, and particles other than microorganism cells of microorganisms
CN107192697B (en) A kind of fluorescence sense method detecting exonuclease I
Drake et al. Single cell glutamate analysis in Aplysia sensory neurons
Köszegi et al. Bioluminescent monitoring of ATP release from human red blood cells treated with nonionic detergent
JPH0262941A (en) Method of measuring material in cell
MAEDA et al. A Fluorophotometric Method for the Determination of Pyridoxal and Its Phosphate by Using Glycine and Zinc (II) Ion
JPH0265799A (en) Method for measuring intracellular substance
RU2804417C1 (en) Method for quantitative fluorometric determination of 2-ethyl-6-methyl-hydroxypyridine hydrochloride
EP1137801B1 (en) Diagnostic method based on the function of a protein produced in a cell-free environement from a nucleic acid sample
SU1659851A1 (en) Method for determination of membrane-toxic action of chemicals
Bunescu et al. A SENSITIVE METHOD FOR SALIVA DETECTION IN FORENSICS USING SALIVARY AMYLASE COUPLED WITH AMPLEX RED OXIDATION
TW202407103A (en) Sample pretreatment kit amd method for detecting virus infectivity
CN116555390A (en) Microorganism detection reagent and detection method
JPH0795898A (en) Method for measuring adenosine triphosphate in mold cell
JPS63291596A (en) Determination of glucose in biospecimen
Cheng et al. Fluorescence reactions of fluorescamine with levodopa and its derivatives: Fluorescence assay of 3‐methoxy‐4‐hydroxyphenylalanine in levodopa dosage forms