JPH0262937A - Monitoring method for oil agent sticking amount - Google Patents

Monitoring method for oil agent sticking amount

Info

Publication number
JPH0262937A
JPH0262937A JP63213547A JP21354788A JPH0262937A JP H0262937 A JPH0262937 A JP H0262937A JP 63213547 A JP63213547 A JP 63213547A JP 21354788 A JP21354788 A JP 21354788A JP H0262937 A JPH0262937 A JP H0262937A
Authority
JP
Japan
Prior art keywords
amount
oil agent
sticking
water
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63213547A
Other languages
Japanese (ja)
Inventor
Katsunari Yoshimoto
吉本 克成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP63213547A priority Critical patent/JPH0262937A/en
Publication of JPH0262937A publication Critical patent/JPH0262937A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PURPOSE:To shorten measurement time by measuring sticking water on fiber and calculating the amount of sticking agent indirectly from the measured value. CONSTITUTION:The amount of sticking oil agent on a polyester fiber bundle which is drawn by a drawing roller group 1 at specific speed and supplied with the oil agent in a re-oiling bath 2, then passed through a crimper 3 to squeeze an excessive oil agent, and sent to a next process is measured by an infrared moisture meter 4 arranged at the exit position of the crimper 3. In this case, the relation between a water value measured while the oil agent concentration in the bath 2 and the squeezing pressure of the crimper 3 and the sticking water rate (weight rate of water sticking on the fiber bundle to the fiber) and the relation between the amount of sticking oil agent and water rate are linear. The relations between them are converted and set and then the amount of sticking oil agent can be measured speedily by the water meter 4. Further, the fiber is irradiated with light beams with wavelengths in the absorption range and nonabsorption range of the infrared range and reflection energy values are compared to find a water value.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は合成繊維に親水性、制電性あるいは風合等を付
与する油剤の付着量、特にオンラインにおける監視方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an on-line monitoring method for the amount of an oil agent that imparts hydrophilicity, antistatic properties, texture, etc. to synthetic fibers, and particularly to an online monitoring method.

(従来技術) 合成繊維は原糸製造段階で、工程通過に必要な特性及び
高次行程通過に必要な特性を持った油剤を付与すること
が一般に行われており、その油剤の付着量管理が安定し
た品質及び収率を得るための大きなポイントであった。
(Prior art) Synthetic fibers are generally coated with an oil agent that has the characteristics necessary for passing through the process and the characteristics necessary for passing through higher-order processes at the yarn manufacturing stage, and the amount of the oil applied is controlled. This was a key point in obtaining stable quality and yield.

合成繊維に製造にあっては各錘毎に独立して油剤が付与
されているのが普通であり、油剤付着量異常検知のため
には定期的に全錘の油剤付着量を実測して確認すること
が必要であった。
When manufacturing synthetic fibers, oil is usually applied to each spindle independently, and in order to detect abnormalities in the amount of oil adhering, the amount of oil adhering to all spindles must be measured and confirmed on a regular basis. It was necessary to do so.

油剤付着量はメタノール、ベンゼン、水等(’) ?8
剤により繊維表面に付着している油剤を抽出法で測定し
、付着していた油剤を算出し監視する方法が一般に用い
られてきた。
Is the amount of oil adhered to methanol, benzene, water, etc. (')? 8
Generally, a method has been used in which the amount of oil adhering to the fiber surface is measured using an extraction method, and the amount of adhering oil is calculated and monitored.

(発明が解決しようとする問題点) 従来、かかる付着量の測定は1回の測定に数時間を要し
、また−度に処理できる量も設備、コスト、″要員等の
点より30本程度と限られており、多量測定には不向き
であった。この為、操業管理にあたっては必然的に抜取
り検査的な頻度でしか測定が不可能であり、もし異常が
発生した場合には相当量の製品が既に後工程に流れてい
ることもあり、異常品の摘出に莫大な労力を要し、監視
方法としては不適であった。
(Problems to be Solved by the Invention) Conventionally, it took several hours for one measurement to measure the adhesion amount, and the amount that could be processed at a time was about 30 pieces due to equipment, cost, personnel, etc. Therefore, in operational management, it was inevitably possible to measure only at a frequency of sampling inspections, and if an abnormality occurred, a considerable amount of This method was not suitable as a monitoring method because the product had already been passed on to subsequent processes, and it required a great deal of effort to identify abnormal products.

本発明者は上記のような問題を解決するため鋭意検討を
重ねた結果、合成繊維に付着した油剤量と合成繊維の付
着水分率との間に高い相関関係があることを見い出だし
本発明に至ったのである。
As a result of intensive studies to solve the above-mentioned problems, the inventor of the present invention discovered that there is a high correlation between the amount of oil adhering to synthetic fibers and the moisture content of the synthetic fibers. It has come to this.

(問題を解決するための手段) すなわち、本発明は繊維の油剤付着量をm維と非接触に
監視するに際し、繊維の付着水分を光学的に計測し、該
計測値から間接的に油剤付着量を算出することを特徴と
する油剤付着量の監視方法である。
(Means for Solving the Problem) That is, the present invention optically measures the moisture content of the fibers when monitoring the amount of oil adhesion on the fibers without contacting the fibers, and indirectly determines the amount of oil adhesion based on the measured value. This is a method for monitoring the amount of oil adhered, characterized by calculating the amount.

本発明において繊維の付着水分の測定は赤外線反射形3
波長方式によるのが好ましく、この方式によれば水の赤
外域における吸収帯の波長と吸収を受けない波長の光を
繊維に照射し反射エネルギを比較することにより水分値
を求めるものであり、これにより繊維に対する付着水分
の重量比が以下の過程を経て算出される。
In the present invention, the moisture attached to fibers is measured using an infrared reflection type 3.
It is preferable to use the wavelength method. According to this method, the moisture value is determined by irradiating the fiber with light at a wavelength in the absorption band of water in the infrared region and a wavelength at which no absorption occurs and comparing the reflected energy. The weight ratio of adhering moisture to the fibers is calculated through the following process.

本発明者は前述のような問題点を解決するため繊維に非
接触で容易かつ迅速に繊維に対するこれに付着した油剤
重量比、すなわち油剤付着量(%)(水分を除いたもの
、 o、p、uとも略称する)を直接測定できる方法、
手段について鋭意考究してきたが、十分に実用できるも
のは見当たらなかった。
In order to solve the above-mentioned problems, the present inventor has determined the weight ratio of the oil agent attached to the fibers easily and quickly without contacting the fibers, that is, the amount of oil agent attached (%) (excluding water, o, p , also abbreviated as u) can be directly measured,
Although we have been intensively researching methods, we have not found anything that is fully practical.

尚、以下便宜上油剤は油剤成分と水分から成るものとす
る。
In the following, for convenience, it is assumed that the oil agent consists of an oil agent component and water.

そこで油剤中の水分を測定することにより間接的に糸条
に付着した油剤成分を測定することを考え、各種測定手
段を使用して得られた水分測定値と前記抽出法による従
来の水分および油剤成分の実測値との間の関係について
比較検討を行った。
Therefore, we thought of indirectly measuring the oil component attached to the yarn by measuring the moisture in the oil agent, and compared the moisture measurement values obtained using various measurement methods and the conventional moisture and oil agent by the above extraction method. A comparative study was conducted on the relationship between the measured values of the components.

その結果、先ず油剤付着量が水分率(繊維に付着してい
る水分(量)の繊維に対する重量比)ときわめて密接な
関連を有していること、次に光学的計測による水分の測
定値と水分率の間にも非常に高い関連性があることが判
ったのである。
As a result, we found that firstly, the amount of oil adhered has a very close relationship with the moisture content (the weight ratio of the amount of moisture attached to the fiber to the fiber), and secondly, it was found that the amount of oil adhered has a very close relationship with the moisture content (the weight ratio of the amount of moisture attached to the fiber to the fiber). It was also found that there is a very high correlation between moisture content.

光学的計測手段としては紫外線、赤外線等を利用したも
のなど種々あるが、前述の如く水の赤外域における吸収
帯の波長と吸収を受けない波長の光を繊維に照射して反
射エネルギーの比率を比較することによりす水分値を得
るようにした赤外線方式によるものが測定範囲がひろく
かつ再現性が高いので好ましい。
There are various optical measurement methods, such as those that utilize ultraviolet rays and infrared rays, but as mentioned above, the ratio of reflected energy is measured by irradiating a fiber with light at a wavelength in the absorption band of water in the infrared region and a wavelength at which it is not absorbed. An infrared method that obtains moisture values by comparison is preferable because it has a wide measurement range and high reproducibility.

又この場合水分値との関係は水分率が1〜25%、特に
5〜15%の範囲において好ましく、この範囲を外れる
と、殊に高い方向に外れると再現性に問題を生じること
があり通常は上記範囲で使用するのがよい。
In this case, the relationship with the moisture value is preferable when the moisture content is in the range of 1 to 25%, especially 5 to 15%, and if it deviates from this range, especially in the higher direction, problems may occur in reproducibility, and usually is preferably used within the above range.

以下、実施例により本発明をより具体的に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

(実施例) 第1図に示すように、延伸速度100m/■inで延伸
ローラ群1により延伸され、次いで再オイルバス2にて
油剤を付与された後、ニップローラもしくはクリンパ−
3を通して余分な油剤を絞りだし次行程に送りだされて
いる80万デニール(短繊維4デニール)のポリエステ
ル繊維束の油剤付着量を、クリンパ−3の出口位置に配
した赤外線水分計4(チノー社赤外線反射形3波長方式
、IR−Mloo)にて測定した。
(Example) As shown in FIG. 1, the paper is stretched by a stretching roller group 1 at a stretching speed of 100 m/inch, and then reapplied with an oil agent in an oil bath 2, followed by a nip roller or crimper.
An infrared moisture meter 4 (Chino It was measured using an infrared reflection type 3-wavelength method (IR-Mloo).

この場合、再オイルバス2中の油剤濃度、およびクリン
パ−3の絞り圧力を種々変更して;IUすると共に、そ
れぞれの対応する繊維束の付着水分率を前述の従来法を
利用して測定し、これら測定値をプロットしたものが第
2図である3 この表から明らかなように水分値と水分率との間にはほ
ぼ直線関係が成立する。同時に同様に油剤付着量を測定
し水分率との関係をプロットした。
In this case, the concentration of the oil in the re-oil bath 2 and the squeezing pressure of the crimper 3 are varied; IU is carried out, and the adhering moisture content of each corresponding fiber bundle is measured using the conventional method described above. , these measured values are plotted in Figure 2.3 As is clear from this table, there is an almost linear relationship between the moisture value and the moisture content. At the same time, the amount of oil adhered was measured in the same manner, and the relationship with the moisture content was plotted.

第3図はこのうち油剤濃度が2.5〜4.0%の例で、
この場合も直線関係が成り立っている。
Figure 3 shows an example where the oil concentration is 2.5 to 4.0%.
In this case as well, a linear relationship holds true.

尚、上記第2〜3図の場合、相関係数は0.98前後で
ある。
In the case of FIGS. 2 and 3 above, the correlation coefficient is around 0.98.

従ってこれらの間の関係を換算しセットしておけば赤外
線水分計によりきわめて迅速かつ容易に付着油剤量が測
定できる。
Therefore, by converting and setting the relationship between these, the amount of adhered oil can be measured very quickly and easily using an infrared moisture meter.

(発明の効果) 以上に説明の如く、本発明によれば油剤付着量をきわめ
て迅速にもとめることが可能になり、働力および測定時
間を大きく減少することができ、従って油剤付着量の異
常品の高次工程への流出を阻止できる9又、水分計を固
定して設置し異常発少時にう〉・プ、音あるいは光等の
警報手段に信号が送られその作動により警報を発する如
くしても。
(Effects of the Invention) As explained above, according to the present invention, it is possible to determine the amount of oil adhered extremely quickly, and the labor and measurement time can be greatly reduced. A 9-point moisture meter that can prevent leakage to higher-level processes is fixedly installed, and when an abnormality occurs, a signal is sent to an alarm means such as an alarm, sound, or light, and the alarm is issued when activated. too.

更に油剤供給手段などと連結し油剤濃度、付着量等を調
節するようにしてもよく、このようにすることによって
極めて効率的かつ合理的な工程管理か行えると言う顕著
な効果を奏する9
Furthermore, it may be connected to a lubricant supply means to adjust the lubricant concentration, adhesion amount, etc., and this has the remarkable effect of allowing extremely efficient and rational process control9.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するための概略工程図、第
2図および第3図は本発明の詳細な説明するための線図
で、第2図は水分子−水分値の関係図、第3図は水分率
−油剤付着量の関係図である ■・・・・・・・・・・・延伸ローラ群2・・・・・・
・・・再オイルバス 3・・・・・・・・・・・・クリンパ 4・・・・・・・・・・・・赤外線水分計第 図 第 図 分 平 (%) 手続補正書 昭和63年11月id日 杵庁長官殿 ■件の表示 特願昭63 213547号 l明の名称 3.7 (理人
Figure 1 is a schematic process diagram for explaining the present invention in detail, Figures 2 and 3 are diagrams for explaining the invention in detail, and Figure 2 is a diagram of the relationship between water molecules and moisture values. , Fig. 3 is a diagram showing the relationship between moisture content and amount of oil attached.
・・・Re-oil bath 3・・・・・・・・・・・・Crimper 4・・・・・・・・・Infrared moisture meter Fig. Fig. 1 (%) Procedural amendment 1988 November 2015 ID: Mr. Director General

Claims (2)

【特許請求の範囲】[Claims] (1)繊維の油剤付着量を繊維と非接触に監視するに際
し、繊維の付着水分を光学的に計測し、該計測値から間
接的に油剤付着量を算出することを特徴とする油剤付着
量の監視方法。
(1) When monitoring the amount of oil adhering to fibers without contacting the fibers, the amount of oil adhering is characterized by optically measuring the moisture adhering to the fibers and indirectly calculating the amount of oil adhering from the measured value. monitoring method.
(2)光学的計測が赤外線反射形3波長方式である特許
請求の範囲第1項記載の油剤付着量の監視方法。
(2) The method for monitoring the amount of oil adhered according to claim 1, wherein the optical measurement is an infrared reflective three-wavelength method.
JP63213547A 1988-08-30 1988-08-30 Monitoring method for oil agent sticking amount Pending JPH0262937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63213547A JPH0262937A (en) 1988-08-30 1988-08-30 Monitoring method for oil agent sticking amount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63213547A JPH0262937A (en) 1988-08-30 1988-08-30 Monitoring method for oil agent sticking amount

Publications (1)

Publication Number Publication Date
JPH0262937A true JPH0262937A (en) 1990-03-02

Family

ID=16641006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63213547A Pending JPH0262937A (en) 1988-08-30 1988-08-30 Monitoring method for oil agent sticking amount

Country Status (1)

Country Link
JP (1) JPH0262937A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103837497A (en) * 2014-03-14 2014-06-04 大连海事大学 Device for detecting moisture content of lubricating oil and detection method thereof
JP2016006246A (en) * 2014-06-12 2016-01-14 マスチネンファブリック ライター アーゲーMaschinenfabrik Rieter Ag Air jet spinning machine and method for operating the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528117A (en) * 1975-07-03 1977-01-21 Teijin Ltd Oiling device
JPS587547A (en) * 1981-07-07 1983-01-17 Chino Works Ltd Infrared moisture meter
JPS63133043A (en) * 1986-11-25 1988-06-04 Meito Sci Kk Moisture percentage measuring apparatus for cloth drying process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528117A (en) * 1975-07-03 1977-01-21 Teijin Ltd Oiling device
JPS587547A (en) * 1981-07-07 1983-01-17 Chino Works Ltd Infrared moisture meter
JPS63133043A (en) * 1986-11-25 1988-06-04 Meito Sci Kk Moisture percentage measuring apparatus for cloth drying process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103837497A (en) * 2014-03-14 2014-06-04 大连海事大学 Device for detecting moisture content of lubricating oil and detection method thereof
CN103837497B (en) * 2014-03-14 2015-12-30 大连海事大学 A kind of pick-up unit of Moisture in Lube Oil & content and detection method thereof
JP2016006246A (en) * 2014-06-12 2016-01-14 マスチネンファブリック ライター アーゲーMaschinenfabrik Rieter Ag Air jet spinning machine and method for operating the same

Similar Documents

Publication Publication Date Title
US4631408A (en) Method of simultaneously determining gauge and orientation of polymer films
JPS5862511A (en) Method and device for analyzing information of yarn irregularity
CA1220048A (en) Temperature compensated optical pressure sensor
DE19517534A1 (en) Device and method for contactless thickness measurement
EP0310740A3 (en) Apparatus for measuring components in flowing liquids
JPH0262937A (en) Monitoring method for oil agent sticking amount
CA2001615A1 (en) Sampling flow cell with diamond window
JPS60231136A (en) Measurement of fiber orientation in paper
JP5715996B2 (en) Optical fiber thickness measurement method, optical fiber thickness measurement device, optical fiber manufacturing method, optical fiber manufacturing device
US3945181A (en) Process and apparatus for measuring uniformity of physical properties of yarn
JP6483663B2 (en) Method for producing foil or film
CN110470633A (en) Multi-core fiber grating refractive index responsive type sensor with self-complementary compensation characteristics in situ
US3871212A (en) System and method for monitoring quality characteristics of a moving web
CN110686810A (en) Online monitoring method for laser cleaning
ATE177204T1 (en) DETERMINATION OF A PROPERTY
US3427462A (en) Defect detector which simultaneously views a large and small area of the sample
US5929993A (en) Total film retardance monitoring system, and method of use
US7310145B2 (en) Apparatus and method for determining optical retardation and birefringence
JPH04121638A (en) Method and device for measuring elastic characteristic of optical fiber
JPH03165240A (en) Abnormality detecting device
CN110132864A (en) Gas in Oil of Transformer detection method
Tincher et al. Characterization of Heat Set Nylon Carpet Yarn.
DE3218571A1 (en) METHOD AND DEVICE FOR QUALITATIVE AND QUANTITATIVE DETERMINATION OF LEVELS AND IMPURITIES ON AND IN TRANSPARENT OR SEMITRANSPARENT FLEXIBLE AREAS
JPS6212328B2 (en)
DE4235065A1 (en) Automatic and contact-free measuring of double refraction - and temporal fluctuations of the refraction in transparent films and filaments with any desired thickness or phase difference