JPH0262711B2 - - Google Patents

Info

Publication number
JPH0262711B2
JPH0262711B2 JP15530279A JP15530279A JPH0262711B2 JP H0262711 B2 JPH0262711 B2 JP H0262711B2 JP 15530279 A JP15530279 A JP 15530279A JP 15530279 A JP15530279 A JP 15530279A JP H0262711 B2 JPH0262711 B2 JP H0262711B2
Authority
JP
Japan
Prior art keywords
compressor
discharge
air volume
control
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15530279A
Other languages
Japanese (ja)
Other versions
JPS5677584A (en
Inventor
Hirobumi Inada
Hatsuhiro Yamaguchi
Tatsugo Kanetani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Toyota Motor Corp
Original Assignee
IHI Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Toyota Motor Corp filed Critical IHI Corp
Priority to JP15530279A priority Critical patent/JPS5677584A/en
Publication of JPS5677584A publication Critical patent/JPS5677584A/en
Publication of JPH0262711B2 publication Critical patent/JPH0262711B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Air Blowers (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、空気圧縮機、特にターボ圧縮機を複
数台並列運転させるための制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a control device for operating a plurality of air compressors, particularly turbo compressors, in parallel.

(従来の技術) 一般的に、ターボ圧縮機の容量制御は、第1図
に示すように、放風弁全開、吸入弁全閉時の無負
荷固定制御と、放風弁全閉、吸入弁全開時の100
%固定制御と、0%〜100%の風量領域全域で吐
出可能なように容量の調整を行なうオンオフ−定
風圧制御の3つの容量制御モードを選択して行な
われるようになつている。このうち、オンオフ−
定風圧制御では、サージ風量領域でオンオフ制御
が行なわれ、非サージ風量領域では定風圧制御に
切換えられる。
(Prior art) In general, the capacity control of a turbo compressor is performed as shown in Fig. 1: no-load fixed control when the blow-off valve is fully open and the suction valve is fully closed; 100 at full throttle
Three capacity control modes can be selected: % fixed control and on/off-constant air pressure control that adjusts the capacity so that air can be discharged over the entire air volume range of 0% to 100%. Of these, on/off-
In constant air pressure control, on/off control is performed in a surge air volume region, and is switched to constant air pressure control in a non-surge air volume region.

これらの容量制御によるターボ圧縮機単体の動
力−風量特性は第2図に示すようになつており、
オンオフ−定風圧制御ではサージ風量領域におけ
るオンオフ制御において第2図中斜線を施して示
した放風による動力ロスを伴なう。
The power-airflow characteristics of a single turbo compressor due to these capacity controls are as shown in Figure 2.
The on-off-constant air pressure control is accompanied by a power loss due to air discharge, which is indicated by diagonal lines in FIG. 2, in the on-off control in the surge air volume region.

ところで、この容量制御を有するターボ圧縮機
を複数台並列運転させる圧縮機プラント全体の容
量制御は従来次のように行なわれていた。
By the way, capacity control of the entire compressor plant in which a plurality of turbo compressors having capacity control are operated in parallel has conventionally been performed as follows.

これは、第3図の3台の同一容量のターボ圧縮
機を並列運転させたときの動力−風量特性に示す
ように、負荷(使用に供する風量)が小の間は1
号機のみにオンオフ−定風圧制御にて運転させ、
負荷が1号機の吐出容量の最大である100%を越
えると1号機には100%固定制御で運転を行なわ
せて2号機をオンオフ−定風圧制御で運転を開始
させ、さらに負荷が増すと同様に2号機に100%
固定制御運転させて3号機をオンオフ−定風圧制
御で運転を開始させるようにしている。
As shown in the power-airflow characteristics when three turbo compressors of the same capacity are operated in parallel in Figure 3, when the load (airflow volume for use) is small, the
Only the unit is operated with on/off-constant air pressure control.
When the load exceeds 100% of the maximum discharge capacity of Unit 1, Unit 1 is operated with 100% fixed control, Unit 2 is started operating with on/off - constant air pressure control, and when the load increases further, the same applies. 100% to Unit 2
The unit is operated under fixed control and the No. 3 unit is started under on/off-constant air pressure control.

(発明が解決しようとする課題) しかしながら、ターボ圧縮機を複数台並列運転
させる場合の上記従来の制御では、第3図の圧縮
機プラント全体の動力−風量特性からもわかるよ
うに、負荷が増加して圧縮機の運転台数を増やし
ていくときに、各圧縮機のサージ風量領域におけ
るオンオフ制御による動力ロスを含んでいて、こ
の動力ロスを最小にして省エネルギーを図ること
が、この種の圧縮機制御にとつて重要な課題とな
つている。
(Problem to be solved by the invention) However, in the above conventional control when multiple turbo compressors are operated in parallel, the load increases as can be seen from the power-airflow characteristics of the entire compressor plant in Figure 3. When increasing the number of compressors in operation, this type of compressor includes power loss due to on/off control in the surge air volume region of each compressor, and it is important to minimize this power loss and save energy. This has become an important issue for control.

本発明は、上記課題に沿うために、圧縮機容量
制御に従来なかつた定風量制御モードを導入し、
負荷に合わせて定風量制御モードを選択切換えす
ることより、オンオフ−定風圧制御する圧縮機を
できるだけオンオフ制御をさせないようにして動
力ロスを最小にし小エネルギーを図る空気圧縮機
制御装置を提供することを目的とする。
In order to meet the above-mentioned problems, the present invention introduces a conventional constant air volume control mode to compressor capacity control,
To provide an air compressor control device that minimizes power loss and saves energy by minimizing on-off control of a compressor that performs on-off and constant air pressure control by selectively switching a constant air volume control mode according to the load. With the goal.

(課題を解決するための手段) 本発明の空気圧縮機制御装置は、吸込側に吸込
弁が設けられ、吐出側に、放風弁を取付けた吐出
配管が接続された圧縮機を複数設け、負荷の増減
に応じて該圧縮機を順次並列運転させるととも
に、前記吐出配管内の圧力および風量に基づいて
各圧縮機の吸込弁および放風弁を適宜制御する空
気圧縮機制御装置であつて、 前記吐出配管内の圧力に基づき前記吸込弁およ
び放風弁を制御して、負荷に応じて圧縮機の吐出
風量を制御するオンオフ−定風圧制御手段と、 前記吸込弁を全開にし、前記放風弁を全閉にし
て、圧縮機の吐出風量を最大に制御する100%固
定制御手段と、 前記圧縮機を負荷の増減に応じて順次並列運転
する際に、後に運転が開始された圧縮機が前記オ
ンオフ−定風圧制御手段によりオンオフ制御され
ているときに、前に運転が開始され、前記100固
定制御手段により吐出風量を最大に制御されてい
る圧縮機の吐出風量を、その圧縮機の最大の吐出
能力以下の非サージ風量領域内の所定の一定風量
に変更する定風量制御手段と、から構成したこと
を特徴とするものである。
(Means for Solving the Problems) The air compressor control device of the present invention includes a plurality of compressors each having a suction valve on the suction side and a discharge pipe connected to a discharge valve on the discharge side, An air compressor control device that sequentially operates the compressors in parallel according to increases and decreases in load, and appropriately controls suction valves and blowoff valves of each compressor based on the pressure and air volume in the discharge piping, an on/off constant air pressure control means for controlling the suction valve and the air discharge valve based on the pressure in the discharge pipe to control the discharge air volume of the compressor according to the load; A 100% fixed control means that controls the discharge air volume of the compressor to the maximum by fully closing the valve, and a 100% fixed control means that controls the discharge air volume of the compressor to the maximum. When on-off control is performed by the on-off-constant air pressure control means, the discharge air volume of the compressor that has previously started operation and whose discharge air volume is controlled to the maximum by the 100 fixed air pressure control means is set to the maximum discharge air volume of the compressor. and constant air volume control means for changing the air volume to a predetermined constant air volume within a non-surge air volume range that is less than or equal to the discharge capacity.

(作用) 以上の構成とすると、複数の圧縮機を並列運転
させたときに、前に運転が開始され、100%固定
制御手段により制御が行なわれている圧縮機と、
後に運転が開始され、オンオフ−定風圧制御手段
によりオンオフ制御されている圧縮機とにおい
て、100%固定制御されている圧縮機に100%以下
の非サージ風量領域内の任意の風量の定風量制御
を行なわせることによつて、オンオフ制御されて
いる圧縮機をオンオフ制御から定風圧制御に移行
させることができ、その分放風による動力ロスが
低減する。そして、この制御を複数台の圧縮機で
順次行なうことによつて、圧縮機プラント全体の
省エネルギーが図れる。
(Function) With the above configuration, when a plurality of compressors are operated in parallel, the compressor that started operating earlier and is controlled by the 100% fixed control means,
After the operation is started, the compressor is controlled on and off by the on-off constant air pressure control means, and the compressor is 100% fixedly controlled, and the compressor is subjected to constant air volume control at any air volume within the non-surge air volume area of 100% or less. By performing this, the compressor that is under on/off control can be shifted from on/off control to constant air pressure control, and power loss due to air discharge is reduced accordingly. By sequentially performing this control on a plurality of compressors, it is possible to save energy in the entire compressor plant.

(実施例) つぎに、本発明の空気圧縮機制御装置の一実施
例を第4図および第5図に基づいて説明する。
(Embodiment) Next, an embodiment of the air compressor control device of the present invention will be described based on FIGS. 4 and 5.

第4図は本発明の空気圧縮機制御装置が適用さ
れ並列運転される複数台のターボ圧縮機の任意の
1台の制御系統を示したものである。
FIG. 4 shows a control system for any one of a plurality of turbo compressors operated in parallel to which the air compressor control device of the present invention is applied.

1はターボ圧縮機(以下圧縮機という)を示し
ており、該圧縮機1は以下に述べるように、オン
オフ−定風圧制御、無負荷固定、100%固定、定
風量制御の各容量制御モードを行なう手段を一括
装備しており、これらの各制御モードを適宜選択
切換可能に構成されている。
1 indicates a turbo compressor (hereinafter referred to as a compressor), and the compressor 1 has each capacity control mode of on/off-constant air pressure control, no-load fixed, 100% fixed, and constant air volume control, as described below. The control mode is equipped with means for controlling the control mode, and is configured to be able to select and switch between these control modes as appropriate.

このうち、オンオフ−定風圧制御手段は、圧縮
機吐出配管2の圧力が圧力検出器3により検出さ
れ、吐出圧力指示警報調節計4の入力信号とされ
ている。この吐出圧力指示警報調節計4の圧力設
定値は外部の空気源全体の使用状態を監視する装
置Aにより変更可能とされている。この吐出圧力
指示警報調節計4の出力により吸入弁5の開度が
全閉から全開まで連続的に開閉制御されるように
なつており、これによつて負荷である空気使用量
と圧縮機吐出風量をバランスさせるべく吐出圧力
一定制御が行なわれる。また、負荷が少なくなつ
た場合吐出和風量もあわせるように吸入弁5が閉
じていき吐出風量がある値以下になると、サージ
ング発生の危険があるため、定風圧制御からオン
オフ制御に移行させるべく、吐出配管2に設けら
れた流量検出器6の信号が風量指示警報調節計7
に導かれ、そのモニタスイツチによりシーケンス
制御回路8にて電磁弁12を介して放風弁9が全
開され、吸入弁5が吐出圧力指示警報調節計4の
出力信号の如何にかかわらず電磁弁13により全
閉とされ、圧縮機1は無負荷状態に固定されるよ
うになつている(オフ状態)。無負荷状態の間空
気消費が継続されて吐出圧力が低下すると、吐出
圧力指示警報調節計4の加減偏差モニタスイツチ
(設定値−ΔPKg/cm3G)により吸入弁5、放風
弁9は、通常の制御状態に戻され、定風圧制御運
転が再開されるようになつている。このようにオ
ンオフ−定風圧制御手段による制御は0%〜100
%の風量領域全域にわたつて吐出可能な容量制御
方式である。
Among these, in the on/off/constant air pressure control means, the pressure of the compressor discharge pipe 2 is detected by the pressure detector 3, and is used as an input signal to the discharge pressure indicating alarm controller 4. The pressure setting value of the discharge pressure indicator/warning controller 4 can be changed by a device A that monitors the usage status of the entire external air source. The opening degree of the suction valve 5 is continuously controlled from fully closed to fully open by the output of the discharge pressure indicator and alarm controller 4, thereby controlling the amount of air used, which is the load, and the compressor discharge. Constant discharge pressure control is performed to balance the air volume. In addition, when the load decreases, the suction valve 5 closes to match the discharge air volume, and if the discharge air volume falls below a certain value, there is a risk of surging, so in order to shift from constant air pressure control to on-off control, The signal from the flow rate detector 6 installed in the discharge pipe 2 is transmitted to the air volume indication alarm controller 7.
The monitor switch causes the sequence control circuit 8 to fully open the air discharge valve 9 via the solenoid valve 12, and the suction valve 5 to open the solenoid valve 13 regardless of the output signal of the discharge pressure indication alarm controller 4. The compressor 1 is completely closed, and the compressor 1 is fixed in a no-load state (off state). When air consumption continues during the no-load state and the discharge pressure decreases, the adjustment deviation monitor switch (setting value - ΔPKg/cm 3 G) of the discharge pressure indicator and alarm controller 4 causes the suction valve 5 and the air discharge valve 9 to The normal control state is returned and constant air pressure control operation is restarted. In this way, the on/off control by the constant air pressure control means ranges from 0% to 100%.
This is a capacity control method that can discharge air over the entire air volume range of 1.5%.

無負荷固定制御手段は、前記オンオフ−定風圧
制御で述べた無負荷状態を継続するものである
が、電動機の起動停止インターバルの制約上強制
的に無負荷で待機状態にされるものであり、外部
の監視装置Aによりモードが指定され得るように
なつている。
The no-load fixed control means continues the no-load state described in the above-mentioned on-off-constant air pressure control, but is forced into a no-load standby state due to the restriction of the start/stop interval of the motor. The mode can be designated by an external monitoring device A.

100%固定制御手段は同様に外部の監視装置A
によりモードが指定され圧縮機吐出能力容量最大
の100%で出し続けるように吸入弁5全開、放風
弁9全閉の状態に継続続固定させるものである。
100% fixed control means is also external monitoring device A
The mode is designated and the suction valve 5 is kept fully open and the air discharge valve 9 is kept fully closed so that the compressor continues to discharge at 100% of its maximum discharge capacity.

定風量制御手段は、100%以下の非サージ風量
領域で圧縮機容量を任意に固定制御するモード
で、吐出空気の流量を流量検出機6により検出し
風量指示警報調節計7の風量設定値を外部の空気
源全体の使用状態を監視する装置Aにより変更可
能とすることによつて得られる。この風量指示警
報調節計7の出力により吸入弁5の開度を全閉か
ら全開まで連続的に開度制御することによつて吐
出風量一定制御が行なわれる。なお、この制御手
段による制御の動力−風量特性は定風圧制御と同
一である。
The constant air volume control means is a mode in which the compressor capacity is arbitrarily fixed and controlled in a non-surge air volume region of 100% or less, and the flow rate of discharged air is detected by the flow rate detector 6 and the air volume setting value of the air volume indication alarm controller 7 is determined. This is obtained by making it possible to change the usage status of the entire external air source by means of the device A that monitors the usage status. By continuously controlling the opening degree of the suction valve 5 from fully closed to fully open based on the output of the air volume indicating and warning controller 7, constant control of the discharge air volume is performed. Note that the power-air volume characteristics of control by this control means are the same as constant air pressure control.

オンオフ−定風圧制御と定風量制御との切換え
は次のようになつている。すなわち、この2つの
モードを切換えるため、吐出圧力指示警報調節計
4と風量指示警報調節計7の出力信号ラインに2
値選択のためのスイツチ機能を有するトランスフ
アーリレー10が設けられており、トランスフア
ーリレー10の後段には一定時間操作出力を一次
遅れで出力するタイムデイレーリレー11が設け
られている。なお、第4図中14は電気信号を空
気圧力に比例接続して吸入弁5を空気圧で作動さ
せるための電−空変換器である。そして、この構
成によれば、トランスフアーリレー10で吐出圧
力指示警報調節計4の操作信号出力と風量指示警
報調節計7の操作出力信号との切換を行なうとき
に操作信号が瞬時断絶して吸入弁5が全閉になろ
うと作動し、切換完了時に新しい操作信号により
吸入弁5が操作信号に比例した開度で開こうとす
るが(これをハンチング現象という)、タイムデ
イレーリレー11によつて切換えが完了するまで
の時間中は切換前の操作信号値から瞬時断絶せ
ず、かつ、新しい操作信号値にも即時に切換わら
ないように一次遅れ要素をもつて徐々に新しい操
作信号値になるようにして切換時のハンチング現
象をなくしバンプレスに切換えを行なうことがで
きる。
On/off - switching between constant air pressure control and constant air volume control is as follows. In other words, in order to switch between these two modes, two lines are connected to the output signal lines of the discharge pressure indication alarm controller 4 and the air volume indication alarm controller 7.
A transfer relay 10 having a switch function for selecting a value is provided, and a time delay relay 11 is provided downstream of the transfer relay 10 for outputting a manipulated output with a first-order delay for a certain period of time. Note that 14 in FIG. 4 is an electro-pneumatic converter for proportionally connecting an electric signal to air pressure to operate the suction valve 5 with air pressure. According to this configuration, when the transfer relay 10 switches between the operation signal output of the discharge pressure indication and alarm controller 4 and the operation output signal of the air volume indication and alarm controller 7, the operation signal is momentarily interrupted and the suction The valve 5 operates to fully close, and when the switching is completed, a new operation signal causes the suction valve 5 to open at an opening proportional to the operation signal (this is called a hunting phenomenon), but the time delay relay 11 During the time until the switching is completed, the new operating signal value is gradually changed to the new operating signal value using a first-order delay element so that there is no instantaneous disconnection from the operating signal value before switching, and so that the switching to the new operating signal value does not occur immediately. In this way, the hunting phenomenon during switching can be eliminated and bumpless switching can be performed.

上記の構成の制御装置により複数台の圧縮機は
次のように運転される。
A plurality of compressors are operated as follows by the control device having the above configuration.

負荷の増加に伴なつて1台目の圧縮機がまずオ
ンオフ−定風圧制御で運転が行なわれ、続いて1
台目の圧縮機の吐出能力容量が最大の100%とな
ると、1台目の圧縮機が100%固定制御で運転が
行なわれ2台目の圧縮機がオンオフ−定風圧制御
におけるオンオフ制御で運転が開始される。そし
て、風量が設定された値になると、1台目の圧縮
機に100%以下の非サージ風量領域内の任意の風
量の定風量制御を行なわせることによつて、2台
目の圧縮機がオンオフ−定風圧制御におけるオン
オフ制御から定風圧制御に移行され、その分放風
による動力ロスが低減される。そして、2台目の
圧縮機の吐出能力容量が最大の100%となると、
2台目の圧縮機が100%定制御で運転が行なわれ
3台目の圧縮機がオオフ制御で運転が開始され、
その後の制御を台目と2台目の制御と同じように
することよつて動力ロスを低減でき、圧縮機プラ
ントの省エネルギーが図れることになる。
As the load increases, the first compressor is first operated with on/off-constant air pressure control, and then the first compressor is operated with constant air pressure control.
When the discharge capacity of the first compressor reaches 100% of its maximum capacity, the first compressor operates under 100% fixed control, and the second compressor operates under on-off control under constant air pressure control. is started. When the air volume reaches the set value, the second compressor is activated by having the first compressor perform constant air volume control at an arbitrary air volume within the non-surge air volume area of 100% or less. On-off-constant air pressure control is transferred from on-off control to constant air pressure control, and power loss due to air discharge is reduced accordingly. Then, when the discharge capacity of the second compressor reaches 100% of its maximum capacity,
The second compressor started operating with 100% constant control, and the third compressor started operating with off-off control.
By performing subsequent control in the same way as the control for the first and second units, power loss can be reduced and energy savings in the compressor plant can be achieved.

ここで、第5図を用いて具体的に2台の圧縮機
の並列運転での本実施例の制御装置により制御を
説明する。
Here, with reference to FIG. 5, control by the control device of this embodiment in parallel operation of two compressors will be specifically explained.

1号機がオンオフ−定風圧制御におけるオンオ
フ制御で運転が開始され、非サージ領域で定風圧
制御に切換わつて運転が続けられ、吐出能力容量
が最大の100%(風量Q1)となると2号機がオン
オフ−定風圧制御におけるオンオフ制御で運転が
開始される。そして、設定された風量Q2となる
と1号機が定風量制御に切換わり風量Q0で定風
量を吐出する制御が行なわれ、それにより、2号
機は風量Q3になると非サージ風量領域となつて
オンオフ制御から定風圧制御に切換わる。
Unit 1 starts operation with on-off control under constant air pressure control, switches to constant air pressure control in the non-surge region, continues operation, and when the discharge capacity reaches 100% of the maximum (air volume Q 1 ), Unit 2 starts operating. On-off - Operation is started with on-off control in constant air pressure control. Then, when the set air volume Q 2 is reached, the first unit switches to constant air volume control and controls to discharge a constant air volume at the air volume Q 0. As a result, when the air volume reaches the set air volume Q 3 , the second unit enters the non-surge air volume region. Switches from on/off control to constant air pressure control.

この原理を説明する。第5図中に示す破線は1
号機と2号機を順次運転させる従来の動力−風量
特性を示しており、1号機の吐出風量がQ1とな
つたとき2号機の運転を開始し、吐出風量がQ3
になると2号機はオンオフ制御から定風圧制御に
切換わつている。第5図中に示す一点鎖線は、1
号機の吐出風量がQ0(定風圧制御領域)になつた
ときに2号機の運転を開始したと想定したときの
1号機および2号機の合計の動力−風量特性であ
り、合計の吐出風量がQ3になると2号機はオン
オフ制御から定風圧制御に切換わる。そこで2号
機が運転を開始して合計の吐出風量がQ2になつ
たときに1号機をQ0の吐出風量で定風量制御に
切換えると2台の圧縮機の動力−風量特性はこの
想定した特性に移行するとになり、吐出風量が
Q3になると2号機はオンオフ制御から定風圧制
御に切換わる。そのため、2台の圧縮機の動力ー
風量特性は実線で示す特性となる。
This principle will be explained. The broken line shown in Figure 5 is 1
This shows the conventional power-airflow characteristics in which Unit No. 1 and No. 2 are operated sequentially. When the discharge air volume of Unit 1 reaches Q 1 , the operation of Unit 2 starts, and the discharge air volume reaches Q 3 .
At this point, Unit 2 switched from on/off control to constant air pressure control. The one-dot chain line shown in FIG.
This is the total power-airflow characteristic of Units 1 and 2, assuming that Unit 2 starts operation when the discharge air volume of Unit 1 reaches Q 0 (constant air pressure control region), and the total discharge air volume is At Q 3 , Unit 2 switches from on/off control to constant air pressure control. Therefore, when Unit 2 starts operating and the total discharge air volume reaches Q 2 , if Unit 1 is switched to constant air volume control with a discharge air volume of Q 0 , the power-air volume characteristics of the two compressors will be as follows. As the characteristics change, the discharge air volume increases.
At Q 3 , Unit 2 switches from on/off control to constant air pressure control. Therefore, the power-air volume characteristics of the two compressors are as shown by the solid line.

これからわかるように、図中風量Q2からQ4
間で斜線で示す面積分の動力が節減されるため、
省エネルギーが図られる。なお、圧縮機の台数が
増加してもこの原理は同様で、さらに省エネルギ
ー効果領域がが拡大される。
As you can see, the power is saved by the area shown by diagonal lines between the air volume Q 2 and Q 4 in the figure, so
Energy saving is achieved. Note that this principle remains the same even if the number of compressors increases, and the energy saving effect area is further expanded.

(発明の効果) オンオフ−定風圧制御手段、100%固定制御手
段、定風量制御手段を設けたことにより、後に運
転が開始された圧縮機がオンオフ−定風圧制御手
段によりオンオフ制御されているときに、前に運
転が開始され、100%固定制御手段により制御さ
れている圧縮機の吐出風量を、本考案の定風量制
御手段によつて非サージ風量領域内の一定風量に
変更することにより、オンオフ制御されている前
記圧縮機がオンオフ制御から定風圧制御に移行さ
せられる。そのため、オンオフ制御において生じ
る放風による動力ロスを低減させて、省エネルギ
ーを図ることができる。
(Effect of the invention) By providing the on-off constant air pressure control means, the 100% fixed control means, and the constant air flow control means, when the compressor that is started to operate later is controlled on and off by the on-off constant air pressure control means. By changing the discharge air volume of the compressor, which has previously started operation and is controlled by the 100% fixed control means, to a constant air volume within the non-surge air volume region using the constant air flow control means of the present invention, The compressor being controlled is shifted from on/off control to constant air pressure control. Therefore, it is possible to reduce power loss due to air discharge that occurs during on/off control, and to save energy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はターボ圧縮機単体のモード特性図、第
2図はターボ圧縮機単体の動力−風量特性図、第
3図は従来の制御法における複数台並列運転時の
動力−風量特性図、第4図は本発明の一実施例に
係る空気圧縮機制御装置の系統図、第5図は本発
明の2台並列運転時の動力−風量特性図である。 1……ターボ圧縮機、4……吐出圧力指示警報
調節計、5……吸入弁、7……風量指示警報調節
計、8……シーケンス制御回路、9……放風弁。
Figure 1 is a mode characteristic diagram of a single turbo compressor, Figure 2 is a power-air volume characteristic diagram of a single turbo compressor, Figure 3 is a power-air volume characteristic diagram when multiple units are operated in parallel using the conventional control method, FIG. 4 is a system diagram of an air compressor control device according to an embodiment of the present invention, and FIG. 5 is a power-airflow characteristic diagram when two units of the present invention are operated in parallel. DESCRIPTION OF SYMBOLS 1...Turbo compressor, 4...Discharge pressure indication alarm controller, 5...Suction valve, 7...Air volume indication alarm controller, 8...Sequence control circuit, 9...Blowout valve.

Claims (1)

【特許請求の範囲】 1 吸込側に吸込弁が設けられ、吐出側に、放風
弁を取付けた吐出配管が接続された圧縮機を複数
設け、負荷の増減に応じて該圧縮機を順次並列運
転させるとともに、前記吐出配管内の圧力および
風量に基づいて各圧縮機の吸込弁および放風弁を
適宜制御する空気圧縮機制御装置であつて、 前記吐出配管内の圧力に基づき前記吸込弁およ
び放風弁を制御して、負荷に応じて圧縮機の吐出
風量を制御するオンオフ−定風圧制御手段と、 前記吸込弁を全開にし、前記放風弁を全閉にし
て、圧縮機の吐出風量を最大に制御する100%固
定制御手段と、 前記圧縮機を負荷の増減に応じて順次並列運転
する際に、後に運転が開始された圧縮機が前記オ
ンオフ−定風圧制御手段によりオンオフ制御され
ているときに、前に運転が開始され、前記100%
固定制御手段により吐出風量を最大に制御されて
いる圧縮機の吐出風量を、その圧縮機の最大の吐
出能力以下の非サージ風量領域内の所定の一定風
量に変更する定風量制御手段と、 から構成したことを特徴とする空気圧縮機制御装
置。
[Scope of Claims] 1. A plurality of compressors each having a suction valve provided on the suction side and a discharge pipe with a discharge valve attached to the discharge side connected to each other are provided, and the compressors are sequentially connected in parallel according to increases and decreases in load. An air compressor control device that operates and appropriately controls a suction valve and a blowoff valve of each compressor based on the pressure and air volume in the discharge pipe, the air compressor control device comprising: an on/off constant air pressure control means for controlling a discharge air volume of the compressor in accordance with the load by controlling an air discharge valve; 100% fixed control means for maximally controlling the air pressure; and when the compressors are sequentially operated in parallel according to increases and decreases in load, the compressor that is started later is on/off controlled by the on/off-constant air pressure control means. When the operation is started and said 100%
constant air volume control means for changing the discharge air volume of a compressor whose discharge air volume is controlled to a maximum by the fixed control means to a predetermined constant air volume within a non-surge air volume region that is less than the maximum discharge capacity of the compressor; An air compressor control device characterized by comprising:
JP15530279A 1979-11-30 1979-11-30 Air compressor controller Granted JPS5677584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15530279A JPS5677584A (en) 1979-11-30 1979-11-30 Air compressor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15530279A JPS5677584A (en) 1979-11-30 1979-11-30 Air compressor controller

Publications (2)

Publication Number Publication Date
JPS5677584A JPS5677584A (en) 1981-06-25
JPH0262711B2 true JPH0262711B2 (en) 1990-12-26

Family

ID=15602921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15530279A Granted JPS5677584A (en) 1979-11-30 1979-11-30 Air compressor controller

Country Status (1)

Country Link
JP (1) JPS5677584A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153479A (en) * 1984-08-23 1986-03-17 Mitsubishi Heavy Ind Ltd Operation controller for plural compressors
JP2508695B2 (en) * 1987-03-27 1996-06-19 石川島播磨重工業株式会社 Method and apparatus for operating a plurality of compressors in parallel

Also Published As

Publication number Publication date
JPS5677584A (en) 1981-06-25

Similar Documents

Publication Publication Date Title
JP2754079B2 (en) Control method and control device for compressor system
JPH08208206A (en) Air compression equipment and nitrogen extractor from compressed air
SU1782293A3 (en) Method of controlling flow rate of propeller compressor
JPH0262711B2 (en)
JPH09264255A (en) Air compressor
JP2508695B2 (en) Method and apparatus for operating a plurality of compressors in parallel
JP3384894B2 (en) Turbo compressor capacity control method
JPS6226640Y2 (en)
JPH0340239B2 (en)
JPH0137191Y2 (en)
JP2774433B2 (en) Centrifugal compressor capacity control device
JP4399655B2 (en) Compressed air production facility
JPH065566Y2 (en) Heat pump device
JPS5948320B2 (en) Compressor automatic start device
JP2757426B2 (en) Operation control method of centrifugal compressor
JPS63123108A (en) Vacuum control device
JPH0432298B2 (en)
SU1062470A1 (en) System for regulating steam pressure in steam generator
JPH077592Y2 (en) Compressor capacity control device
JP2004263649A (en) Compressed-air device control system
JPH0133676B2 (en)
JPH0311190A (en) Capacity control switching method for compressor
JP2686307B2 (en) Operation control device for turbo refrigerator
JPH0158353B2 (en)
JPH02112679A (en) Volume controlling method for compressor