JPH0261529A - Double grating type spectroscopic apparatus - Google Patents

Double grating type spectroscopic apparatus

Info

Publication number
JPH0261529A
JPH0261529A JP21412188A JP21412188A JPH0261529A JP H0261529 A JPH0261529 A JP H0261529A JP 21412188 A JP21412188 A JP 21412188A JP 21412188 A JP21412188 A JP 21412188A JP H0261529 A JPH0261529 A JP H0261529A
Authority
JP
Japan
Prior art keywords
light
incident
component
diffraction grating
line direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21412188A
Other languages
Japanese (ja)
Other versions
JP2755958B2 (en
Inventor
Yoji Sonobe
園部 洋治
Takao Tanimoto
隆生 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP63214121A priority Critical patent/JP2755958B2/en
Publication of JPH0261529A publication Critical patent/JPH0261529A/en
Application granted granted Critical
Publication of JP2755958B2 publication Critical patent/JP2755958B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To measure a light level stably and accurately by equivalently rotating the vibration direction of light outputted from the first dispersion type spectroscopic element by 90 deg. before inputting the same to the second dispersion type spectroscopic element. CONSTITUTION:Dispersion type spectroscopic elements 13, 19 equal in diffraction efficiency are used to spectrally diffract light (a) to be measured. In this case, the polarized component (S-component), which is vertical to the slit line direction of the element 13, of the light emitted from the element 13 is incident in parallel to the slit line direction of the element 19 and the polarized component (P-component) parallel to the slit line direction is incident at right angles to the slit line direction of the element 19. That is, the light emitted from the element 13 is equivalently rotated by 90 deg. in its vibration direction to be incident to the element 19. As a result, the incident light component receiving the effect of one diffraction efficiency P (lambda) of the element 13 receives the effect of the other diffraction efficiency S (lambda) in the element 19. Contrarily, the incident light component receiving the effect of the diffraction efficiency S (lambda) of the element 13 receives the effect of the diffraction efficiency P (lambda) in the element 19. Therefore, since any component of incident light equally receives the effects of diffraction efficiencies P (lambda), S (lambda), the effect of the polarization state of incident light can be removed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は2個の分散型分光素子を光路に対して直列に介
挿したダブルグレーティング型分光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a double grating type spectroscopic device in which two dispersive spectroscopic elements are inserted in series with respect to an optical path.

[従来の技術] 回折格子(グレーティング)等の分散型分光素子を被測
定光の光路に2個直列に介挿してなるダブルグレーティ
ング型分光装置は例えば第2図に示すように構成されて
いる。すなわち、外部から入力された被測定光aは入射
スリット1を介して第1のコリメータ鏡2で平行光線に
直されて第1の回折格子3に入射される。第1の回折格
子3にて分光された被測定光は凹面鏡からなる第1のカ
メラ鏡4で集光され、中間スリット5を介して第2のコ
リメータ鏡6へ入射される。この第2のコリメータ鏡6
で再び平行光線に直された被測定光は第2の回折格子7
へ入力される。第2の回折格子7でさらに分光された被
測定光は凹面鏡からなる第2のカメラ鏡8で集光され、
出射スリット9を介して、この出射スリット9の裏面に
配設されたフォトダイオードからなる受光器10へ入射
される。
[Prior Art] A double grating type spectrometer in which two dispersive spectroscopic elements such as diffraction gratings are inserted in series in the optical path of light to be measured is configured as shown in FIG. 2, for example. That is, the measured light a inputted from the outside is converted into parallel light beams by the first collimator mirror 2 through the entrance slit 1, and then enters the first diffraction grating 3. The light to be measured that has been separated by the first diffraction grating 3 is focused by a first camera mirror 4 made of a concave mirror, and is incident on a second collimator mirror 6 via an intermediate slit 5. This second collimator mirror 6
The light to be measured, which is again converted into a parallel beam, is passed through the second diffraction grating 7.
is input to. The light to be measured further separated by the second diffraction grating 7 is focused by a second camera mirror 8 made of a concave mirror,
The light enters through the output slit 9 into a light receiver 10 consisting of a photodiode arranged on the back side of the output slit 9.

一般に、このようなダブルグレーティング型分光装置に
おいては、第1の回折格子3の回折溝の刻線方向と第2
の回折格子7の刻線方向とを一致させるようにしている
。したがって、入射スリット1.中間スリット5および
出射スリット9のスリット方向も第1.第2の回折格子
3,7の刻線方向と一致している。そして、前述したよ
うに構成される2台の分光器を同じ構造とし、第2図に
おいて、各回折格子3,7に対する被測定光の入射角θ
は互いに一致するように、各回折格子3゜7は図示しな
い一つ又は2つの駆動機構にて連動して回動される。し
たがって、各回折格子3.7から各カメラ鏡4,8へ入
射される分光された光の中心位置の波長λは一致する。
Generally, in such a double grating type spectrometer, the direction of the grooves of the first diffraction grating 3 and the second
The direction of the ruled lines of the diffraction grating 7 is made to coincide with that of the diffraction grating 7. Therefore, the entrance slit 1. The slit directions of the intermediate slit 5 and the exit slit 9 are also the same as the first one. This coincides with the direction of the ruled lines of the second diffraction gratings 3 and 7. Then, the two spectrometers configured as described above have the same structure, and in FIG.
The diffraction gratings 3.7 are rotated in conjunction with one or two drive mechanisms (not shown) so that they coincide with each other. Therefore, the wavelengths λ at the center positions of the separated lights incident on the camera mirrors 4 and 8 from each diffraction grating 3.7 are the same.

このような構成のダブルグレーティング型分光装置にお
いて、入射スリット1を介して入力された被n1定光a
は第1の回折格子3で分光されて、分光された被測定光
がさらに第2の回折格子7で分光される。
In a double grating spectrometer with such a configuration, the n1 constant light a input through the entrance slit 1
is separated by the first diffraction grating 3, and the separated measured light is further separated by the second diffraction grating 7.

一般に回折格子の分光性能は単一波長久。の基準光を分
光した場合にこの中心波長λ0の両側の波長領域に存在
する光レベルの減衰度で示すことができるので、第1の
回折格子3にて分光された光をさらに第2の回折格子7
で分光することによって、前記中心波長λ0の両側の波
長領域に存在する前記第1の回折格子3によって減衰さ
れた光レベルをさらに減衰させることが可能となる。し
たがって、2個の回折格子3,7を入射角θが常時一致
するように連動させて使用することにより、被測定光a
に対する分光性能を大幅に向上できる。
In general, the spectral performance of a diffraction grating is limited to a single wavelength. When the reference light of Lattice 7
By performing spectroscopy, it becomes possible to further attenuate the light level attenuated by the first diffraction grating 3 existing in wavelength regions on both sides of the center wavelength λ0. Therefore, by using the two diffraction gratings 3 and 7 in conjunction so that the incident angle θ always matches, the measured light a
The spectral performance can be significantly improved.

[発明が解決しようとする課題] しかしながら、2個の回折格子3.7を使用して分光性
能を向上させた第2図に示すダブルグレーティング型分
光装置においてもまだ次のような課題があった。すなわ
ち、第3図(b)に示すように、一般に被n1定光aの
光の振動方向は任意の方向に振動する。したがって、回
折格子3.7に入射した時点で、この入射光aの振動方
向と回折格子3,7の刻線方向との間には任意の角度α
が存在する。また、一般に、回折格子においては第3図
(a)に示すように、その回折効率が刻線の平行方向の
回折効率P(λ)と刻線の垂直方向の回折効率S(λ)
とで波長特性が異なる。したがって、同一波長成分を含
む被測定光aを分光分析を実施したとしても、被測定光
aの光の振動方向が異なれば回折格子3.7上における
刻線に平行な偏波成分(P成分)と刻線に垂直な偏波成
分(S成分)との成分比が変化するので、得られた分光
特性上の各波長λにおける光レベルが常時正しい値にな
るとは限らない。
[Problems to be solved by the invention] However, even with the double grating type spectrometer shown in Fig. 2, which uses two diffraction gratings 3.7 to improve spectral performance, the following problems still remain. . That is, as shown in FIG. 3(b), the direction of vibration of the light of the n1 constant light a generally oscillates in an arbitrary direction. Therefore, at the time of incidence on the diffraction grating 3.7, there is an arbitrary angle α between the vibration direction of this incident light a and the score line direction of the diffraction gratings 3 and 7.
exists. In general, in a diffraction grating, as shown in FIG. 3(a), the diffraction efficiency is P(λ) in the direction parallel to the ruled lines and S(λ) in the direction perpendicular to the ruled lines.
The wavelength characteristics differ between the two. Therefore, even if spectroscopic analysis is performed on the measured light a containing the same wavelength component, if the vibration direction of the measured light a differs, the polarization component (P component) parallel to the ruled line on the diffraction grating 3.7 ) and the polarized wave component (S component) perpendicular to the ruled line changes, so the light level at each wavelength λ on the obtained spectral characteristics does not always have a correct value.

また、一つの被測定光aを入射したとしても、振動方向
によっては、前記成分比が異なるので、S成分が多い場
合と、P成分が多い場合とでは、回折効率の波長特性が
異なるので、得られた分光特性上の各波長相互間におけ
る各光レベルの厳密なレベル比較を実行するとが不可能
である。
Furthermore, even if one measured light a is incident, the component ratio will differ depending on the vibration direction, so the wavelength characteristics of the diffraction efficiency will differ depending on whether the S component is large or the P component is large. It is impossible to perform a strict level comparison of each light level between each wavelength on the obtained spectral characteristics.

このように、従来のダブルグレーティング型分光装置に
おいては、どの波長λ位置にピークが存在するかを正確
に把握することが可能であるが、そのピーク波形の光レ
ベルが該当波長の光の振動方向によって大きく変動する
ので、正しい光レベルを得ることは困難であった。
In this way, with conventional double grating spectrometers, it is possible to accurately determine at which wavelength λ position the peak exists, but the light level of the peak waveform is determined by the vibration direction of the light of the corresponding wavelength. It was difficult to obtain the correct light level because the light level varied greatly depending on the light intensity.

本発明はこのような事情に鑑みてなされたものであり、
第1の分散型分光素子から出力された光の振動方向を等
価的に90″回転させて第2の分散型分光素子へ人力す
ることによって、各測定波長における得られた光レベル
から彼alll定光の振動方向に依存する変動成分を除
去することができ、常時安定した正確な光レベルの測定
が実施でき、ひいては装置全体の測定精度を向上できる
ダブルグレーティング型分光装置を提供することを目的
とする。
The present invention was made in view of these circumstances, and
By equivalently rotating the vibration direction of the light output from the first dispersive spectroscopic element by 90'' and inputting it to the second dispersive spectroscopic element, the light level obtained at each measurement wavelength can be determined by The purpose of the present invention is to provide a double grating type spectrometer that can remove fluctuation components that depend on the vibration direction of the light source, perform stable and accurate light level measurements at all times, and improve the measurement accuracy of the entire device. .

[課題を解決するための手段] 上記課題を解消するために本発明は、刻線の平行方向お
よび刻線の直角(垂直)方向の各回折効率がそれぞれ互
いに等しい2個の分散型分光素子を用い、人力された被
測定光を第1の分散型分光素子で分光し、この第1の分
散型分光素子で分光された被測定光を第2の分散型分光
素子を用いてさらに分光するダブルグレーティング型分
光装置であって、 第1の分散型分光素子から出力されこの第1の分散型分
光素子の刻線方向に垂直な偏波成分の光を第2の分散型
分光素子の刻線方向に平行に入射させ、かつ第1の分散
型分光素子から出力されこの第1の分散型分光素子の刻
線方向に平行な偏波成分の光を第2の分散型分光素子の
刻線方向に垂直に入射させるようにしたものである。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides two dispersive spectroscopic elements having equal diffraction efficiencies in the direction parallel to the scored lines and in the direction perpendicular (perpendicular) to the scored lines. A double method in which the light to be measured, which has been manually inputted using a dispersive spectrometer, is dispersed using a first dispersive spectroscopic element, and the light to be measured that has been spectrally dispersed by the first dispersive spectroscopic element is further spectrally dispersed using a second dispersive spectroscopic element. The grating type spectrometer is a grating-type spectrometer, and the light having a polarization component that is output from a first dispersive spectroscopic element and is perpendicular to the ruled line direction of the first dispersive spectroscopic element is transferred to a second dispersive spectroscopic element in the ruled line direction. , and the light of a polarization component that is output from the first dispersive spectroscopic element and is parallel to the ruled line direction of the first dispersive spectroscopic element is directed in the ruled line direction of the second dispersive spectroscopic element. It is designed to be incident vertically.

1作用] このような構成のダブルグレーティング型分光装置であ
れば、第1の分散型分光素子へ入射され、振動方向がこ
の第1の分散型分光素子の刻線方向に対して任意角αを
有する被測定光は、この第1の分散型分光素子にて分光
される。この第1の分散型分光素子にて分光された光は
第2の分散型分光素子へ入射される。この場合、第1の
分散型分光素子から出力された光の刻線方向に垂直な偏
波成分(S成分)は第2の分散型分光素子の刻線方向に
平行に入射される。また、第1の分散型分光素子から出
力された光の刻線方向に平行な偏波成分(P成分)は第
2の分散型分光素子の刻線方向に垂直に入射される。す
なわち、第1の分散分光素子から出力された光はその振
動方向が等価的に90″回転されて第2の分散分光素子
へ入射される。
1 Effect] In a double grating spectrometer with such a configuration, the light is incident on the first dispersive spectroscopic element, and the vibration direction is at an arbitrary angle α with respect to the ruled line direction of the first dispersive spectroscopic element. The light to be measured, which has the following characteristics, is spectrally dispersed by this first dispersive spectroscopic element. The light separated by the first dispersive spectroscopic element is incident on the second dispersive spectroscopic element. In this case, the polarized wave component (S component) perpendicular to the ruled line direction of the light output from the first dispersive spectroscopic element is incident on the second dispersive spectroscopic element in parallel to the ruled line direction. Further, a polarized wave component (P component) parallel to the ruled line direction of the light output from the first dispersive spectroscopic element is incident perpendicularly to the ruled line direction of the second dispersive spectroscopic element. That is, the vibration direction of the light output from the first dispersive spectroscopy element is equivalently rotated by 90'' and then enters the second dispersion spectroscopy element.

その結果、第1の分散型分光素子の一方の回折効率P(
λ)の影響を受けた入射光成分は第2の分散型分光素子
にて他方の回折効率S(λ)の影響を受ける。逆に、第
1の分散型分光素子の他方の回折効率S(λ)の影響を
受けた入射光成分は第2の分散型分光素子にて一方の回
折効率P(λ)の影響を受ける。したがって、前記入射
光のいずれの成分も両方の回折効率P(λ)、S(λ)
の影響を等しく受けるので、第2の分散分光素子から出
力される分光された光から前記入射光の偏波状態の影響
を除去できる。
As a result, the diffraction efficiency P(
The incident light component affected by λ) is affected by the other diffraction efficiency S(λ) at the second dispersive spectroscopic element. Conversely, the incident light component affected by the other diffraction efficiency S(λ) of the first dispersive spectroscopic element is affected by the one diffraction efficiency P(λ) in the second dispersive spectroscopic element. Therefore, any component of the incident light has both diffraction efficiencies P(λ), S(λ)
Therefore, the influence of the polarization state of the incident light can be removed from the separated light output from the second dispersive spectroscopy element.

しかして、得られた分光特性の各波長λにおける各光レ
ベルの測定精度が向上する。
Therefore, the measurement accuracy of each light level at each wavelength λ of the obtained spectral characteristics is improved.

[実施例] 以下本発明の一実施例を図面を用いて説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

第1図は実施例のダブルグレーディング型分光装置を示
す模式図である。外部から入射された被βj定光aは入
射スリット11を介して第1のコリメータ鏡12で平行
光線に直されて第1の回折格子13に入射される。第1
の回折格子13にて分光された被測定光aは凹面鏡から
なる第1のカメラ鏡14で集光され、さらに第1の平面
鏡15で反射され、中間スリット16を通過する。中間
スリット16を通過した被測定光aは第2の平面鏡17
で反射されて第2のコリメータ鏡18へ入射される。こ
の第2のコリメータ鏡18で再び平行光線に直された被
測定光aは第2の回折格子19へ入力される。第2の回
折格子19でさらに分光された被測定光aは凹面鏡から
なる第2のカメラ鏡20で集光され、出射スリット21
を介して、この出射スリット21の裏面に配設されたフ
ォトダイオードからなる受光器22へ入射される。
FIG. 1 is a schematic diagram showing a double grading type spectrometer according to an embodiment. The βj-constant light a incident from the outside is converted into a parallel light beam by the first collimator mirror 12 through the entrance slit 11, and is incident on the first diffraction grating 13. 1st
The measured light a that has been separated by the diffraction grating 13 is focused by a first camera mirror 14 made of a concave mirror, further reflected by a first plane mirror 15, and passes through an intermediate slit 16. The measured light a passing through the intermediate slit 16 passes through the second plane mirror 17
The light is reflected by the beam and enters the second collimator mirror 18. The light a to be measured is converted into a parallel beam by the second collimator mirror 18 and is input to the second diffraction grating 19 . The light to be measured a that has been further separated by the second diffraction grating 19 is condensed by a second camera mirror 20 made of a concave mirror, and is condensed by the exit slit 21.
The light enters a light receiver 22 made of a photodiode arranged on the back side of the output slit 21.

前記第1の回折格子13と第2の回折格子19とは同一
構成を有している。したがって、第1の回折格子13に
おける刻線の平行方向の回折効率P、(λ)と第2の回
折格子19における刻線の平行方向の回折効率P2 (
λ)とは等しい。また、第1の回折格子13における刻
線の垂直方向の回折効率S+  (λ)と第2の回折格
子19における刻線の垂直方向の回折効率S2  (λ
)とは等しい。
The first diffraction grating 13 and the second diffraction grating 19 have the same configuration. Therefore, the diffraction efficiency P, (λ) in the direction parallel to the ruled lines in the first diffraction grating 13 and the diffraction efficiency P2 (λ) in the direction parallel to the ruled lines in the second diffraction grating 19 (
λ) is equal to Moreover, the diffraction efficiency S+ (λ) in the direction perpendicular to the ruled lines in the first diffraction grating 13 and the diffraction efficiency S2 (λ) in the direction perpendicular to the ruled lines in the second diffraction grating 19
) is equal to

また、第2の回折格子19の刻線方向は第1の回折格子
13の刻線方向に対して90°だけ回転させている。さ
らに、第1のコリメータ鏡12と第1の回折格子13と
第1のカメラ鏡14の成す角と、第2のコリメータ鏡1
8と第2の回折格子19と第2のカメラ鏡20の成す角
とを等しくしている。各回折格子13.19はそれぞれ
刻線方向と平行する各軸心13a、19a回りに回動自
在に設けられている。そして、図示するように各回折格
子13.19に対する被測定光aの入射角θは常に一致
するように、各回折格子13゜19は図示しない一つの
駆動機溝にて連動して回動される。したがって、各回折
格子13.19から各カメラ鏡14.20へ入射される
分光された光の中心位置の波長λは一致する。
Further, the direction of the score lines of the second diffraction grating 19 is rotated by 90° with respect to the direction of the score lines of the first diffraction grating 13. Furthermore, the angle formed by the first collimator mirror 12, the first diffraction grating 13, and the first camera mirror 14, and the angle formed by the second collimator mirror 1
8, the angle formed by the second diffraction grating 19, and the second camera mirror 20 are made equal. Each of the diffraction gratings 13, 19 is rotatably provided around each axis 13a, 19a parallel to the direction of the score line. Each diffraction grating 13.19 is rotated in conjunction with one driver groove (not shown) so that the incident angle θ of the measured light a with respect to each diffraction grating 13.19 is always the same as shown in the figure. Ru. Therefore, the wavelengths λ at the center positions of the separated lights incident on each camera mirror 14.20 from each diffraction grating 13.19 are the same.

第1.第2の回折格子13.19がそれぞれ上述した各
分光特性を得るために、入射スリ・ント11および中間
スリット16のスリット方向と第1の回折格子13の刻
線方向とを一致させている。
1st. In order for the second diffraction gratings 13 and 19 to obtain each of the above-mentioned spectral characteristics, the slit directions of the entrance slit 11 and the intermediate slit 16 are made to coincide with the ruled line direction of the first diffraction grating 13.

また、出射スリット21のスリット方向と第2の回折格
子の刻線方向とを一致させている。
Further, the slit direction of the output slit 21 and the ruled line direction of the second diffraction grating are made to coincide with each other.

このような構成のダブルグレーティング型分光装置にお
いて、入射スリット11を介して入射された被a1定光
aは第1の回折格子13で上下方向に分光される。上下
方向に分光された披M1定光aは第1のカメラ鏡14.
第1の平面鏡15.中間スリット16.第2の平面鏡1
7および第2のコリメータ鏡18を介して第2の回折格
子19へ入射される。そして、被測定光aがさらにこの
第2の回折格子19で水平方向に分光される。水平方向
に分光された被測定光aは第2のカメラ鏡20および出
射スリット21を介して受光器22へ入射される。
In the double grating type spectrometer having such a configuration, the a1 constant light a that enters through the entrance slit 11 is split in the vertical direction by the first diffraction grating 13. The M1 constant light a that has been split in the vertical direction is sent to the first camera mirror 14.
First plane mirror 15. Intermediate slit 16. second plane mirror 1
7 and the second collimator mirror 18 to enter the second diffraction grating 19 . Then, the light to be measured a is further separated in the horizontal direction by this second diffraction grating 19. The horizontally separated measured light a is incident on the light receiver 22 via the second camera mirror 20 and the output slit 21 .

したがって、第1の回折格子13にて分光された被M1
定光aの振動方向は第2の回折格子19へ入射した時点
においては、第2の回折格子19側から見ると振動方向
が刻線に対して90″回転することになる。
Therefore, the target M1 that is spectrally analyzed by the first diffraction grating 13
When the constant light a is incident on the second diffraction grating 19, the vibration direction is rotated by 90'' with respect to the ruled line when viewed from the second diffraction grating 19 side.

そして、被測定光aの第1の回折格子13の刻線方向に
垂直な偏波成分(S成分)の光強度をIXとし、刻線方
向に平行な偏波成分(P成分)の光強度をIYとすると
、第1の回折格子13から出力される波長λの光強度I
l (λ)は(1)式となる。
The light intensity of the polarized wave component (S component) perpendicular to the ruled line direction of the first diffraction grating 13 of the measured light a is defined as IX, and the light intensity of the polarized wave component (P component) parallel to the ruled line direction is defined as IX. Let IY be the light intensity I of wavelength λ output from the first diffraction grating 13
l (λ) is expressed as equation (1).

1+  (λ)−IX(λ)Sl (λ)+IX−(λ
)PI(λ) ・・・(1)そして、この第1の回折格
子13から出力された光強度11 (λ)の被測定光a
は、振動方向が90″回転されて第2の回折格子19へ
入射されるので、第2の回折格子19から出力される波
長λの光強度12  (λ)は(2)式となる。
1+ (λ)-IX(λ) Sl (λ)+IX-(λ
)PI(λ)...(1) Then, the measured light a with the light intensity 11 (λ) output from this first diffraction grating 13
is incident on the second diffraction grating 19 with its vibration direction rotated by 90'', so the light intensity 12 (λ) of the wavelength λ output from the second diffraction grating 19 is expressed by equation (2).

12 (λ)−1x(λ)S、(λ)P2 (λ)+I
Y  (λ) Pl (λ) S2 (λ)・・・(2
) 前述したように第1の回折格子13と第2の回折格子1
9とは同一構成であるので、 Sl (λ)−32(λ)−8(λ) Pl (λ)−P2 (λ)諺P(λ)となるので、(
2)式は(3)式で示される。
12 (λ)-1x(λ)S, (λ)P2 (λ)+I
Y (λ) Pl (λ) S2 (λ)...(2
) As mentioned above, the first diffraction grating 13 and the second diffraction grating 1
9 has the same configuration, so it becomes Sl (λ)-32(λ)-8(λ) Pl (λ)-P2 (λ), so (
Equation 2) is expressed as equation (3).

12 (λ)−11x(λ)+1y(λ))× (P(
λ)S(λ))  ・・・(3)また、被測定光aの光
強度! (λ)は第1の回折格子13へ入射されるS成
分の光強度Ix  (λ)とP成分の光強度IY  (
λ)との和で示されるので、(3)式は(4)式となる
12 (λ)−11x(λ)+1y(λ))×(P(
λ)S(λ)) ...(3) Also, the light intensity of the measured light a! (λ) is the light intensity Ix (λ) of the S component incident on the first diffraction grating 13 and the light intensity IY (λ) of the P component incident on the first diffraction grating 13.
λ), so equation (3) becomes equation (4).

12  (λ)−1(λ)P(λ)S(λ)・・・(4
) したがって、第2の回折格子19で分光されて第2のカ
メラ鏡20および出射スリット21を介して受光器22
へ入射される被測定光の各波長λにおける光強度! (
λ)は(4)式に示すように、この分光装置へ入射され
る被測定光aの各波長λにおける光強度I (λ)と各
回折格子13,9の各方向の回折効率の積[P (λ)
S(λ)]の関数になる。
12 (λ)-1(λ)P(λ)S(λ)...(4
) Therefore, the light is separated by the second diffraction grating 19 and sent to the light receiver 22 via the second camera mirror 20 and the output slit 21.
Light intensity at each wavelength λ of the measured light incident on the! (
As shown in equation (4), λ) is the product of the light intensity I (λ) at each wavelength λ of the measured light a incident on this spectrometer and the diffraction efficiency of each diffraction grating 13, 9 in each direction [ P (λ)
S(λ)].

各回折格子13.19の各方向における回折効率P(λ
)、S(λ)は第3図(a)に示すように既知であるの
で、各波長λにおける上記積[P (λ)S(λ)〕は
一美的に定まる。その結果、受光器22へ入射される光
の各波長λにおける光強度■2 (λ)は入射されたm
 API定、光aの各波長λにおける光強度! (λ)
に対応して変化し、被測定光aの振動方向、すなわち第
1の回折格子13に対するP成分とS成分の比には依存
しない。
Diffraction efficiency P(λ
), S(λ) are known as shown in FIG. 3(a), so the product [P(λ)S(λ)] at each wavelength λ is aesthetically determined. As a result, the light intensity 2 (λ) at each wavelength λ of the light incident on the light receiver 22 is
API constant, light intensity at each wavelength λ of light a! (λ)
It does not depend on the vibration direction of the measured light a, that is, the ratio of the P component to the S component with respect to the first diffraction grating 13.

したがって、得られた分光特性の各波長λにおける光レ
ベル(光強度I(λ))から入射光の偏波状態の影響を
完全に除去できるので、各波長λにおける各光レベルの
測定制度を大幅に向上できる。
Therefore, the influence of the polarization state of the incident light can be completely removed from the light level (light intensity I(λ)) at each wavelength λ of the obtained spectral characteristics, which greatly improves the measurement accuracy of each light level at each wavelength λ. can be improved.

[発明の効果] 以上説明したように本発明のダブルグレーティング型分
光装置によれば、第1の分散型分光素子から出力された
光の振動方向を等価的に90’回転させて第2の分散型
分光素子へ人力するようにしている。よって、各測定波
長における光レベルから被測定光の振動方向に依存する
変動成分を除去することができ、常に安定した正確な光
レベルの測定が実施でき、ひいては装置全体の測定精度
を向上できる。
[Effects of the Invention] As explained above, according to the double grating spectrometer of the present invention, the vibration direction of the light output from the first dispersive spectroscopic element is equivalently rotated by 90' to obtain the second dispersion. The type spectroscopic element is manually applied. Therefore, it is possible to remove the fluctuation component that depends on the vibration direction of the light to be measured from the light level at each measurement wavelength, and it is possible to always carry out stable and accurate light level measurement, thereby improving the measurement accuracy of the entire apparatus.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係わるダブルグレーティン
グ型分光装置の概略構成を示す模式図、第2図は従来の
ダブルグレーティング型分光装置の概略構成を示す模式
図、第3図(a)は回折格子における各回折効率を示す
特性図、同図(b)は被測定光の振動方向と回折格子の
刻線方向との間の関係を示す図である。 11・・・入射スリット、12・・・第1のコリメータ
鏡、13・・・第1の回折格子、14・・・第1のカメ
ラ鏡、15・・・第1の平面鏡、16・・・中間スリッ
ト、17・・・第2の平面鏡、18・・・第2のコリメ
ータ鏡、19・・・第2の回折格子、20・・・第2の
カメラ鏡、21・・・出射スリット、22・・・受光器
FIG. 1 is a schematic diagram showing the general configuration of a double grating type spectrometer according to an embodiment of the present invention, FIG. 2 is a schematic diagram showing the schematic configuration of a conventional double grating type spectrometer, and FIG. 3(a) 2 is a characteristic diagram showing each diffraction efficiency in the diffraction grating, and FIG. 3B is a diagram showing the relationship between the vibration direction of the light to be measured and the ruled line direction of the diffraction grating. DESCRIPTION OF SYMBOLS 11... Incidence slit, 12... First collimator mirror, 13... First diffraction grating, 14... First camera mirror, 15... First plane mirror, 16... Intermediate slit, 17... Second plane mirror, 18... Second collimator mirror, 19... Second diffraction grating, 20... Second camera mirror, 21... Output slit, 22 ...Receiver.

Claims (1)

【特許請求の範囲】 刻線の平行方向および刻線の直角方向の各回折効率がそ
れぞれ互いに等しい2個の分散型分光素子(13、19
)を用い、入力された被測定光を第1の分散型分光素子
(13)で分光し、この第1の分散型分光素子で分光さ
れた被測定光を第2の分散型分光素子(19)を用いて
さらに分光するダブルグレーティング型分光装置であっ
て、 前記第1の分散型分光素子から出力されこの第1の分散
型分光素子の刻線方向に垂直な偏波成分の光を前記第2
の分散型分光素子の刻線方向に平行に入射させ、かつ前
記第1の分散型分光素子から出力されこの第1の分散型
分光素子の刻線方向に平行な偏波成分の光を前記第2の
分散型分光素子の刻線方向に垂直に入射させることを特
徴とするダブルグレーティング型分光装置。
[Claims] Two dispersive spectroscopic elements (13, 19
), the input light to be measured is separated by a first dispersive spectroscopic element (13), and the light to be measured separated by this first dispersive spectroscopic element is passed to a second dispersive spectroscopic element (19). ), the double grating spectrometer further spectrally separates light using the first dispersive spectroscopy element, the light having a polarization component perpendicular to the ruled line direction of the first dispersion spectrometer output from the first dispersion spectrometer 2
The light is incident parallel to the score line direction of the dispersive spectroscopy element, and the light of a polarized wave component output from the first dispersion spectrometer and parallel to the score line direction of the first dispersion spectrometer is transmitted to the first dispersion spectrometer. 2. A double grating type spectrometer characterized in that the light is incident perpendicularly to the line direction of the dispersive spectroscopic element.
JP63214121A 1988-08-29 1988-08-29 Double grating spectrometer Expired - Lifetime JP2755958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63214121A JP2755958B2 (en) 1988-08-29 1988-08-29 Double grating spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63214121A JP2755958B2 (en) 1988-08-29 1988-08-29 Double grating spectrometer

Publications (2)

Publication Number Publication Date
JPH0261529A true JPH0261529A (en) 1990-03-01
JP2755958B2 JP2755958B2 (en) 1998-05-25

Family

ID=16650572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63214121A Expired - Lifetime JP2755958B2 (en) 1988-08-29 1988-08-29 Double grating spectrometer

Country Status (1)

Country Link
JP (1) JP2755958B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608521A (en) * 1995-09-18 1997-03-04 Trw Inc. Polarization compensated imaging spectrometer
JP2007163780A (en) * 2005-12-13 2007-06-28 Fujitsu Ltd Multi-wavelength spectral device
US7613394B2 (en) 2006-02-17 2009-11-03 Fujitsu Limited Optical switching device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318687A (en) * 1986-07-11 1988-01-26 株式会社東芝 Circuit board

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318687A (en) * 1986-07-11 1988-01-26 株式会社東芝 Circuit board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608521A (en) * 1995-09-18 1997-03-04 Trw Inc. Polarization compensated imaging spectrometer
JP2007163780A (en) * 2005-12-13 2007-06-28 Fujitsu Ltd Multi-wavelength spectral device
US7359051B2 (en) 2005-12-13 2008-04-15 Fujitsu Limited Multiple-wavelength spectroscopic apparatus
US7613394B2 (en) 2006-02-17 2009-11-03 Fujitsu Limited Optical switching device

Also Published As

Publication number Publication date
JP2755958B2 (en) 1998-05-25

Similar Documents

Publication Publication Date Title
US7898656B2 (en) Apparatus and method for cross axis parallel spectroscopy
US6522406B1 (en) Correcting the system polarization sensitivity of a metrology tool having a rotatable polarizer
JP4640577B2 (en) Optical spectrum analyzer
US6646739B2 (en) Four-stage type monochromator
US6636305B2 (en) Apparatus and method for producing a substantially straight instrument image
US7116848B2 (en) Optical spectrum analyzer using a diffraction grating and multi-pass optics
US7433044B1 (en) Sagnac fourier transform spectrometer having improved resolution
JPH0261529A (en) Double grating type spectroscopic apparatus
JPH11183249A (en) Spectroscope
US10571442B2 (en) Sagnac fourier spectrometer (SAFOS)
US6373569B1 (en) Method and device for the spectral analysis of light
JP2001311662A (en) Spectral device
US20010024276A1 (en) Method and device for the spectral analysis of light
JP3308326B2 (en) Spectroscope
JPS6255528A (en) Spectrophotometric method and device
US6646743B2 (en) Method and device for the spectral analysis of light
JP3275287B2 (en) Interferometer
JPH075400Y2 (en) Multi-channel curse measuring device
JPH03218424A (en) Spectrophotometer
JPH0261527A (en) Double grating type spectroscopic apparatus
JPH02159528A (en) Two-stage type spectroscope
SU1154527A1 (en) Multiple-reflection interferometer
JPH0459457U (en)
SU684335A1 (en) Spectrum calibration system
JPS63284429A (en) Spectro-photometer