JPH0261409B2 - - Google Patents

Info

Publication number
JPH0261409B2
JPH0261409B2 JP760984A JP760984A JPH0261409B2 JP H0261409 B2 JPH0261409 B2 JP H0261409B2 JP 760984 A JP760984 A JP 760984A JP 760984 A JP760984 A JP 760984A JP H0261409 B2 JPH0261409 B2 JP H0261409B2
Authority
JP
Japan
Prior art keywords
phosphoric acid
mother liquor
phosphate
ammonia
purified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP760984A
Other languages
Japanese (ja)
Other versions
JPS60151204A (en
Inventor
Shigeo Fujii
Chikashi Fukumura
Tadao Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP760984A priority Critical patent/JPS60151204A/en
Publication of JPS60151204A publication Critical patent/JPS60151204A/en
Publication of JPH0261409B2 publication Critical patent/JPH0261409B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、精製りん酸一アンモニウムの高収率
取得法に関する。さらに詳しくは、工業用グレー
ドとして使用可能な精製りん酸一アンモニウムを
湿式りん酸から直接にかつ高収率で製造する該方
法に関する。 湿式りん酸にアンモニアを反応させて得られる
りん酸アンモニウムは、該りん酸に由来する多く
の不純物を含むので、肥料用としては使用可能で
あるがそのまゝでは工業用としては使用できな
い。湿式りん酸から工業用精製りん酸アンモニウ
ムを製造するには、次のように該りん酸を予め精
製することを要する。すなわち、湿式りん酸から
溶媒法によつてりん酸を抽出し、該被抽出物にア
ンモニアを反応させて不純物の少ないりん安を得
る。しかし、この抽出法は、工程が複雑で工業的
に有利な方法とはいえない。 他方、フランス特許第1248055号(プレヨン法)
によれば、湿式りん酸にアンモニアを反応させ、
該反応液中で部分的にりん酸2安の結晶を生成さ
せ、該結晶分離後の母液の一部をカツトすること
により、湿式りん酸に由来する不純物量を減少さ
せ、その後該母液を濃縮することにより粗結晶を
晶析させ、該粗結晶を再結晶することにより、工
業用精製品を得ている。同法により得られる精製
りん酸二アンモニウムの収率は、原料湿式りん酸
中のP2O5分に対し40〜50%程度であり、残部の
P2O5分は、最終的に肥料用のりん酸アンモニウ
ム**となる(註.*NH3−N=20.3〜20.7%,
W−P2O551.5〜52.7%、たゞし理論値はNH3
N21.2%,W−P2O5,**NH3−N14〜16%,T
−P2O543〜45%,W−P2O539〜42%以上の説明
中Wは水溶性、Tは全を意味する)。 上述の説明中におけるりん安の対りん酸収率を
以下下記のようにR(抜出し率)と定義する。 R(%)=りん安結晶中に含まれるP2O5量/原料湿式りん
酸中のP2O5量×100 上述のように、湿式りん酸の直接中和によると
きは、精製りん酸アンモニウムの対りん酸収率す
なわち抜出し率は、相当に低い。 他方、湿式りん酸とアンモニアの反応により段
階的に生成する各種の化合物については、安藤、
秋山著、日新出版株式会社、昭和51年5月20日再
版発行「化学肥料の研究」によれば、湿式りん酸
のアンモニア中和に関し、その中和条件との関係
で次のように述べられている。 すなわち、約100℃、5〜10分で該中和を行う
場合において、反応液のPHが2〜3となつた段
階で中和を一時停止し、PHと温をそのまゝ維持
すると粒径10μ程度の結晶性物質:(FeAl)
NH4H2(PO42・1/2H2O(註Q化合物と略称され
ている)が生成する。中和を再開してそのPHを
4〜6とすると該Q化合物は、0.02μ程度の微結
晶物質:(FeAl)NH4 HF2 PO4(註S化合物と
略称されている)に変化する。しかしながら、Q
化合物がS化合物に変化するには長時間を要す
る。以上の事実を基礎とし、湿式りん酸から瀘過
性の良いアンモニア中和スラリーを取得するには
該りん酸をPH2〜3まで中和後熟成を行ない、
ひきつづきアンモニア中和を行なつてPH4〜6
とする。 以上の事実により、一定の中和法によつて湿式
りん酸中のFe,Al,Fを除いたりん酸アンモニ
ウム母液を得て、これから工業用のりん安を製造
する可能性が一応示唆される。 上述の著書中で著者らは、上述の中和方法によ
り湿式りん酸中のFe,Alは中和液のPH4.5付近
で非水溶化が最大となるので、このPHにおいて
生成したスラリーを瀘別することにより、Fe96
%,Al86%,F48%およびSi16%が夫々除かれる
と述べている。しかしながら湿式りん酸のアンモ
ニア中和液からのりん酸アンモニウムの晶析に顕
著な悪影響を与えるCaもしくはMg基他の除去に
ついては何も述べていない。 以上の公知技術の問題点にかんがみ、本発明者
等は、湿式りん酸の直接中和法により、高収率す
なわち高抜出し率で工業用精製りん酸アンモニウ
ムの取得の可能な方法を見出すべく鋭意研究を行
なつた。その結果、湿式りん酸を70〜110℃好ま
しくは80〜105℃,30〜180分好ましくは60〜90分
でPH4.2〜6.5好ましくは4.5〜6までアンモニア
で中和し、生成したスラツジを瀘過することによ
り、湿式りん酸中の大部分の不純物が精製りん
安の製造に支障のない程度まで除去されること、
前述のスラツジを含む中和りん酸の瀘過性は極
めて良好であること、瀘別されたスラツジを水
洗滌することにより、付着したりん酸アンモニウ
ムの回収が可能であることおよびスラツジを瀘
別した瀘液(りん安酸アンモニウム母液)を逐次
濃縮晶析させることにより、再結晶を要せずして
工業用精製りん酸アンモニウムが高収率で得られ
ることを知つてある発明(以下先の発明という)
を完成し特願昭59−3749号(特開昭60−151203号
公報)として特許出願した。 しかしながら、先の発明において得られる精製
りん酸アンモニウム母液中には、なお微量ではあ
るが、Fe,Al,CaおよびF等が溶存しており、
該母液を濃縮冷却等してりん酸一アンモニウムの
結晶を晶析分離して収得するに伴ない、残部の母
液中にはFe,Al,CaおよびF等が濃縮されてく
ることが明らかになつた。 この事実は、りん酸一アンモニウムの前記母液
からの晶析を段階的に実施して前述のRすなわち
“抜出し率”を上昇させるに伴ない、より後段の
晶析物中の前記不純物SS(註、晶析により得られ
たりん酸一アンモニウム10gを100mlの水に溶解
し、溶解液中の水溶性物を瀘取し、乾燥した分の
試料に対する重量%)は、R=70%を超えると急
激に増加してもはや工業的精製りん酸一アンモニ
ウムをより高いR値まで収得することは不可能で
あることが判つた。 先の発明に係る上述の認識を裏づける実験的事
実は、下記の通りである。すなわち、先の発明の
方法に従つて湿式りん酸を中和し、スラツジを瀘
別して得た精製りん酸アンモニウム母液を濃縮冷
却し、りん酸一アンモニウムを晶析させるに伴
い、母液中に不溶性スラツジが発生してくる。こ
の母液を水で稀釈後瀘過して瀘過残すなわち発生
したスラツジの化学分析を行つたところ後述Aの
ようになつた。 また、該濃縮晶析によつて、抜出し率Rが0.7
を超えた段階で晶析したりん酸一アンモニウム結
晶を試薬級りん酸一アンモニウム結晶の飽和水溶
液で洗滌し、該結晶の表面に付着した不純物を洗
い流した後該りん酸一アンモニウム結晶を水に溶
解させたところ白濁物(不溶解物)が発生した。
この白濁物を分離捕集して化学分析を行つたとこ
ろ下記Bのようになつた。
The present invention relates to a method for obtaining purified monoammonium phosphate in high yield. More particularly, the present invention relates to the method for producing purified monoammonium phosphate, usable as industrial grade, directly from wet phosphoric acid in high yield. Ammonium phosphate obtained by reacting wet phosphoric acid with ammonia contains many impurities derived from the phosphoric acid, so although it can be used as a fertilizer, it cannot be used as is for industrial purposes. In order to produce industrial purified ammonium phosphate from wet phosphoric acid, it is necessary to purify the phosphoric acid in advance as follows. That is, phosphoric acid is extracted from wet phosphoric acid by a solvent method, and the extracted material is reacted with ammonia to obtain ammonium phosphorus with less impurities. However, this extraction method involves complicated steps and cannot be said to be an industrially advantageous method. On the other hand, French Patent No. 1248055 (Preyon method)
According to , by reacting wet phosphoric acid with ammonia,
The amount of impurities derived from wet phosphoric acid is reduced by partially forming crystals of dianic acid phosphate in the reaction solution and cutting off a portion of the mother liquor after the crystal separation, and then concentrating the mother liquor. By doing so, crude crystals are crystallized, and by recrystallizing the crude crystals, industrial purified products are obtained. The yield of purified diammonium phosphate obtained by this method is about 40-50% for 5 minutes of P 2 O in the raw material wet phosphoric acid, and the remaining
P 2 O for 5 minutes will eventually become ammonium phosphate** for fertilizer (Note: *NH 3 -N=20.3~20.7%,
W-P 2 O 5 51.5-52.7%, the theoretical value is NH 3
N21.2%, W- P2O5 , ** NH3 -N14~ 16 %, T
-P 2 O 5 43-45%, W-P 2 O 5 39-42% (W means water-soluble, T means total). The yield of ammonium phosphorus to phosphoric acid in the above description is hereinafter defined as R (withdrawal rate) as follows. R (%) = 5 amount of P 2 O contained in ammonium phosphorus crystal / 5 amount of P 2 O in raw wet phosphoric acid x 100 As mentioned above, when using direct neutralization of wet phosphoric acid, purified phosphoric acid The yield or extraction rate of ammonium to phosphoric acid is quite low. On the other hand, regarding the various compounds that are produced stepwise by the reaction of wet phosphoric acid and ammonia, Ando et al.
According to "Research on Chemical Fertilizers" written by Akiyama and published by Nissin Publishing Co., Ltd. on May 20, 1976, regarding the ammonia neutralization of wet phosphoric acid, the following is stated in relation to the neutralization conditions: It is being In other words, when neutralization is carried out at approximately 100°C for 5 to 10 minutes, if the neutralization is temporarily stopped when the pH of the reaction solution reaches 2 to 3 and the pH and temperature are maintained, the particle size will decrease. Crystalline substance of about 10μ: (FeAl)
NH 4 H 2 (PO 4 ) 2 ·1/2H 2 O (abbreviated as Q compound) is formed. When neutralization is resumed and the pH is adjusted to 4 to 6, the Q compound changes into a microcrystalline substance of about 0.02 μm: (FeAl)NH 4 HF 2 PO 4 (abbreviated as S compound). However, Q
It takes a long time for a compound to change into an S compound. Based on the above facts, in order to obtain an ammonia-neutralized slurry with good filterability from wet phosphoric acid, the phosphoric acid is neutralized to pH 2 to 3 and then aged.
Continuing to neutralize ammonia, pH 4 to 6
shall be. The above facts suggest the possibility of producing ammonium phosphate mother liquor for industrial use by removing Fe, Al, and F from wet phosphoric acid using a certain neutralization method. . In the above-mentioned book, the authors state that due to the above-mentioned neutralization method, Fe and Al in wet phosphoric acid become insoluble to the maximum at around pH 4.5 of the neutralized solution, so the slurry generated at this pH is filtered. By differentiating, Fe96
%, 86% Al, 48% F, and 16% Si are removed. However, nothing is said about the removal of Ca or Mg groups, which have a significant adverse effect on the crystallization of ammonium phosphate from a wet ammonia-neutralized phosphoric acid solution. In view of the above-mentioned problems with the known techniques, the present inventors have made efforts to find a method for obtaining purified ammonium phosphate for industrial use with a high yield, that is, a high extraction rate, by a wet phosphoric acid direct neutralization method. conducted research. As a result, wet phosphoric acid is neutralized with ammonia to a pH of 4.2 to 6.5, preferably 4.5 to 6, at 70 to 110°C, preferably 80 to 105°C, for 30 to 180 minutes, preferably 60 to 90 minutes, and the resulting sludge is By filtering, most of the impurities in wet phosphoric acid are removed to the extent that they do not interfere with the production of purified ammonium phosphorus;
The filtration properties of the neutralized phosphoric acid containing the sludge described above are extremely good, the attached ammonium phosphate can be recovered by washing the filtrated sludge with water, and the sludge is filtrated. It is known that by successively concentrating and crystallizing a filtrate (ammonium phosphate mother liquor), purified ammonium phosphate for industrial use can be obtained in high yield without the need for recrystallization (hereinafter referred to as the earlier invention). )
was completed and a patent application was filed as Japanese Patent Application No. 59-3749 (Japanese Unexamined Patent Publication No. 60-151203). However, in the purified ammonium phosphate mother liquor obtained in the previous invention, Fe, Al, Ca, F, etc. are still dissolved, although in trace amounts.
As monoammonium phosphate crystals are crystallized and obtained by concentrating and cooling the mother liquor, it becomes clear that Fe, Al, Ca, F, etc. become concentrated in the remaining mother liquor. Ta. This fact indicates that as the above-mentioned R or "extraction rate" is increased by carrying out the crystallization of monoammonium phosphate from the mother liquor in stages, the impurity SS (note , dissolve 10 g of monoammonium phosphate obtained by crystallization in 100 ml of water, filter out the water-soluble substances in the solution, and dry the weight% of the sample relative to R = 70%. It has been found that the R value increases rapidly and it is no longer possible to obtain industrially purified monoammonium phosphate to higher R values. The experimental facts supporting the above recognition regarding the previous invention are as follows. That is, the purified ammonium phosphate mother liquor obtained by neutralizing wet phosphoric acid and filtering the sludge according to the method of the previous invention is concentrated and cooled, and as monoammonium phosphate is crystallized, insoluble sludge is added to the mother liquor. will occur. This mother liquor was diluted with water and filtered, and the filtration residue, that is, the generated sludge, was chemically analyzed, and the result was as shown in A below. In addition, due to the concentration crystallization, the extraction rate R is 0.7
Wash the monoammonium phosphate crystals crystallized at a stage exceeding the above with a saturated aqueous solution of reagent grade monoammonium phosphate crystals, wash away impurities attached to the surface of the crystals, and then dissolve the monoammonium phosphate crystals in water. When this was done, white turbidity (insoluble matter) was generated.
When this cloudy substance was separated and collected and chemically analyzed, it was found to be as shown in B below.

【表】 上述のスラツジAと白濁物Bの分析値とその比
較から、先の発明の方法に係る精製りん酸アンモ
ニウム母液中に微量溶存している不純物は、該母
液の濃縮と共にスラツジ中に析出し、若しくは晶
出するりん酸一アンモニウム結晶中に取り込まれ
ることが判つた。 先の発明の再検討により明らかになつた上述の
技術問題を解決すべく、本発明者等は、鋭意研究
を行つた。その結果、先の発明でPH4.5〜4.8程
度まで中和した反応液(註.りん安母液)を直ち
に瀘過することなく80〜110℃で1〜10時間保
持して熟成後瀘過するか、若しくは、該中和し
た反応液中の溶存カルシウムに対して0.3〜2倍
当量のフツ化アンモニウムおよび/又は酸性フツ
化アンモニウムを添加混合して1〜10時間保持後
それぞれ生成したスラツジを瀘別して得た精製り
ん酸アンモニウムを用いて、濃縮冷却等の方法で
りん酸一アンモニウムを晶析させるときは、驚く
べきことに前述のR(註.抜出し率すなわちりん
酸の収率)が81%近くまでも高められることを知
つて本発明を完成した。 以上の記述から明らかなように、本発明の目的
は、湿式りん酸から直接に、かつ高収率で、工業
用精製りん酸一アンモニウムを取得する方法を提
供するにある。より適確には、本発明の目的は、
先の発明の場合より顕著に高い収率で工業的精製
りん酸一アンモニウムを製造する方法を提供する
にある。他の目的は以下の記述から明らかにされ
る。 本発明(二発明)は、下記(1)または(3)の主要構
成と下記(2)または(4)の実施態様的構成を有する。 (1) 湿式りん酸にアンモニアを反応させて、りん
酸一アンモニウムを取得する方法において、該
反応温度を70〜110℃に保ち、アンモニアを30
〜180分で反応させて該反応液のPHを4.5〜4.8
とし、80〜110℃に1〜10時間保持後生成した
スラツジを瀘別して得られた精製りん酸アンモ
ニウム母液を使用することを特徴とする精製り
ん酸アンモニウムの高収率収得法。 (2) 精製りん酸アンモニウム母液を濃縮して、り
ん酸一アンモニウムを取得する前記第(1)項に記
載の方法。 (3) 湿式りん酸にアンモニアを反応させて、りん
酸一アンモニウムを取得する方法において、該
反応温度を70〜110℃に保ち、アンモニアを30
〜180分で反応させて該反応液のPHを4.5〜4.8
とし、該反応液中の溶存カルシウムに対して
0.3〜2倍当量のフツ化アンモニウムおよび/
又は酸性フツ化アンモニウムを添加混合して1
〜10時間保持後生成したスラツジを瀘別して得
られた精製りん酸アンモニウム母液を使用する
ことを特徴とする精製りん酸アンモニウムの高
収率収得法。 (4) 精製りん酸アンモニウム母液を濃縮して、り
ん酸一アンモニウムを取得する前記第(3)項に記
載の方法。 本発明の構成および効果につき以下に詳述す
る。 本発明で使用する湿式りん酸は、りん鉱石を鉱
酸で処理して得られるいわゆる湿式りん酸で、該
りん酸製造のプロセスは、半水法、二水法、半水
二水法その他のいづれの方法で製造されたもので
あつてもよい。 このようなりん酸は、原料りん鉱石および分解
用の無機酸に由来するりん酸以外の前述の不純物
を含む。このようなりん酸を反応槽に入れアンモ
ニアを反応させる。アンモニアは、ガス状のもの
を直接りん酸中に吹込むのが最も簡便であるが、
例えば、濃度20〜30重量%のアンモニア水として
添加してもよい。 本発明の方法の本質的特徴は、アンモニアによ
る湿式りん酸の中和条件と中和後の○イ高温熟成若
しくは○ロフツ化アンモニウム(および/又は酸性
フツ化アンモニウム)の添加と高温熱成の組合せ
と該熱成後の生成スラツジの瀘過にある。該中和
温度は終始70〜110℃好ましくは85〜105℃に保
つ。その為必要な加熱又は除熱を反応槽壁を通じ
た伝熱により若しくは他の公知方法で行う。中和
温度が上記範囲外であると後述のスラツジの瀘過
性が低下し、目的物(りん安)中の不純物が増加
する。該中和所要時間は30〜180分好ましくは60
〜90分である。中和所要時間が上記範囲外である
と瀘過性良好かつ、母液中の不純物除去に有効な
スラツジの形成が不十分となる。 たゞし、所定のPH最終値は、4.5〜4.8とする。
PH値が4.5未満では、目的物(りん酸一アンモニ
ウム)の収率が低下し、4.8を超えるとりん酸一
アンモニウム中にりん酸二アンモニウムが混入し
てくる。中和終了後ひきつづき前述の○イ高温熟成
若しくは○ロのフツ化アンモニウム等の添加と高温
熟成の組合わせに入る。該高温熟成は、中和反応
の終了したりん酸一アンモニウム母液を80〜110
℃好ましくは80〜105℃で1〜10時間好ましくは
1〜5時間保持する。また、フツ化アンモニウム
等を添加する場合は、該熟成に先立つて行う。該
添加剤は、フツ化アンモニウム(NH4F)若しく
は酸性フツ化アンモニウム(NH4F・HF)また
はこれらの混合物である。添加時の温度は中和時
の温度と同様であり、特に冷却又は加熱する必要
はない。添加量は、中和反応液中の溶存カルシウ
ムに対して0.3〜2倍当量好ましくは0.5〜1.5倍当
量である。0.3倍未満では効果不十分であり、2
倍を超えても効果は向上しない。添加後は撹拌し
てフツ化アンモニウム等を均一に溶解させる。 本発明に係る熟成に先立つ前述の中和中に湿式
りん酸中和母液中には、前掲書にいうT化合物
(Fe,Al)(NH42・H2F(PO42・nH2OとQ化
合物(前述)の混合物を主成分とし、他にCa,
Mg若しくはFeを含む塩若しくは複塩からなるス
ラツジが生成している。そして、本発明に係る熟
成中もスラツジ内部の結晶部分の結晶成長は持続
し、このことにより、後述の瀘過後の母液中の不
純物量が減少するものと考えられる。この減少効
果は、特に熟成前にフツ化アンモニウム等を適量
添加混合溶解させた場合に著るしい。 以上の熟成後は、湿式りん酸中和母液は、公知
方法で瀘別若しくは遠心分離して瀘液とスラツジ
とし、前者は後述の濃縮晶析処理に付し、後者は
水洗滌を行つて付着しているP2O5分を回収する。 先の発明と本発明の方法との効果の差異は、次
に述べる母液の瀘過性の良否瀘過後の母液の
潜在スラツジ量の多少および、母液中の不純物
量に明確にあらわれる。この関係を熟成の有無、
熟成前のフツ化アンモニウム等の添加の有無別に
例示すると イ (先の発明の方法):熟成なし、フツ化アン
モニウム添加なし ロ (本発明の第一発明):熟成あり、フツ化ア
ンモニウム添加なし ハ (本発明の第二発明):熟成あり、フツ化ア
ンモニウム等の添加あり A 瀘過速度(−500mmHgゲージ真空瀘過) イ 6〜8ton/m2,Hr ロ 4〜6 〃 ハ 3〜4 〃 以上のように先の発明の方が優れているが、
ロ,ハ共に工業的に実施する上で不利という程
度ではない。 B 瀘過母液の潜在的スラツジ量(PH8まで
NH3で中和後瀘過) イ 基準量(40〜30Kg/P2O5ton) ロ 基準量の10〜20%減(30〜26Kg/
P2O5ton) ハ 基準量の50%減(30〜4Kg/P2O5ton) この潜在スラツジ量の多少は、結局目的物
(りん酸一アンモニウム)中の不純物量の多少
ならびに前述のR(中抜出率)の高低に関係す
る。 C 母液中の不純物量 下記第1表に示すとおりである。
[Table] From the analytical values and comparison of the above-mentioned sludge A and white turbidity B, it is found that trace amounts of impurities dissolved in the purified ammonium phosphate mother liquor according to the method of the previous invention are precipitated in the sludge as the mother liquor is concentrated. However, it was found that the monoammonium phosphate crystals were incorporated into the crystallized monoammonium phosphate crystals. In order to solve the above-mentioned technical problem that became clear through re-examination of the previous invention, the present inventors conducted extensive research. As a result, the reaction solution (note: phosphorus mother liquor) neutralized to pH 4.5 to 4.8 in the previous invention is not filtered immediately, but kept at 80 to 110°C for 1 to 10 hours, aged, and then filtered. Alternatively, ammonium fluoride and/or acidic ammonium fluoride are added and mixed in an amount of 0.3 to 2 times the amount of dissolved calcium in the neutralized reaction solution, and the resulting sludge is filtered after holding for 1 to 10 hours. When monoammonium phosphate is crystallized by a method such as concentration cooling using purified ammonium phosphate obtained separately, surprisingly, the above-mentioned R (Note: extraction rate, ie, phosphoric acid yield) is 81%. The present invention was completed knowing that it is possible to increase the height even closer to that level. As is clear from the above description, an object of the present invention is to provide a method for obtaining purified industrial monoammonium phosphate directly from wet phosphoric acid in high yield. More precisely, the object of the invention is to
The object of the present invention is to provide a process for producing industrially purified monoammonium phosphate in significantly higher yields than in the previous invention. Other purposes will become clear from the description below. The present invention (second invention) has the following main configuration (1) or (3) and the following embodiment configuration (2) or (4). (1) In a method for obtaining monoammonium phosphate by reacting wet phosphoric acid with ammonia, the reaction temperature is maintained at 70 to 110°C, and ammonia is
React for ~180 minutes and adjust the pH of the reaction solution to 4.5~4.8
A method for obtaining purified ammonium phosphate in high yield, characterized in that a purified ammonium phosphate mother liquor obtained by filtering the sludge produced after holding the sludge at 80 to 110°C for 1 to 10 hours is used. (2) The method according to item (1) above, wherein monoammonium phosphate is obtained by concentrating the purified ammonium phosphate mother liquor. (3) In a method for obtaining monoammonium phosphate by reacting wet phosphoric acid with ammonia, the reaction temperature is maintained at 70 to 110°C, and ammonia is
React for ~180 minutes and adjust the pH of the reaction solution to 4.5~4.8
and the amount of dissolved calcium in the reaction solution is
0.3 to 2 equivalents of ammonium fluoride and/or
Or add and mix acidic ammonium fluoride to 1
A method for obtaining purified ammonium phosphate in high yield, characterized by using purified ammonium phosphate mother liquor obtained by filtering the sludge produced after holding for ~10 hours. (4) The method according to item (3) above, wherein monoammonium phosphate is obtained by concentrating the purified ammonium phosphate mother liquor. The structure and effects of the present invention will be explained in detail below. The wet phosphoric acid used in the present invention is the so-called wet phosphoric acid obtained by treating phosphate rock with mineral acid. It may be manufactured by any method. Such phosphoric acid contains the aforementioned impurities other than phosphoric acid derived from the raw phosphate rock and the inorganic acid for decomposition. This phosphoric acid is placed in a reaction tank and reacted with ammonia. It is easiest to blow ammonia in gas form directly into phosphoric acid, but
For example, it may be added as aqueous ammonia with a concentration of 20 to 30% by weight. The essential features of the method of the present invention are the combination of wet phosphoric acid neutralization conditions with ammonia and high-temperature aging after neutralization or addition of ammonium lofted (and/or acidic ammonium fluoride) and high-temperature thermal formation. and filtration of the sludge produced after the thermal formation. The neutralization temperature is maintained at 70-110°C, preferably 85-105°C throughout. The necessary heating or heat removal is carried out for this purpose by heat transfer through the walls of the reaction vessel or by other known methods. If the neutralization temperature is outside the above range, the filtration performance of the sludge, which will be described later, will decrease and the amount of impurities in the target product (phosphorus ammonium) will increase. The neutralization time is 30 to 180 minutes, preferably 60 minutes.
~90 minutes. If the time required for neutralization is outside the above range, the formation of a sludge with good filtration properties and effective in removing impurities in the mother liquor will be insufficient. However, the predetermined final pH value is 4.5 to 4.8.
If the pH value is less than 4.5, the yield of the target product (monoammonium phosphate) will decrease, and if the pH value exceeds 4.8, diammonium phosphate will be mixed into the monoammonium phosphate. After the neutralization is completed, the above-mentioned high-temperature ripening in (A) or combination of addition of ammonium fluoride, etc. and high-temperature aging in (B) is carried out. The high-temperature aging is carried out by heating the monoammonium phosphate mother liquor after the neutralization reaction to 80 to 110%
The temperature is preferably maintained at 80 to 105°C for 1 to 10 hours, preferably 1 to 5 hours. Furthermore, when adding ammonium fluoride or the like, it is added prior to the ripening. The additive is ammonium fluoride (NH 4 F) or acidic ammonium fluoride (NH 4 F.HF) or a mixture thereof. The temperature during addition is the same as the temperature during neutralization, and there is no need for particular cooling or heating. The amount added is 0.3 to 2 times equivalent, preferably 0.5 to 1.5 times equivalent, relative to dissolved calcium in the neutralization reaction solution. If it is less than 0.3 times, the effect is insufficient;
Even if the amount is doubled, the effect will not improve. After addition, stir to uniformly dissolve ammonium fluoride, etc. During the above-mentioned neutralization prior to the ripening according to the present invention, the wet phosphoric acid neutralized mother liquor contains the T compound (Fe, Al) (NH 4 ) 2 ·H 2 F(PO 4 ) 2 ·nH mentioned in the above-mentioned book. 2 The main component is a mixture of O and Q compounds (described above), and also contains Ca,
A sludge consisting of salt or double salt containing Mg or Fe is generated. It is believed that the crystal growth of the crystal portion inside the sludge continues during the ripening according to the present invention, and as a result, the amount of impurities in the mother liquor after filtration, which will be described later, is reduced. This reduction effect is particularly remarkable when an appropriate amount of ammonium fluoride or the like is added and mixed and dissolved before ripening. After the above aging, the wet phosphoric acid neutralized mother liquor is filtered or centrifuged using a known method to obtain a filtrate and a sludge. Collect P 2 O for 5 min. The difference in effectiveness between the previous invention and the method of the present invention clearly appears in the amount of latent sludge in the mother liquor after filtration and the amount of impurities in the mother liquor, which will be described below. Whether this relationship has matured or not,
Examples according to the presence or absence of addition of ammonium fluoride, etc. before ripening are as follows: A (method of the previous invention): No aging, no addition of ammonium fluoride B (first invention of the present invention): Aging, no addition of ammonium fluoride (Second invention of the present invention): With aging, with addition of ammonium fluoride etc. A Filtration speed (-500mmHg gauge vacuum filtration) A 6-8ton/m 2 , Hr B 4-6〃 H 3-4〃 As mentioned above, the earlier invention is superior, but
Both B and C are not disadvantageous in terms of industrial implementation. B Potential sludge volume of filtration mother liquor (up to PH8
Neutralized with NH 3 and then filtered) A. Standard amount (40-30Kg/P 2 O 5 ton) B. 10-20% reduction of standard amount (30-26Kg/
(P 2 O 5 ton) C. 50% reduction from the standard amount (30-4Kg/P 2 O 5 ton) The amount of potential sludge ultimately depends on the amount of impurities in the target material (monoammonium phosphate) and the amount of impurities mentioned above. It is related to the level of R (return rate). C Amount of impurities in mother liquor As shown in Table 1 below.

【表】 第1表に示すように熟成のみではCaは減少
しないが、Fe,FおよびMgは大幅に減少す
る。熟成とフツ化物添加を併用するとFe,Mg
のみならずCaも大幅に減少する反面Fの増加
は著るしくない。なお、このFの存在はりん酸
一アンモニウムの晶析には悪影響を及ぼさな
い。 上述のRUN No.5の瀘過すみ母液を蒸発濃
縮および冷却してりん酸一アンモニウムの結晶
を生成させ、該結晶を遠心分離および水洗して
R=0.81の対りん酸収率でりん酸一アンモニウ
ムを取得した。このものの水不溶分(SS*)0.1
重量%,SO3は0.07%であつた。これらの値
は、先の発明の実施例1において、R=58.5の
ときSS=0.3%,SO3=0.28%であつたのと比
較しても著しく優れている(註、*SSとは、
得られたりん酸−安100gを100mlの水に溶解
し、溶解液中の水不溶性物を瀘取し、乾燥した
分の試料に対する重量%)。 以上詳述したように、本発明の方法によれば、
湿式りん酸母液からりん酸分を抽出することなく
直接にアンモニアで特定条件で中和し、中和後の
熟成若しくはフツ化アンモニウム等添加と熟成と
ひきつづくスラツジの瀘過のみにより、不純物の
少い湿式りん酸中和母液を得ることができる。そ
してこの母液を公知方法で濃縮晶析させることに
より高収率で工業用精製りん酸を取得できる。こ
の収率は、先の発明の方法ではR値の上限が約70
%であつたのに対して、容易に80%以上のR値を
得ることができるので、先の発明に対しても極め
て有効な改良方法といえる。 以下実施例によつて本発明を説明する。 実施例 1 フロリダりん鉱石を硫酸で分解して得られた湿
式りん酸(分析値:P2O529.44%,SO30.51%,
F0.38%,Ca0.23%,Mg0.15%,Fe0.58%,
Al0.21%)2038gにガスアンモニアを70分で吹込
んでPH=4.67まで中和した。この間中和反応液
の温度は90〜100℃に維持した。得られた試料を
4等分し、次の条件で熟成および瀘過処理を行つ
た。 RUN No. 熟成条件(凡て熟成後瀘過) 1 90〜100℃,1時間熟成 2 〃 ,5 〃 3 〃 ,1 〃 (たゞ
し、 熟成開始前溶存Caと当量のNH4F添
加) 4 90〜100℃,5時間熟成(たゞし、 熟成開始前溶存Caと当量のNH4F添
加) 上記RUN No.1〜4で得られた瀘液の瀘過速
度と不純物の分析値および潜在的スラツジ量を測
定し、下記第2表に示す。
[Table] As shown in Table 1, aging alone does not reduce Ca, but significantly reduces Fe, F, and Mg. When aging and fluoride addition are combined, Fe, Mg
Not only that, but Ca also decreased significantly, while the increase in F was not significant. Note that the presence of F does not adversely affect the crystallization of monoammonium phosphate. The filtered mother liquor of RUN No. 5 described above is evaporated and concentrated and cooled to produce monoammonium phosphate crystals, which are centrifuged and washed with water to produce monoammonium phosphate with a yield of R=0.81. Obtained ammonium. Water-insoluble content (SS * ) of this product is 0.1
Weight%, SO3 was 0.07%. These values are significantly superior to those in Example 1 of the previous invention, in which SS = 0.3% and SO 3 = 0.28% when R = 58.5 (Note: *SS is
Dissolve 100 g of the obtained ammonium phosphoric acid in 100 ml of water, filter out water-insoluble substances in the solution, and dry the solution (% by weight based on the sample). As detailed above, according to the method of the present invention,
Without extracting the phosphoric acid content from the wet phosphate mother liquor, it is directly neutralized with ammonia under specific conditions, and impurities can be reduced by aging after neutralization or by adding ammonium fluoride etc. and aging, followed by filtration of the sludge. A wet phosphoric acid neutralized mother liquor can be obtained. By concentrating and crystallizing this mother liquor using a known method, industrial purified phosphoric acid can be obtained in high yield. In the method of the previous invention, this yield has an upper limit of R value of about 70.
%, it is possible to easily obtain an R value of 80% or more, so it can be said that this is an extremely effective improvement method for the previous invention. The present invention will be explained below with reference to Examples. Example 1 Wet phosphoric acid obtained by decomposing Florida phosphate ore with sulfuric acid (analytical values: P 2 O 5 29.44%, SO 3 0.51%,
F0.38%, Ca0.23%, Mg0.15%, Fe0.58%,
Gas ammonia was blown into 2038 g of Al0.21%) over 70 minutes to neutralize the pH to 4.67. During this time, the temperature of the neutralization reaction solution was maintained at 90 to 100°C. The obtained sample was divided into four equal parts and subjected to aging and filtration treatment under the following conditions. RUN No. Aging conditions (all filtration after aging) 1 Aging at 90-100℃ for 1 hour 2 〃 , 5 〃 3 〃 , 1 〃 (Addition of NH 4 F in an amount equivalent to dissolved Ca before the start of aging) 4 Aging at 90 to 100°C for 5 hours (adding NH 4 F equivalent to dissolved Ca before starting aging) Filtration rate and impurity analysis values of the filtrates obtained in RUN No. 1 to 4 above, and The potential sludge amount was measured and is shown in Table 2 below.

【表】【table】

【表】 実施例 2 実施例1のRUN No.4で処理して得た精製り
ん酸一アンモニウム母液を用い、蒸発濃縮と冷却
による段階的晶析をくり返して該段階毎にりん酸
一アンモニウムの結晶を得た。これらの結晶は、
それぞれ遠心分離による脱液後、遠心分離器内で
脱液し、ひきつづきりん酸一アンモニウム1Kg当
り80mlの水で洗滌し、洗滌液は瀘別された母液と
合体させた。その結果抜出し率R(註.P2O5の収
率)と各段階の晶析物(註.りん酸一アンモニウ
ム)の品質との関係は下記の通りであつた。
[Table] Example 2 Using the purified monoammonium phosphate mother liquor obtained by processing in RUN No. 4 of Example 1, stepwise crystallization by evaporation concentration and cooling was repeated to obtain monoammonium phosphate at each step. Obtained crystals. These crystals are
After removing liquid by centrifugation, the liquid was removed in a centrifuge, and then washed with 80 ml of water per 1 kg of monoammonium phosphate, and the washing liquid was combined with the filtered mother liquor. As a result, the relationship between the extraction rate R (note: yield of P 2 O 5 ) and the quality of the crystallized product (note: monoammonium phosphate) at each stage was as follows.

【表】 以上のように抜出し率が80%を超えても水不溶
分の急増が全くなく、SO3が微量認められるに至
る程度である。
[Table] As shown above, even when the extraction rate exceeds 80%, there is no rapid increase in water-insoluble components, and only a trace amount of SO 3 is observed.

Claims (1)

【特許請求の範囲】 1 湿式りん酸にアンモニアを反応させて、りん
酸一アンモニウムを取得する方法において、該反
応温度を70〜110℃に保ち、アンモニアを30〜180
分で反応させて該反応液のPHを4.5〜4.8とし、
80〜110℃に1〜10時間保持後生成したスラツジ
を瀘別して得られた精製りん酸アンモニウム母液
を使用することを特徴とする精製りん酸アンモニ
ウムの高収率取得法。 2 精製りん酸アンモニウム母液を濃縮して、り
ん酸一アンモニウムを取得する特許請求の範囲第
1項に記載の方法。 3 湿式りん酸にアンモニアを反応させて、りん
酸一アンモニウムを取得する方法において、該反
応温度を70〜110℃に保ち、アンモニアを30〜180
分で反応させて該反応液のPHを4.5〜4.8とし、
該反応液中の溶存カルシウムに対して0.3〜2倍
当量のフツ化アンモニウムおよび/又は酸性フツ
化アンモニウムを添加混合して1〜10時間保持後
生成したスラツジを瀘別して得られた精製りん酸
アンモニウム母液を使用することを特徴とする精
製りん酸アンモニウムの高収率収得法。 4 精製りん酸アンモニウム母液を濃縮して、り
ん酸一アンモニウムを取得する特許請求の範囲第
3項に記載の方法。
[Claims] 1. A method for obtaining monoammonium phosphate by reacting wet phosphoric acid with ammonia, in which the reaction temperature is maintained at 70 to 110°C, and ammonia is reacted at 30 to 180°C.
to adjust the pH of the reaction solution to 4.5 to 4.8,
A method for obtaining purified ammonium phosphate in high yield, characterized in that a purified ammonium phosphate mother liquor obtained by filtering a sludge produced after being maintained at 80 to 110°C for 1 to 10 hours is used. 2. The method according to claim 1, wherein monoammonium phosphate is obtained by concentrating purified ammonium phosphate mother liquor. 3 In a method of obtaining monoammonium phosphate by reacting wet phosphoric acid with ammonia, the reaction temperature is maintained at 70 to 110 °C, and ammonia is reacted at 30 to 180 °C.
to adjust the pH of the reaction solution to 4.5 to 4.8,
Purified ammonium phosphate obtained by adding and mixing ammonium fluoride and/or acidic ammonium fluoride in an amount of 0.3 to 2 times the amount of dissolved calcium in the reaction solution, holding for 1 to 10 hours, and then filtering the resulting sludge. A method for obtaining purified ammonium phosphate in high yield, characterized by using a mother liquor. 4. The method according to claim 3, wherein monoammonium phosphate is obtained by concentrating purified ammonium phosphate mother liquor.
JP760984A 1984-01-19 1984-01-19 Manufacture of purified ammonium secondary phosphate in high yield Granted JPS60151204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP760984A JPS60151204A (en) 1984-01-19 1984-01-19 Manufacture of purified ammonium secondary phosphate in high yield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP760984A JPS60151204A (en) 1984-01-19 1984-01-19 Manufacture of purified ammonium secondary phosphate in high yield

Publications (2)

Publication Number Publication Date
JPS60151204A JPS60151204A (en) 1985-08-09
JPH0261409B2 true JPH0261409B2 (en) 1990-12-20

Family

ID=11670546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP760984A Granted JPS60151204A (en) 1984-01-19 1984-01-19 Manufacture of purified ammonium secondary phosphate in high yield

Country Status (1)

Country Link
JP (1) JPS60151204A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08909U (en) * 1991-11-08 1996-06-07 洋志 杉下 Incinerator oil filter

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04101808U (en) * 1991-02-14 1992-09-02 エスエムシー株式会社 Swing actuator with multi-point positioning mechanism
CN103058157A (en) * 2013-02-26 2013-04-24 贵州开磷(集团)有限责任公司 Production method of industrial grade diammonium phosphate with wet-process phosphoric acid
CN112624074B (en) * 2020-12-31 2022-11-22 四川龙蟒磷化工有限公司 Method for producing industrial grade monoammonium phosphate, monopotassium phosphate and fertilizer grade monoammonium phosphate from raffinate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08909U (en) * 1991-11-08 1996-06-07 洋志 杉下 Incinerator oil filter

Also Published As

Publication number Publication date
JPS60151204A (en) 1985-08-09

Similar Documents

Publication Publication Date Title
US4299804A (en) Removal of magnesium and aluminum impurities from wet process phosphoric acid
EP0161704B1 (en) Process for the production of water soluble ammonium phosphates
US4325927A (en) Purified monoammonium phosphate process
US3975178A (en) Purification of wet-process phosphoric acid with methanol and ammonia
JPH0261409B2 (en)
US4239739A (en) Manufacture of purified diammonium phosphate
CN217350771U (en) System for coproduction phosphoric acid through nitrophosphate fertilizer device
US4610853A (en) Process for producing purified monoammonium phosphate from wet process phosphoric acid
US3388966A (en) Ammonium phosphate preparation
US3531242A (en) Method of preparing highly pure crystals of salts of phosphoric acid
US4610862A (en) Process for producing purified diammonium phosphate from wet process phosphoric acid
US8871170B2 (en) Polyhalite IMI process for KNO3 production
CA1199471A (en) Method of separating magnesium from wet process superphosphoric acid
SU763305A1 (en) Method of isolating stroncium nitrate precipitate
SU945076A1 (en) Process for purifying phosphogypsum
CN1199382A (en) Method for preparation of sodium ammonium phosphate
SU1520059A1 (en) Method of producing feed diammonium phosphate
SU906976A1 (en) Process for producing diammoonium phosphate
JPS60151203A (en) Manufacture of purified ammonium phosphate in high yield
USRE29458E (en) Potassium phosphate manufacture
SU1733378A1 (en) Method for production of calcium hydrophosphate
KR830000528B1 (en) How to remove magnesium and aluminum impurities from wet phosphoric acid
SU1542896A1 (en) Method of producing monoammonium phosphate
SU814861A1 (en) Method of producing reactive ammonium chloride
RU2336250C2 (en) Method of obtaining complex fertiliser