JPH026060B2 - - Google Patents

Info

Publication number
JPH026060B2
JPH026060B2 JP12027081A JP12027081A JPH026060B2 JP H026060 B2 JPH026060 B2 JP H026060B2 JP 12027081 A JP12027081 A JP 12027081A JP 12027081 A JP12027081 A JP 12027081A JP H026060 B2 JPH026060 B2 JP H026060B2
Authority
JP
Japan
Prior art keywords
component
weight
layer
resin
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12027081A
Other languages
Japanese (ja)
Other versions
JPS5820495A (en
Inventor
Hiroo Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP12027081A priority Critical patent/JPS5820495A/en
Publication of JPS5820495A publication Critical patent/JPS5820495A/en
Publication of JPH026060B2 publication Critical patent/JPH026060B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/12Printing plates or foils; Materials therefor non-metallic other than stone, e.g. printing plates or foils comprising inorganic materials in an organic matrix
    • B41N1/14Lithographic printing foils

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は平版印刷用原板に関し、詳しくは支持
体原紙裏面の導電処理層を特定の顔料、結着剤、
導電剤およびワツクスの混合物で形成せしめるよ
うにした、殊に保存性が良好でまた複数放積み重
ねられ一枚づつが搬送された場合にも表面感光層
と裏面導電処理層とのコスレによる感光層の特性
劣化が防止でき、更には電子写真方式での製版に
好適でかつその製版によりつくられたマスター
(平版印刷版)によれば良質の印刷物が多数枚得
られる酸化亜鉛−結着樹脂タイプの平版印刷用原
板に関する。 現在、事務用印刷で使用されている平版印刷用
原板には、(1)基紙上に親水層(耐水層)を設けた
直描型のもの、(2)導電性支持体に光導電層を設け
た電子写真型のもの、(3)基紙上に感光性樹脂層又
はジアゾ感光層を設けたもの、等が代表例として
あげられる。しかし、上記1の原板は、そこに画
像を形成するには親水層上に親油性インキで手書
きするかタイプ印字するか、あるいはゼログラフ
イー法の採用によらねばならず、このため上記2
のものに比較して原稿に忠実な画像部を形成しに
くい嫌いがある。また、上記3の原板は例えば
PS版にあつてはその製造コストが高い欠点があ
り、ジアゾ感光剤式原板にあつては製版されたも
ののシヤープ性に幾分欠けるといつた欠点があ
る。こうした実情を反映して、上記2の電子写真
平版印刷用原板が多く使用されるようになつてき
ている。 この電子写真平版印刷用原板は、一般に支持体
原紙の表面に下引き層(プレコート層)を塗工
し、より耐刷力が要求される場合にはこの上に耐
水層を設けた後、酸化亜鉛・樹脂分散系の感光層
(光導電層)を塗工し、また支持体裏面に導電処
理層を設けることにより製造されている。 ところで、最近では製版印刷機の自動化が進
み、平版印刷用原板(以下、単に「原板」と称す
ることがある)又はその製版により得られる印刷
版(マスター)に要求される品質も多機能にわた
り、かつ、高度なものとなつてきた。特に原板又
はマスター裏面の導電処理層に関する性質として
は (イ) 導電処理層の電気抵抗値が低湿時(30%
RH)にも1010Ωcm程度を維持していないと地
カブリが発生する。 (ロ) 導電処理層の耐水性が悪いとエツチング処理
液(不感脂化処理液)を通した後の感光層側へ
のカールが大きく、ハンドリング性及び自動給
版印刷機の給版性が悪く、クランプミス等の問
題が発生する。 (ハ) 前記(イ)(ロ)の性質は相反した関係にあり、従つ
て、導電性をよくするために導電剤の添加を多
くすると耐水性が低下しエツチング処理後のカ
ールが増大する。 (ニ) エツチング処理後のマスターを多数重ねて自
動給版印刷機にかけ連続給排版を行なつて印刷
する場合、裏面層(導電処理層)と感光層とが
接しているため種々の問題が起る。例えば重送
(多数版送り)、不送りなどの給版ミスや、裏面
層と感光層とのコスレによる感光層の親水性
(不感脂化)の劣化又は感脂性物質の転写等に
よる印刷汚れの発生である。 (ホ) マスター製造過程の裁断・仕上げ時及び製版
機の原板供給装置のカセツト化による自動給版
または袋から取り出す際に、裏面層と感光層と
がコスレることによつて感光層を劣化させキ
ズ、製版汚れ、画像カスレ等の発生原因とな
る。 (ハ) 裏面層の摩擦抵抗が低くすぎるとすべり易
く、裁断仕上げ時の作業性が悪く、また製版機
の給版搬送系でスリツプが発生する。逆に、摩
擦抵抗が高かすぎると製版機へのカセツト給版
時に重送、不送りが発生し、また多版重ね自動
給版印刷機の場合にも同様に重送、不送り等の
給版不良が発生する。 (ト) マスター又は原板を重ねて保管したり運搬し
たりする保存時には、感光層と裏面層とが接触
した状態にあるため温度、圧力、水分などによ
り感光層の増感色素の変色、光感度の低下、製
版地汚れ、ブロツキングによるマスター使用時
の取出し不良及び製版汚れ、印刷汚れ、裏面層
材料の感光層への転移などが生じる。 等があげられる。 従来の電子写真平版印刷用原板における導電処
理層は適当な導電剤、顔料、ワツクス類とともに
(i)水溶性バインダーたとえばポリビニルアルコー
ル、デンプン、カルボキシメチルセルロース、メ
チルセルロースなどや、あるいはこれらと架橋剤
たとえばメラミン樹脂、ポリアミド、グリオキザ
ール等との併用による結着剤、(ii)ポリアクリル酸
エステル、ポリ塩化ビニル、ポリ酢酸ビニル、ス
チレン−ブタジエン共重合体、アクリル−スチレ
ン共重合体のごときエマルシヨン樹脂による結着
剤、又(iii)前記の(i)(ii)の併用による結着剤を主成分
として形成されている。 しかしながら、こうした従来の酸化亜鉛・樹脂
分散系感光層をもつた平版印刷用原板にあつて導
電処理層の結着剤に水溶性のものを用いた場合に
は、耐水性が思わしくなく、架橋剤を併用して耐
水化した際には電気抵抗が高くなつてしまい、ま
た導電剤を多量に加えて電気抵抗を低くしようと
すると架橋が進まず耐水化が行ないにくい、等の
不都合がある。 一方、導電処理層の結着剤にエマルシヨン型樹
脂を用いた場合には使用する導電剤のイオン性で
エマルシヨン樹脂のイオン性が決められるのであ
るが、ここでもアニオン型導電剤を使用したとき
には耐水性が悪い、電気抵抗の水分依存性が大き
く低湿時に抵抗値が高い、一般にエマルシヨン型
樹脂を使用したときにはブロツキングを起しやす
い、即ち最低造膜温度(MFT)が約50℃以下の
樹脂が採用されたときには、既述のように、原板
が積み重ねて保存されているような状態のもとで
はブロツキングを起し原板の感光層(光導電層)
を劣化させる、またMFTの高いエマルシヨン樹
脂の使用では塗布、乾燥時に可成り高い温度をか
けないと製膜がよくならないし、またそのように
して製造された原板が積み重ねられて導電処理層
と感光層とが相互にこすられたときには、前記と
同様に、感光層を劣化させ、これがひいては製版
汚れ、印刷汚れをもたらす、等の不都合がある。 なお、これらの検討から推察されるように、導
電処理層に用いられる導電剤はアニオン型よりも
カチオン型のものの方が有利であり、またエマル
シヨン樹脂は一般にアニオン性であり、特に
MFTが高くかつカチオン性のものはない。 また、従来のものにあつては顔料としてはカオ
リンクレー、炭酸カルシウム(重質炭酸カルシウ
ム、沈降性炭酸カルシウムなど)が、撥水剤とし
てはワツクスエマルシヨンが知られている。 なおMFTの低いエマルシヨン樹脂(例えばポ
リ酢酸ビニルエマルシヨン)とMFTの高いエマ
ルシヨン樹脂(例えばポリスチレンエマルシヨ
ン)とを併用し、更にカチオン型高分子導電剤及
び/又はワツクスエマルシヨン(例えばポリエチ
レンエマルシヨン)を組合せた例が特開昭53−
46736号(実施例の裏塗塗料処方No.2及び5)に
あるが、これらの導電処理層の場合はたとえ前記
両樹脂の混合割合や導電剤及びワツクスの使用量
が適切であつても、顔料を全く含んでいない。顔
料は導電処理層の摩擦抵抗の適正化による給版ミ
スの防止及び給排版時、保存時(特に高温保存
時)等、感光層とのコスレや接触による感光層の
劣化防止の目的のために必要である。しかし前記
従来例の場合はこれらの点を何ら考慮していな
い。なお前述のように導電処理層に顔料を使用す
ること自体は知られているが、前記目的のために
は適切な顔料を選択する必要がある。 だが、このように従来の電子写真平版印刷用原
板又はマスターにおいては、前記の(イ)ないし(ト)の
条件を同時に満足するものは未だ得られていな
い。本発明者は、先に特定の導電剤と結着剤とを
組合わせて導電処理層を形成せしめれば良好な原
板が得られることを見出し提案した(特願昭56−
23882号(特開昭57−138990号公報))。しかし、
この原板においても給版ミスがときどき発生する
のが認められた。本発明は上記提案した原板に更
に改良を加えたものである。 しかして、本発明の第1の目的は、保存安定性
(感光層の変色防止、ブロツキング防止、製版印
刷汚れの防止)の良好な平版印刷用原板を提供す
ることにある。本発明の第2の目的は、低湿雰囲
気における製版カブリを防止(即ち、低電気抵抗
の導電層及び湿度依存性の減少)した平版印刷用
原板を提供することにある。本発明の第3の目的
は、耐水性を向上させてエツチング処理後のカー
ル防止を図つた平版印刷用原板を提供することに
ある。本発明の第4の目的は、導電処理層と感光
層とが接した時又はこすれた時にも感光層が劣化
することのない平版印刷用原板を提供することに
ある。本発明の第5の目的は、給版ミスの発生が
ないかあつてもその発生が著しく少ない平版印刷
用原板を提供することにある。 即ち、本発明の1つは支持体原紙の表面に下引
き層、必要により設けられる耐水層、および酸化
亜鉛・樹脂分散系感光層が設けられまた裏面に導
電処理層が設けられた平版印刷用原板において、
前記導電処理層が (a) 顔料としてのクレー70〜95重量部と炭酸カル
シウム及び/又は酸化亜鉛5〜30重量部とを混
合したもの(成分A) (b) 結着剤としての各々弱アニオン性又はノニオ
ン性のエマルシヨン樹脂で最低造膜温度
(MFT)0〜30℃のもの1重量部と60〜110℃
のもの0.4〜0.8重量部との混合物(成分B) (c) 導電剤としてのカチオン型高分子電解質(成
分C)でこのものの添加量は全樹脂量(成分
B、CおよびD)に対し10〜30重量%の範囲で
ある、および (d) 撥水剤としてのワツクスエマルシヨン(成分
D)でこのものの添加量は全樹脂量(成分B、
CおよびD)に対して5〜40重量%の範囲であ
る を主成分としていることを特徴としている。 このように本発明の平版印刷用原板は前記A、
B、C及びD成分の組合せにより平板印刷用原板
又はマスターに要求される前記(イ)ないし(ト)の条件
を同時に満足するものである。 以下に本発明原板(電子写真平版印刷用原板)
を添付の図面に基づきながらさらに詳細に説明す
る。第1図及び第2図は本発明原板の二例の断面
図を示しており、そこに付された番号で1は支持
体原紙、2は下引き層(プレコート層)、3は耐
水層、4は感光層(光導電層)、5は導電処理層
を表わしている。 本発明原板で使用される支持体原紙1としては
普通紙が一般的であるが、この他にも合成紙、金
属蒸着紙などがあげられる。下引き層2としては
ポリビニルアルコール(PVA)、澱粉、カルボキ
シメチルセルロース(CMC)、メチルセルロース
(MC)等の水溶性樹脂あるいはこれら水溶性樹
脂と酢酸ビニル、塩化ビニル、アクリル酸エステ
ル等のエマルシヨン樹脂との混合物を結着剤とし
て用い、必要によりこれにクレー、炭酸カルシウ
ムのごとき顔料及び導電剤としての高分子電解質
(例えば、第四級アンモニウム系高分子導電剤な
ど)、架橋剤としてのメラミン樹脂、ポリアミド、
グリオキザール等を混合したものにより形成され
る。なお、これらにパラフインワツクス(ポリエ
チレンワツクス)、モンタンロウのごときワツク
ス類がさらに配合されていれば、印刷時における
マスターの水伸びやシワの発生が著しく防止でき
る点で有利である。 また、耐水層3は自己架橋型、熱硬化型のエマ
ルシヨン樹脂、あるいは溶剤タイプの架橋型、熱
硬化型の樹脂の塗工により形成されている。この
耐水層形成のための樹脂の具体例としては、ポリ
オールとポリイソシアネートとの縮合物のエマル
シヨン、エポキシ樹脂、イソブチレン−無水マレ
イン酸共重合樹脂、エチレン、α−又はβ−オレ
フイン性不飽和カルボン酸あるいはその塩、ビニ
ル基含有化合物を主体としたエチレン共重合体エ
マルシヨン、水溶性高分子物質(ポリビニルアル
コール、澱粉、アラビアゴムなど)とアクリル酸
エステル樹脂、酢酸ビニル樹脂、スチレンブタジ
エン樹脂等とのO/W型又はW/O型エマルシヨ
ンがあげられる。 表面の感光層(光導電層)4は一般の電子写真
感光材料における光導電層と同じであつて、例え
ばポリブチルメタクリル酸エステル、アクリル酸
エステル、ポリ塩化ビニル、ポリ酢酸ビニル、ポ
リスチレン、シリコーン樹脂、ポリビニルブチラ
ールなどの親油性樹脂に或いはポリビニルアルコ
ール、カルボキシメチルセルロース、カゼイン、
ゼラチンなどの親水性樹脂に酸化亜鉛が分散され
た形態をもつものである。 本発明原板においては、この発明で最も特徴と
する構成からなる導電処理層5が支持体原紙1の
裏面に設けられている。 既述のように、導電処理層5は前記成分A、
B、C、Dを主成分としている。本発明では裏面
導電処理層の摩擦抵抗の適正化及び感光層とのコ
スレや接触による感光層の劣化防止のために、顔
料(成分A)としてクレー70〜95重量部と炭酸カ
ルシウム及び/又は酸化亜鉛5〜30重量部とを混
合したものが用いられる。クレーに代えてカオリ
ン又はクレーとカオリンとの混合物も有効であ
る。 いま、裏面導電処理層の摩擦抵抗の適正範囲
を、マスター自動重ね印刷機の給版ミスの発生率
との関係で調べたところ、表−1のように測定さ
れた。なお、ここにいう“給版ミス”とは重送、
多版送り、不送りを意味している。
The present invention relates to a base plate for lithographic printing, and more specifically, the conductive treatment layer on the back side of the support base paper is coated with a specific pigment, a binder,
The photosensitive layer made of a mixture of a conductive agent and a wax has particularly good storage stability, and even when multiple sheets are stacked and transported one by one, the photosensitive layer does not deteriorate due to misalignment between the front photosensitive layer and the back conductive treatment layer. A zinc oxide-binder resin type lithographic plate that can prevent property deterioration, is suitable for electrophotographic plate making, and can produce a large number of high-quality prints from the master (lithographic printing plate) created by the plate making. Regarding printing plates. Currently, the planographic printing master plates used in office printing include (1) direct printing type with a hydrophilic layer (water-resistant layer) on a base paper, and (2) a photoconductive layer on a conductive support. (3) A photosensitive resin layer or a diazo photosensitive layer provided on a base paper, etc. are typical examples. However, in order to form an image on the original plate described in 1 above, it is necessary to handwrite or type-print with lipophilic ink on the hydrophilic layer, or to adopt the xerography method, and therefore, the above 2.
It is difficult to form an image area that is faithful to the original document compared to the conventional method. In addition, the original plate in 3 above is, for example,
PS plates have the disadvantage of high manufacturing costs, and diazo photosensitive original plates have the disadvantage of being somewhat lacking in sharpening properties even after being made into a plate. Reflecting these circumstances, the above-mentioned 2 original plates for electrophotographic printing are increasingly being used. This base plate for electrophotographic lithography is generally produced by coating a subbing layer (precoat layer) on the surface of a base paper, and if higher printing durability is required, a water-resistant layer is provided on top of this, and then oxidation is performed. It is manufactured by coating a photosensitive layer (photoconductive layer) containing a zinc/resin dispersion system and providing a conductive treatment layer on the back surface of the support. By the way, in recent years, the automation of plate-making printing machines has progressed, and the quality required of planographic printing master plates (hereinafter sometimes simply referred to as "master plates") or printing plates (masters) obtained by plate-making has become multi-functional. And it has become more sophisticated. In particular, the properties of the conductive treatment layer on the back side of the original plate or master include (a) the electrical resistance value of the conductive treatment layer at low humidity (30%
Ground fog will occur if the resistance (RH) is not maintained at around 10 10 Ωcm. (b) If the water resistance of the conductive treatment layer is poor, curling toward the photosensitive layer after passing through the etching treatment liquid (desensitization treatment liquid) will be large, resulting in poor handling and plate feeding properties of automatic plate feeding printers. , problems such as clamping errors may occur. (c) The above properties (a) and (b) are in a contradictory relationship; therefore, if a large amount of a conductive agent is added to improve conductivity, water resistance decreases and curling after etching increases. (d) When printing by stacking a large number of etched masters on an automatic plate-feeding printing machine and continuously feeding and discharging the plates, various problems occur because the back layer (conductive treatment layer) and photosensitive layer are in contact with each other. Ru. For example, plate feeding errors such as double feeding (multiple plate feeding) or non-feeding, deterioration of the hydrophilicity (desensitization) of the photosensitive layer due to misalignment between the back layer and the photosensitive layer, or printing stains due to transfer of oil-sensitive substances, etc. It is an occurrence. (E) The photosensitive layer may deteriorate due to misalignment between the back layer and the photosensitive layer during cutting and finishing in the master manufacturing process, automatic plate feeding by using a cassette in the original plate feeding device of the plate making machine, or when removing the plate from the bag. This may cause scratches, plate-making stains, image fading, etc. (c) If the frictional resistance of the back layer is too low, it will slip easily, resulting in poor workability during cutting and finishing, and slips will occur in the plate feeding and conveying system of the plate making machine. On the other hand, if the frictional resistance is too high, double feeding or non-feeding will occur when feeding cassettes to a plate-making machine, and also double feeding or non-feeding will occur in the case of automatic plate feeding printing machines. A plate defect occurs. (g) When storing or transporting masters or original plates in layers, the photosensitive layer and back layer are in contact with each other, so temperature, pressure, moisture, etc. may cause discoloration of the sensitizing dye in the photosensitive layer and photosensitivity. This may cause problems such as a decrease in the printing quality, stains on the plate making area, failure to take out the master when using the master due to blocking, stains on the plate, printing stains, and transfer of the back layer material to the photosensitive layer. etc. can be mentioned. The conductive treatment layer in conventional electrophotographic lithographic printing plates is composed of suitable conductive agents, pigments, and waxes.
(i) A water-soluble binder such as polyvinyl alcohol, starch, carboxymethylcellulose, methylcellulose, etc., or a binder formed by combining these with a crosslinking agent such as melamine resin, polyamide, glyoxal, etc., (ii) Polyacrylic acid ester, polychloride, etc. A binder based on emulsion resin such as vinyl, polyvinyl acetate, styrene-butadiene copolymer, acrylic-styrene copolymer, or (iii) a binder based on a combination of (i) and (ii) above. It is formed. However, when a water-soluble binder is used as a binder in the conductive treatment layer for a lithographic printing original plate having a conventional zinc oxide/resin dispersion photosensitive layer, the water resistance is unsatisfactory, and the crosslinking agent When water resistance is achieved by using a conductive agent in combination, the electrical resistance becomes high, and if a large amount of a conductive agent is added to lower the electrical resistance, crosslinking does not proceed, making it difficult to achieve water resistance. On the other hand, when an emulsion-type resin is used as the binder for the conductive treatment layer, the ionicity of the emulsion resin is determined by the ionicity of the conductive agent used. The electrical resistance is highly dependent on moisture and the resistance value is high at low humidity. Blocking tends to occur when emulsion type resins are used. In other words, resins with a minimum film forming temperature (MFT) of approximately 50°C or less are used. As mentioned above, if the original plates are stored in a stack, blocking may occur and the photosensitive layer (photoconductive layer) of the original plate may deteriorate.
Furthermore, when using an emulsion resin with a high MFT, the film cannot be formed well unless a fairly high temperature is applied during coating and drying, and the original plates produced in this way are stacked and coated with the conductive treatment layer and the photosensitive layer. When the layers rub against each other, the photosensitive layer deteriorates as described above, which in turn causes problems such as plate making stains and printing stains. As inferred from these studies, it is more advantageous to use a cationic conductive agent than an anionic conductive agent for the conductive treatment layer, and emulsion resins are generally anionic, and especially
None have high MFT and are cationic. In addition, conventional pigments include kaolin clay and calcium carbonate (heavy calcium carbonate, precipitated calcium carbonate, etc.), and water repellents include wax emulsions. Note that an emulsion resin with a low MFT (e.g. polyvinyl acetate emulsion) and an emulsion resin with a high MFT (e.g. polystyrene emulsion) are used in combination, and a cationic polymer conductive agent and/or wax emulsion (e.g. polyethylene emulsion) is used in combination. ) is combined in JP-A-53-
No. 46736 (back coating formulations No. 2 and 5 in Examples), in the case of these conductive treatment layers, even if the mixing ratio of both resins and the amount of conductive agent and wax used are appropriate, Contains no pigments. Pigments are used to prevent plate feeding errors by optimizing the frictional resistance of the conductive treatment layer, and to prevent deterioration of the photosensitive layer due to scratches or contact with the photosensitive layer during plate loading/unloading, storage (especially when stored at high temperatures), etc. is necessary. However, in the case of the conventional example, these points are not considered at all. As mentioned above, it is known that pigments are used in the conductive treatment layer, but it is necessary to select an appropriate pigment for the above purpose. However, as described above, in the conventional electrophotographic printing plates or masters, one that simultaneously satisfies the above conditions (A) through (G) has not yet been obtained. The present inventor discovered and proposed that a good original plate could be obtained by first forming a conductive treatment layer by combining a specific conductive agent and a binder (Japanese Patent Application No. 1986-
No. 23882 (Japanese Unexamined Patent Publication No. 57-138990)). but,
Even with this master plate, it was observed that plate feeding errors sometimes occurred. The present invention is a further improvement of the original plate proposed above. Therefore, the first object of the present invention is to provide a lithographic printing original plate with good storage stability (prevention of discoloration of the photosensitive layer, prevention of blocking, prevention of plate printing stains). A second object of the present invention is to provide a lithographic printing original plate that prevents plate-making fog in a low-humidity atmosphere (ie, a conductive layer with low electrical resistance and reduced humidity dependence). A third object of the present invention is to provide a lithographic printing original plate which has improved water resistance and is prevented from curling after etching. A fourth object of the present invention is to provide a lithographic printing original plate in which the photosensitive layer does not deteriorate even when the conductive treatment layer and the photosensitive layer come into contact with each other or are rubbed against each other. A fifth object of the present invention is to provide a lithographic printing original plate in which plate feeding errors do not occur, or even if they occur, the occurrence thereof is extremely small. That is, one of the present inventions is a lithographic printing plate in which a subbing layer, an optional waterproof layer, and a zinc oxide/resin dispersion photosensitive layer are provided on the surface of a base paper support, and a conductive treatment layer is provided on the back surface. In the original plate,
The conductive treatment layer includes (a) a mixture of 70 to 95 parts by weight of clay as a pigment and 5 to 30 parts by weight of calcium carbonate and/or zinc oxide (component A), (b) weak anions as a binder, respectively. 1 part by weight of a nonionic or nonionic emulsion resin with a minimum film forming temperature (MFT) of 0 to 30°C and 60 to 110°C
(component B) (c) A cationic polymer electrolyte (component C) as a conductive agent, the amount of which is 10% of the total resin amount (components B, C and D). and (d) the wax emulsion as a water repellent (component D), the amount of which is added to the total resin amount (component B,
It is characterized in that the main component is in the range of 5 to 40% by weight based on C and D). In this way, the lithographic printing original plate of the present invention has the above-mentioned A,
The combination of components B, C, and D simultaneously satisfies the conditions (a) to (g) above required for a lithographic printing original plate or master. The original plate of the present invention (original plate for electrophotographic lithography) is shown below.
will be described in more detail based on the accompanying drawings. FIGS. 1 and 2 show cross-sectional views of two examples of the original plates of the present invention, and the numbers assigned therein are 1 for the support base paper, 2 for the undercoat layer (precoat layer), 3 for the water-resistant layer, 4 represents a photosensitive layer (photoconductive layer), and 5 represents a conductive treatment layer. The support base paper 1 used in the base plate of the present invention is generally plain paper, but other materials include synthetic paper, metal-deposited paper, and the like. The undercoat layer 2 is made of a water-soluble resin such as polyvinyl alcohol (PVA), starch, carboxymethyl cellulose (CMC), or methyl cellulose (MC), or a combination of these water-soluble resins and an emulsion resin such as vinyl acetate, vinyl chloride, or acrylic ester. The mixture is used as a binder, and if necessary, a pigment such as clay or calcium carbonate, a polymer electrolyte as a conductive agent (for example, a quaternary ammonium-based polymer conductive agent, etc.), and a melamine resin or polyamide as a crosslinking agent are added. ,
It is formed by a mixture of glyoxal, etc. It should be noted that if a wax such as paraffin wax (polyethylene wax) or montan wax is further blended with these, it is advantageous in that water elongation and wrinkles of the master can be significantly prevented during printing. The water-resistant layer 3 is formed by coating a self-crosslinking type or thermosetting emulsion resin, or a solvent type crosslinking type or thermosetting resin. Specific examples of resins for forming this water-resistant layer include emulsions of polyol and polyisocyanate condensates, epoxy resins, isobutylene-maleic anhydride copolymer resins, ethylene, α- or β-olefinic unsaturated carboxylic acids. Or its salts, ethylene copolymer emulsions mainly containing vinyl group-containing compounds, O-coated with water-soluble polymer substances (polyvinyl alcohol, starch, gum arabic, etc.) and acrylic acid ester resins, vinyl acetate resins, styrene-butadiene resins, etc. /W type or W/O type emulsion can be mentioned. The surface photosensitive layer (photoconductive layer) 4 is the same as the photoconductive layer in general electrophotographic photosensitive materials, and is made of, for example, polybutyl methacrylate, acrylic ester, polyvinyl chloride, polyvinyl acetate, polystyrene, or silicone resin. , to lipophilic resins such as polyvinyl butyral, or to polyvinyl alcohol, carboxymethyl cellulose, casein,
It has a form in which zinc oxide is dispersed in a hydrophilic resin such as gelatin. In the base plate of the present invention, a conductive treatment layer 5 having the most characteristic structure of the present invention is provided on the back surface of the support base paper 1. As mentioned above, the conductive treatment layer 5 contains the component A,
The main components are B, C, and D. In the present invention, in order to optimize the frictional resistance of the back conductive treatment layer and to prevent deterioration of the photosensitive layer due to scratches or contact with the photosensitive layer, 70 to 95 parts by weight of clay and calcium carbonate and/or oxide are added as a pigment (component A). A mixture containing 5 to 30 parts by weight of zinc is used. Instead of clay, kaolin or a mixture of clay and kaolin is also effective. Now, when the appropriate range of the frictional resistance of the back conductive treatment layer was investigated in relation to the incidence of plate feeding errors in the master automatic overlapping printing machine, the results were measured as shown in Table 1. In addition, "plate feeding error" referred to here means double feeding,
It means sending multiple editions or not sending them.

【表】 表−1から推察されるように、摩擦係数(摩擦
抵抗値)が0.85以下であれば給版ミスは起らな
い。しかし、この値があまり低くすぎると滑りや
すく、裁断・仕上げ或いは荷くずれの発生など作
業性の低下、並びに製版機の搬送系でスリツプを
起し通版不良となる。こうした点を考慮すれば、
摩擦抵抗値は0.7〜0.85程度の範囲にあるのが望
ましい。 また、本発明者の実験により、表−2にみられ
るとおり、導電処理層の使用顔料によつて感光層
の劣化度合及び摩擦抵抗値や、顔料の種類によつ
て高温保存時の感光層の劣化度合が異なり、更に
は、エツチング処理後のマスターを多数重ねて給
版した場合のコスレによる不感脂性の低下などの
性質に大きな違いが現われることもわかつた。な
お、表−2中、〇は良好、○△は普通、×は不良を
表わしている。
[Table] As inferred from Table 1, plate feeding errors will not occur if the friction coefficient (frictional resistance value) is 0.85 or less. However, if this value is too low, the plate becomes slippery, resulting in decreased workability such as cutting, finishing, or load collapse, and slipping in the conveyance system of the plate making machine, resulting in poor plate passing. Considering these points,
It is desirable that the frictional resistance value is in the range of about 0.7 to 0.85. In addition, as shown in Table 2, the inventor's experiments have shown that the degree of deterioration and frictional resistance of the photosensitive layer depend on the pigment used in the conductive treatment layer, and that the deterioration of the photosensitive layer during high-temperature storage depends on the type of pigment. It was also found that there were differences in the degree of deterioration, and furthermore, there were large differences in properties such as a decrease in fat resistance due to wrinkles when a large number of etched masters were stacked and fed. In Table 2, ◯ indicates good, △ indicates fair, and × indicates poor.

【表】 更に、顔料の配合比率と45℃保存時の感光層の
変色との関係は第3図、顔料の配合比率と自動重
ね給版時のコスレ汚れとの関係は第4図、顔料の
配合比率と摩擦係数との関係は第5図のように測
定された。なお、これら第3,4,5図において
UW−90はクレー(ウルトラホワイト90)であ
る。 表−1、表−2および第3図、第4図、第5図
の結果を総合的に判断すると、顔料の混合比率は
クレー70〜95重量部に対し炭酸カルシウム5〜30
重量部を添加することによつて (i) 高温保存時の感光層の変色・劣化が起らない
初期の電子写真特性を維持する。 (ii) エツチング処理済マスターの積み重ね給版を
行なつてもコスレ汚れが発生しない。 (iii) 摩擦係数が0.80程度であり、給版ミスの発生
を起さず、また摩擦係数が低くすぎることもな
いためスリツプによる搬送ミスも起さず仕上げ
時の荷くずれ等の発生もない。 等の効果が認められる。 このような効果は炭酸カルミウムに代えて酸化
亜鉛を用いた場合も、炭酸カルシウムと酸化亜鉛
とを混合した場合にも認められる。そして、この
効果は顔料(炭酸カルシウム、酸化亜鉛)の名柄
をいろいろかえても不変であるのが確められた。 結着剤(成分B)としての弱アニオン性又はノ
ニオン性のエマルシヨン樹脂であつて最低造膜温
度(MFT)が0〜30℃のもの−便宜上「樹脂A」
という−とMFTが60〜110℃のもの(便宜上「樹
脂B」という)との具体例は樹脂Aとしてはポリ
酢酸ビニル、ポリ塩化ビニル、ポリアクリル酸エ
ステル、SBR、酢酸ビニル−アクリル共重合体
等のエマルシヨン、樹脂Bとしてはスチレン−ア
クリル共重合体、アクリルニトリル、ポリアクリ
ル酸エステル等のエマルシヨンなどがあげられ
る。ただし、MFTは樹脂A、樹脂Bの種類の他
にそれらの樹脂の重合度により決められるので一
概に規定することは適切でない。樹脂Aと樹脂B
とも併用が可能である。 樹脂Aと樹脂Bとの混合割合は、樹脂A1重量
部に対し樹脂Bが0.4〜0.8重量部が適当である。
0.4重量部より少ないと導電処理層5はブロツキ
ングを起しやすく、また高温保存時あるいは積み
重ねによる高温加圧保存時に感光層に悪影響を及
ぼすことから好ましくなく、逆に0.8重量部より
多くなると製膜性が悪くなり、また導電処理層5
が硬くなりすぎるためこれが感光層と接触したり
摩擦したりすると感光層を劣化するようになり好
ましくない。 第6図は低MFT樹脂(樹脂A)と高MFT樹脂
(樹脂B)とを混合したときの見掛けのMFTの一
例を示したグラフである。 また、第7図は樹脂Aと樹脂Bとの混合物から
なる結着剤を用いた際のその見掛けのMFTと感
光層の劣化の程度、ブロツキングとの関係を表わ
しており、曲線aは感光体の劣化状態、曲線bは
ブロツキング状態を示している。この第7図で縦
軸の数値は良の5から不良の1に段階的に示した
ものである。これらのグラフから判るように樹脂
Aと樹脂Bとの混和物は後記の第8図のものに比
較してかなりフラツトな曲線を描くようになり、
通常の塗布乾燥温度に相当するところで充分製膜
が行なえるようになる。 第8図は単一のバインダー(結着剤)を使用し
た際の、そのバインダーの見掛けのMFTと感光
層の劣化の程度、ブロツキングとの関係を表わし
ている。ここで曲線a′は感光層の劣化状態、曲線
b′はブロツキング状態を示しており、単一バイン
ダーの使用では両特性を同時に満足しえないこと
を意味している。また、ここでも縦軸の数値は良
の5から不良の1の段階的に示したものである。 本発明原板においては低MFT樹脂と高MFT樹
脂とを併用することにより望ましい導電処理層5
を形成している。かかる好結果が何故もたらされ
るかについての詳細な検討は未だ充分なされてい
ないが、いずれにしても二種類の樹脂の有する長
所が相剰的に作用しあつて製膜性が一段と向上
し、さらには前記のブロツキングや感光層劣化な
どの欠陥が解消したものと思われる。 導電剤(成分C)としてのカチオン型高分子電
解質には電子写真感光体の分野で公知のものがい
ずれも使用可能であり、代表例としては第四級ア
ンモニウム塩があげられる。なお、この導電剤
(カチオン型高分子電解質)の導電処理層5に占
める量は、全樹脂分(成分B、CおよびD)に対
して10〜30重量%が適当である。10重量%より少
ないと低湿時(30%RH)の表面電気抵抗値が
1011Ωcm以上となり製版の際に地カブリが発生
し、逆に30重量%より多いと導電処理層5の耐水
性、撥水性が低下してエツチング処理液に通した
時感光層側へカールし操作性、給版性が悪くなつ
たり、エツチング液中への溶出による汚染劣化も
起り、更にはエツチング液の劣化を促進すること
にもなる。 撥水剤(成分D)としてのワツクスエマルシヨ
ンには石油系ワツクス、変性ワツクスのエマルシ
ヨン(パラフインワツクス、ポリエチレンワツク
ス、マイクロクリスタリンワツクスなど)が使用
可能であり、とくに変性ワツクスエマルシヨンが
有効である。このワツクスエマルシヨンの導電処
理層5に占める量は、全樹脂分(成分B、Cおよ
びD)に対して5〜40重量%が適当である。5重
量%より少ないと撥水性が悪く、エツチング処理
後カールが発生し操作性、給版性が悪くなり、逆
に40重量%より多くなると導電処理層5の結着性
が低下し、また摩擦抵抗の低下、表面光沢性の増
加、高温保存時の転写など種々の弊害が起る。 本発明原板においては、MFTが110℃を超すも
のがかりに含有されて導電処理層5が形成される
場合には、通常の乾燥温度(110〜130℃)より幾
分高目の温度で製膜を行なう必要がある。また、
こうした場合には水溶性樹脂を少量添加して導電
処理層5を形成することが考えられてもよい。 従つて、本発明の他の1つは、上記の原板のう
ちの成分Bを、エマルシヨン樹脂70〜90重量部と
水溶性樹脂10〜30重量部との併用で、かつ、該エ
マルシヨン樹脂は各々弱アニオン性又はノニオン
性で最低造膜温度0〜30℃のもの1重量部と60〜
110℃のもの0.4〜0.6重量部とを混合したものか
らなることを特徴としている。 このように、成分Bがエマルシヨン樹脂と水溶
性樹脂とを併用した場合には、第9図に示された
ように、感光層に対するコスレ劣化性が著しく改
善される。なお、第9図中の符号cはコスレ劣
化、dはエツチング後のカールを表わしている。 なぜこのような改善がなされるかについての解
明は厳密にはなされていないが、水溶性樹脂が
塗布液の調製及び乾燥時にエマルシヨン樹脂粒子
や、界面活性剤、高分子導電剤、ワツクス、顔料
等を包み感光層とこすられても転写、キズなどの
悪影響が軽減される、水溶性樹脂が保護コロイ
ドとなつてエマルシヨン粒子、高分子電解質、界
面活性剤、ワツクスエマルシヨン粒子等の相溶性
を良好とし均一な混合液とさせるため、こすられ
ても転写、キズ等の悪影響が軽減される、などが
考えられる。 実際に本発明原板をつくるには、支持体原紙1
の表面に下引き層2(固形分付着量5〜10g/
m2)を設け、また支持体原紙1の裏面に導電処理
層5(固形分付着量5〜15g/m2)を設けた後、
耐水層(必須ではない、固形分付着量1〜3g/
m2)及び感光層4(固形分付着量20〜25g/m2
を常法により順次形成させればよい。 この原板を用いてオフセツト印刷版(マスタ
ー)をつくるには、通常の乾式又は湿式電子写真
方式によつて即ち、暗所において光導電層に一様
に帯電した後画像露光(光像照射)を施して静電
潜像を形成せしめ、これを親油性トナー現像剤で
現像し、このトナー像を定着させる。次いで、こ
れを不感脂化液で処理すればよい。こうした製版
は乾式又は湿式電子写真方式の製版機によつて容
易に行なうことができる。 かくしてつくられた平版印刷用原板並びにそれ
を用いた平版印刷板(マスター)は、所期の目的
を充分達成することのできるものである。 次に実施例を示す。なお、部はすべて固形分重
量比である。 実施例 1 支持体原紙(90g/m2の普通紙)の表面に ポリビニルアルコール(PVA−HC、クラレKK
製) 40部 アクリル酸エステルエマルシヨン(HA−16、日
本アクリルKK製) 40部 ポリエチレンワツクスエマルシヨン(GIX−
0056、昭和高分子KK製) 20部 の組成からなる混合物を固形分がほぼ15重量%と
なるように調整したものを塗布し乾燥して約5
g/m2の下引き層を設けた。 次いで、この支持体原紙の裏面に クレー(ウルトラホワイト90) 45部 炭酸カルシウム(重質炭カルSSB、白石カルシウ
ムKK製) 5部 ポリエチレンワツクスエマルシヨン(GIX−
0056、昭和高分子KK製) 15部 ポリアクリル酸エステルエマルシヨン(弱アニオ
ン性、MFT約25℃) 10部 アクリル酸エステル−スチレン共重合体エマルシ
ヨン(弱アニオン性、MFT約70℃) 15部 カチオン型高分子電解質 10部 の組成からなる混合液を固形分がほぼ40%に調整
したものをワイヤーバーで塗布し、110℃で2分
間乾燥して約8g/m2の導電処理層を設けた。 続いて、さきの下引き層上にイソプチレン−無
水マレイン酸共重合樹脂からなる層(約2g/
m2)を設けて耐水層とし、さらにこの耐水層上に
酸化亜鉛6部、アクリル樹脂1部および増感染料
0.07部からなる光導電層(約25g/m2)を設け
て、電子写真平版印刷用原板をつくつた。 実施例 2 導電処理層の組成を下記に代えた他は実施例1
とまつたく同様にして電子写真平版印刷用原板を
つくつた。 クレー(ウルトラホイト90) 45部 炭酸カルシウム(軽微細炭カル、ブリリアント
15、白石カルシウムKK製) 5部 ポリエチレンワツクスエマルシヨン(GIX−
0056、) 15部 ポリアクリル酸エステルエマルシヨン(ノニオン
性、MFT約10℃) 10部 アクリロニトリル重合体エマルシヨン(弱アニオ
ン性、MFT約100℃) 15部 カチオン型高分子電解質 15部 実施例 3 導電処理層の組成にポリビニルアルコール
(PVA−HC、クラレKK製)5部をさらに加え
た以外は実施例1とまつたく同様にして電子写真
平版印刷用原板をつくつた。 実施例 4 導電処理層の組成にデンプン5部をさらに加え
た以外は実施例2とまつたく同様にして電子写真
平版印刷用原板をつくつた。 比較例 実施例1におけるポリアクリル酸エステルエマ
ルシヨン10部及びアクリル酸エステル−スチレン
共重合体エマルシヨン15部の代りに、ノニオン性
の酢酸ビニルエマルシヨン30部を用いた以外は実
施例1とまつたく同様にして比較の電子写真平版
印刷用原板をつくつた。 これらの原板を用いて製版(KKリコー製のS
−1製版機使用、リコーフユーザーで定着後、リ
コーエツチングプロセツサーで不感脂化処理)し
て5種のオフセツトマスターを作成し、これらマ
スターを市販のオフセツト印刷機(AP−1310、
KKリコー製)にかけて実際の印刷を行なつた。
なお、この印刷での湿し水には前記のリコーエツ
チングプロセツサーを5倍量の水で薄めたものを
用いた。この製版で比較例の原板によるマスター
にはカールの生じるのが認められ、また本発明原
板を使用したマスターでの印刷では5000枚以上の
鮮明な印刷物が得られた。 さらに、これらの原板を各々1000枚積み重ね40
℃、80%RHの条件下に5日間放置した後調べた
ところ、実施例1ないし実施例4で得られた原板
には何等変質は認められなかつたが、比較例のも
のはブロツキングを起しておりまた感光層の劣化
が認められ良質な画質をもつたマスターは得られ
なかつた。 なお、これらの原板を用いてKKリコー製のS
−3製版機(乾式電子写真製版機)で製版しFE
−2(KKリコー製、熱定着機)で定着、エツチ
ング後のマスターをAP−2600(KKリコー製自動
印刷機)に30版積重ね連続印刷を行なつたところ
いずれも(実施例1〜4及び比較例)給版ミスが
なく良好であつた。
[Table] Furthermore, Figure 3 shows the relationship between the pigment blending ratio and discoloration of the photosensitive layer when stored at 45°C, and Figure 4 shows the relationship between the pigment blending ratio and staining during automatic overlapping plate feeding. The relationship between the blending ratio and the friction coefficient was measured as shown in FIG. In addition, in these figures 3, 4, and 5
UW-90 is clay (Ultra White 90). Judging comprehensively from the results in Table 1, Table 2, and Figures 3, 4, and 5, the mixing ratio of pigment is 70 to 95 parts by weight of clay to 5 to 30 parts by weight of calcium carbonate.
By adding parts by weight, (i) the initial electrophotographic properties that do not cause discoloration or deterioration of the photosensitive layer during high-temperature storage are maintained; (ii) Even when etched masters are stacked and fed, no scratches occur. (iii) The coefficient of friction is approximately 0.80, so plate feeding errors do not occur, and since the friction coefficient is not too low, there are no conveyance errors due to slips, and there is no occurrence of load collapse during finishing. The following effects were observed. Such an effect is observed when zinc oxide is used instead of calcium carbonate, and when calcium carbonate and zinc oxide are mixed. It was confirmed that this effect remained unchanged even when the name of the pigment (calcium carbonate, zinc oxide) was changed. A weakly anionic or nonionic emulsion resin as a binder (component B) with a minimum film forming temperature (MFT) of 0 to 30°C - "Resin A" for convenience.
Specific examples of resins with MFT of 60 to 110°C (referred to as "resin B" for convenience) include polyvinyl acetate, polyvinyl chloride, polyacrylic acid ester, SBR, and vinyl acetate-acrylic copolymer as resin A. Examples of the resin B include emulsions of styrene-acrylic copolymers, acrylonitrile, polyacrylic acid esters, and the like. However, since MFT is determined by the types of resin A and resin B as well as the degree of polymerization of those resins, it is not appropriate to define it unconditionally. Resin A and resin B
Both can be used together. A suitable mixing ratio of resin A and resin B is 0.4 to 0.8 parts by weight of resin B to 1 part by weight of resin A.
If the amount is less than 0.4 part by weight, the conductive treatment layer 5 tends to block, and it is not preferable because it will have a negative effect on the photosensitive layer during high temperature storage or high temperature pressurized storage by stacking.On the other hand, if it is more than 0.8 part by weight, the film formation The conductive treatment layer 5
is too hard, so if it comes into contact with or rubs against the photosensitive layer, it will deteriorate the photosensitive layer, which is undesirable. FIG. 6 is a graph showing an example of the apparent MFT when a low MFT resin (resin A) and a high MFT resin (resin B) are mixed. Furthermore, Fig. 7 shows the relationship between the apparent MFT, the degree of deterioration of the photosensitive layer, and blocking when a binder made of a mixture of resin A and resin B is used. Curve b shows the blocking state. In FIG. 7, the values on the vertical axis are shown in stages from 5, which is good, to 1, which is bad. As can be seen from these graphs, the mixture of Resin A and Resin B draws a much flatter curve compared to the one in Figure 8 below.
Film formation can be sufficiently performed at a temperature corresponding to the normal coating and drying temperature. FIG. 8 shows the relationship between the apparent MFT of a single binder, the degree of deterioration of the photosensitive layer, and blocking when a single binder is used. Here, the curve a′ is the deterioration state of the photosensitive layer, and the curve
b' indicates a blocking state, which means that both properties cannot be simultaneously satisfied using a single binder. Also, here, the values on the vertical axis are shown in stages from 5 for good to 1 for bad. In the original plate of the present invention, the conductive treatment layer 5 is preferably made by using a low MFT resin and a high MFT resin together.
is formed. Although a detailed study has not yet been carried out as to why such good results are brought about, in any case, the advantages of the two types of resins work together to further improve the film-forming properties. It seems that the defects such as blocking and photosensitive layer deterioration mentioned above have been eliminated. As the cationic polymer electrolyte as the conductive agent (component C), any of those known in the field of electrophotographic photoreceptors can be used, and a typical example is a quaternary ammonium salt. The appropriate amount of the conductive agent (cationic polymer electrolyte) in the conductive treatment layer 5 is 10 to 30% by weight based on the total resin content (components B, C, and D). If it is less than 10% by weight, the surface electrical resistance value at low humidity (30%RH) will decrease.
If it exceeds 10 to 11 Ωcm, background fog will occur during plate making, and conversely, if it exceeds 30% by weight, the water resistance and water repellency of the conductive treatment layer 5 will decrease and it will curl toward the photosensitive layer when passed through an etching solution. Operability and plate feeding performance deteriorate, contamination and deterioration occur due to elution into the etching solution, and furthermore, deterioration of the etching solution is accelerated. Petroleum-based waxes and modified wax emulsions (paraffin waxes, polyethylene waxes, microcrystalline waxes, etc.) can be used as the wax emulsion as the water repellent (component D), and modified wax emulsions are particularly suitable. is valid. The amount of this wax emulsion in the conductive treatment layer 5 is suitably 5 to 40% by weight based on the total resin content (components B, C and D). If it is less than 5% by weight, the water repellency will be poor and curling will occur after etching treatment, resulting in poor operability and plate feeding properties.On the other hand, if it is more than 40% by weight, the binding properties of the conductive layer 5 will decrease and friction will increase. Various problems occur, such as a decrease in resistance, an increase in surface gloss, and transfer during high-temperature storage. In the original plate of the present invention, when the conductive treatment layer 5 is formed by containing MFT exceeding 110°C, the film is formed at a temperature somewhat higher than the normal drying temperature (110 to 130°C). It is necessary to do this. Also,
In such a case, it may be considered to add a small amount of water-soluble resin to form the conductive treatment layer 5. Therefore, another aspect of the present invention is to combine component B of the above original plate with 70 to 90 parts by weight of an emulsion resin and 10 to 30 parts by weight of a water-soluble resin, and each of the emulsion resins 1 part by weight of weakly anionic or nonionic material with a minimum film forming temperature of 0 to 30°C and 60 to
It is characterized by being made of a mixture of 0.4 to 0.6 parts by weight of 110°C. In this manner, when component B is a combination of an emulsion resin and a water-soluble resin, as shown in FIG. 9, the wear resistance of the photosensitive layer is significantly improved. Note that the symbol c in FIG. 9 represents wrinkle deterioration, and d represents curl after etching. Although it has not been strictly elucidated why this improvement is made, it is important to note that when water-soluble resins are used to prepare and dry coating liquids, emulsion resin particles, surfactants, polymeric conductive agents, waxes, pigments, etc. The water-soluble resin acts as a protective colloid and improves the compatibility of emulsion particles, polymer electrolytes, surfactants, wax emulsion particles, etc. even if it rubs against the photosensitive layer. In order to obtain a good and uniform mixed solution, it is thought that even if the mixture is rubbed, adverse effects such as transfer and scratches will be reduced. To actually make the base plate of the present invention, support base paper 1
Undercoat layer 2 (solid content adhesion amount 5-10g/
m 2 ), and after providing a conductive treatment layer 5 (solid content adhesion amount 5 to 15 g/m 2 ) on the back side of the base paper 1,
Waterproof layer (not essential, solid content coverage 1-3g/
m 2 ) and photosensitive layer 4 (solid content adhesion amount 20 to 25 g/m 2 )
may be formed sequentially by a conventional method. In order to make an offset printing plate (master) using this original plate, the photoconductive layer is uniformly charged in a dark place and then subjected to image exposure (light image irradiation) using a normal dry or wet electrophotographic method. to form an electrostatic latent image, which is developed with a lipophilic toner developer to fix the toner image. Next, this may be treated with a desensitizing solution. Such plate making can be easily carried out using a dry or wet electrophotographic plate making machine. The lithographic printing original plate thus produced and the lithographic printing plate (master) using the same can fully achieve the intended purpose. Next, examples will be shown. Note that all parts are solid content weight ratios. Example 1 Polyvinyl alcohol (PVA-HC, Kuraray KK) was applied to the surface of the base paper (90 g/ m2 plain paper).
40 parts acrylic ester emulsion (HA-16, manufactured by Nippon Acrylic KK) 40 parts polyethylene wax emulsion (GIX-
0056, manufactured by Showa Kobunshi KK) A mixture consisting of 20 parts was adjusted so that the solid content was approximately 15% by weight, and then applied and dried.
A subbing layer of g/m 2 was applied. Next, on the back side of this base paper, 45 parts of clay (Ultra White 90), 45 parts of calcium carbonate (Heavy Carbon Cal SSB, manufactured by Shiraishi Calcium KK), 5 parts of polyethylene wax emulsion (GIX-
0056, manufactured by Showa Kobunshi KK) 15 parts polyacrylic ester emulsion (weakly anionic, MFT approx. 25°C) 10 parts acrylic ester-styrene copolymer emulsion (weakly anionic, MFT approx. 70°C) 15 parts cationic A mixed solution consisting of 10 parts of polyelectrolyte with a solid content of approximately 40% was applied with a wire bar and dried at 110°C for 2 minutes to form a conductive treatment layer of approximately 8 g/ m2 . . Next, a layer of isoptylene-maleic anhydride copolymer resin (approximately 2g/
m2 ) to form a water-resistant layer, and on top of this water-resistant layer, 6 parts of zinc oxide, 1 part of acrylic resin, and a sensitizing agent are added.
A photoconductive layer (approximately 25 g/m 2 ) consisting of 0.07 parts was provided to prepare an original plate for electrophotographic printing. Example 2 Example 1 except that the composition of the conductive treatment layer was changed to the following.
In the same way, I made an original plate for electrophotographic printing. Clay (Ultra Hoite 90) 45 parts Calcium carbonate (Light fine carbon Cal, Brilliant
15, manufactured by Shiraishi Calcium KK) 5-part polyethylene wax emulsion (GIX-
0056, ) 15 parts polyacrylic acid ester emulsion (nonionic, MFT approx. 10°C) 10 parts acrylonitrile polymer emulsion (weak anionic, MFT approx. 100°C) 15 parts cationic polymer electrolyte 15 parts Example 3 Conductive treatment An original plate for electrophotographic lithography was prepared in the same manner as in Example 1, except that 5 parts of polyvinyl alcohol (PVA-HC, manufactured by Kuraray KK) was further added to the composition of the layer. Example 4 An original plate for electrophotographic printing was prepared in the same manner as in Example 2 except that 5 parts of starch was further added to the composition of the conductive treatment layer. Comparative Example Same as Example 1 except that 30 parts of nonionic vinyl acetate emulsion was used instead of 10 parts of polyacrylic ester emulsion and 15 parts of acrylic ester-styrene copolymer emulsion in Example 1. A comparative electrophotographic printing plate was prepared in the same manner. Plate making (KK Ricoh's S
-1 using a plate-making machine, fixing with a Ricof user, and desensitizing with a Ricoh etching processor) to create five types of offset masters, and print these masters on a commercially available offset printing machine (AP-1310,
(manufactured by KK Ricoh) to perform the actual printing.
The dampening solution used in this printing was the Ricoh Etching Processor diluted with 5 times the amount of water. In this plate-making process, curling was observed in the master using the original plate of the comparative example, and more than 5,000 clear prints were obtained when printing with the master using the original plate of the present invention. Furthermore, 1000 sheets of each of these original plates were stacked 40 times.
When examined after being left for 5 days under conditions of ℃ and 80% RH, no deterioration was observed in the original plates obtained in Examples 1 to 4, but blocking occurred in the comparative examples. Moreover, deterioration of the photosensitive layer was observed, and a master with good image quality could not be obtained. In addition, using these original plates, KK Ricoh's S
-3 Plate making machine (dry electrophotographic plate making machine) and FE
-2 (KK Ricoh, heat fixing machine), the master after etching was stacked with 30 plates and continuously printed on AP-2600 (KK Ricoh, automatic printing machine) (Examples 1 to 4 and Comparative Example) Good results with no plate feeding errors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明に係る平版印刷用原
板の二例の断面図、第3図は導電処理層の顔料配
合比率と45℃保存時の感光層の変色との関係を表
わしたグラフ、第4図は導電処理層の顔料配合比
率と自動重ね給版時のコスレ汚れとの関係を表わ
したグラフ、第5図は導電処理層の顔料配合比率
と摩擦係数との関係を表わしたグラフ、第6図は
造膜温度が低い樹脂と高い樹脂とを混合したもの
の見掛けの最低造膜温度を示すグラフ、第7図は
造膜温度が低い樹脂と高い樹脂とを混合した結着
剤を使用した際のその結着剤の最低造膜温度と感
光層の劣化の程度並びにブロツキングとの関係を
表わしたグラフ、第8図は単一の結着剤を使用し
た際のその結着剤の最低造膜温度と感光層の劣化
の程度並びにブロツキングとの関係を表わしたグ
ラフ、第9図は結着剤にエマルシヨン樹脂と水溶
性樹脂とを併用した場合のコスレ劣化とエツチン
グ後のカールとを表わしたグラフである。 1……支持体原紙、2……下引き層(プレコー
ト層)、3……耐水層、4……感光層(光導電
層)、5……導電処理層。
Figures 1 and 2 are cross-sectional views of two examples of planographic printing original plates according to the present invention, and Figure 3 shows the relationship between the pigment blending ratio of the conductive treatment layer and the discoloration of the photosensitive layer when stored at 45°C. The graph, Figure 4, is a graph showing the relationship between the pigment blending ratio of the conductive treatment layer and the scratch stain during automatic overlapping plate feeding, and Figure 5 is the graph showing the relationship between the pigment blending ratio of the conductive treatment layer and the coefficient of friction. Graph, Figure 6 is a graph showing the apparent minimum film forming temperature of a mixture of a resin with a low film forming temperature and a resin with a high film forming temperature, and Figure 7 is a graph showing a binder mixed with a resin with a low film forming temperature and a resin with a high film forming temperature. A graph showing the relationship between the minimum film forming temperature of the binder, the degree of deterioration of the photosensitive layer, and blocking when a single binder is used. A graph showing the relationship between the minimum film forming temperature, the degree of deterioration of the photosensitive layer, and blocking, and Figure 9 shows the relationship between the deterioration of scratches and the curling after etching when an emulsion resin and a water-soluble resin are used together as a binder. This is a graph showing the following. DESCRIPTION OF SYMBOLS 1...Support base paper, 2...Undercoat layer (precoat layer), 3...Waterproof layer, 4...Photosensitive layer (photoconductive layer), 5...Electroconductive treatment layer.

Claims (1)

【特許請求の範囲】 1 支持体原紙の表面に下引き層、必要により設
けられる耐水層、および酸化亜鉛・樹脂分散系感
光層が設けられまた裏面に導電処理層が設けられ
たものであつて、前記導電処理層が下記成分A、
成分B、成分Cおよび成分Dを主成分としている
ことを特徴とする平版印刷用原板。 (成分A) クレー70〜95重量部と炭酸カルシ
ウム及び/又は酸化亜鉛5〜30重量部とを混合し
た顔料。 (成分B) 各々弱アニオン性又はノニオン性
のエマルシヨン樹脂で最低造膜温度0〜30℃のも
の1重量部と60〜110℃のもの0.4〜0.8重量部と
を混合した結着剤。 (成分C) 前記成分Aを除いたものの全量に
対して10〜30重量%のカチオン型高分子電解質。 (成分D) 前記成分Aを除いたものの全量に
対して5〜40重量%のワツクスエマルシヨン。 2 支持体原紙の表面に下引き層、必要により設
けられる耐水層、および酸化亜鉛・樹脂分散系感
光層が設けられまた裏面に導電処理層が設けられ
たものであつて、前記導電処理層が下記成分A、
成分B、成分Cおよび成分Dを主成分としている
ことを特徴とする平版印刷用原板。 (成分A) クレー70〜95重量部と炭酸カルシ
ウム及び/又は酸化亜鉛5〜30重量部とを混合し
た顔料。 (成分B) エマルシヨン樹脂70〜90重量部と
水溶性樹脂10〜30重量部との併用からなり、か
つ、該エマルシヨン樹脂は各々弱アニオン性又は
ノニオン性で最低造膜温度0〜30℃のもの1重量
部と60〜110℃のもの0.4〜0.8重量部とを混合し
たものである結着剤。 (成分C) 前記成分Aを除いたものの全量に
対して10〜30重量%のカチオン型高分子電解質。 (成分D) 前記成分Aを除いたものの全量に
対して5〜40重量%のワツクスエマルシヨン。
[Scope of Claims] 1 A subbing layer, an optional waterproof layer, and a zinc oxide/resin dispersion photosensitive layer are provided on the surface of a base paper support, and a conductive treatment layer is provided on the back surface. , the conductive treatment layer comprises the following component A,
A planographic printing original plate characterized by containing component B, component C, and component D as main components. (Component A) A pigment prepared by mixing 70 to 95 parts by weight of clay and 5 to 30 parts by weight of calcium carbonate and/or zinc oxide. (Component B) A binder prepared by mixing 1 part by weight of a weakly anionic or nonionic emulsion resin with a minimum film forming temperature of 0 to 30°C and 0.4 to 0.8 part by weight of a weakly anionic or nonionic emulsion resin having a minimum film forming temperature of 60 to 110°C. (Component C) A cationic polymer electrolyte in an amount of 10 to 30% by weight based on the total amount excluding component A. (Component D) A wax emulsion containing 5 to 40% by weight based on the total amount excluding component A. 2 An undercoat layer, an optional water-resistant layer, and a zinc oxide/resin dispersion photosensitive layer are provided on the surface of the base paper support, and a conductive treatment layer is provided on the back surface, and the conductive treatment layer is The following ingredient A,
A planographic printing original plate characterized by containing component B, component C, and component D as main components. (Component A) A pigment prepared by mixing 70 to 95 parts by weight of clay and 5 to 30 parts by weight of calcium carbonate and/or zinc oxide. (Component B) Consists of a combination of 70 to 90 parts by weight of an emulsion resin and 10 to 30 parts by weight of a water-soluble resin, and each emulsion resin is weakly anionic or nonionic and has a minimum film forming temperature of 0 to 30°C. A binder made of a mixture of 1 part by weight and 0.4 to 0.8 parts by weight of a binder at 60 to 110°C. (Component C) A cationic polymer electrolyte in an amount of 10 to 30% by weight based on the total amount excluding component A. (Component D) A wax emulsion containing 5 to 40% by weight based on the total amount excluding component A.
JP12027081A 1981-07-31 1981-07-31 Original form for lithographic press Granted JPS5820495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12027081A JPS5820495A (en) 1981-07-31 1981-07-31 Original form for lithographic press

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12027081A JPS5820495A (en) 1981-07-31 1981-07-31 Original form for lithographic press

Publications (2)

Publication Number Publication Date
JPS5820495A JPS5820495A (en) 1983-02-05
JPH026060B2 true JPH026060B2 (en) 1990-02-07

Family

ID=14782060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12027081A Granted JPS5820495A (en) 1981-07-31 1981-07-31 Original form for lithographic press

Country Status (1)

Country Link
JP (1) JPS5820495A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0830941B1 (en) * 1996-09-18 2003-07-02 Agfa-Gevaert A heat mode recording material and method for producing driographic printing plates

Also Published As

Publication number Publication date
JPS5820495A (en) 1983-02-05

Similar Documents

Publication Publication Date Title
US5104731A (en) Dry toner imaging films possessing an anti-static matrix layer
US3682632A (en) Copying material for use in electrophotography
US4427754A (en) Electrophotographic lithographic printing plate
JPH08183265A (en) Original plate for direct drawing type lithographic printing
EP1050779A1 (en) Antistatic backing for photographic paper
JPH026060B2 (en)
US4520089A (en) Electrophotographic offset masters
US3230873A (en) Colloid coated paper with anti-wrinkling and puckering properties
JPH056036A (en) Original plate for electrophotographic planographic printing
CA2132253A1 (en) Electrophotographic lithographic printing plate material
JPH09179321A (en) Direct drawing type planographic printing master plate
JPS634231A (en) Substrate body for photographic printing paper
JP2000338634A (en) Photographic element and photographic printing paper
JPS59137961A (en) Electrophotographic offset printing original plate
JPS5845709B2 (en) Electrophotographic paper for lithographic printing with improved base paper
JPH09197693A (en) Original edition for direct drawing type planographic printing
JPS5953854A (en) Electrophotographic offset printing plate material
JP2968857B2 (en) Electrophotographic lithographic printing plate
JPH0228146B2 (en) DENSHISHASHINHEIBANINSATSUHANNOSEIZOHOHO
JPS6036955B2 (en) Master plate for lithographic printing
JPH0545939A (en) Electrophotographic planographic printing original plate
JPH0157910B2 (en)
JPH01275191A (en) Direct descriptive type lithographic printing original plate
JPH056018A (en) Original plate for electrophotographic planographic printing
GB2116736A (en) Electrophotographic lithographic printing plate