JPH0260602B2 - - Google Patents

Info

Publication number
JPH0260602B2
JPH0260602B2 JP55173500A JP17350080A JPH0260602B2 JP H0260602 B2 JPH0260602 B2 JP H0260602B2 JP 55173500 A JP55173500 A JP 55173500A JP 17350080 A JP17350080 A JP 17350080A JP H0260602 B2 JPH0260602 B2 JP H0260602B2
Authority
JP
Japan
Prior art keywords
activated carbon
molded body
ozone
honeycomb molded
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55173500A
Other languages
Japanese (ja)
Other versions
JPS5795816A (en
Inventor
Giichi Okabayashi
Noboru Nakamura
Takeshi Matsumoto
Yoshimasa Ookuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP55173500A priority Critical patent/JPS5795816A/en
Publication of JPS5795816A publication Critical patent/JPS5795816A/en
Priority to US06/545,074 priority patent/US4518704A/en
Publication of JPH0260602B2 publication Critical patent/JPH0260602B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規なオゾン分解用活性炭ハニカム成
型体に関し、更に詳しくは、例えば航空機、複写
機等の排出オゾンを分解するためのフイルタとし
て用いられるオゾン分解用活性炭ハニカム成型体
に関する。 これ迄の活性炭の使途用構造を歴史的に述べ
る。古くは、活性炭は脱臭若しくは脱色用の吸着
体として、或はオゾン分解等の触媒として、或は
各種触媒の担体として、広く利用されている。し
かしながら、その大部分は粉粒状又はペレツト状
であり、一定形状の成型体としたものは数少な
い。 後者の活性炭成型体の一つに、木炭や石炭等の
活性炭原料粉末とタールやピッチ等の粘結剤との
混和物を加圧成型してこれを100℃程度で乾燥し
たのち600℃以下の温度で炭化し、次いで賦活炉
内で水蒸気を通して賦活処理したものがある。け
れども、このものは、粘結剤としてそれ自体が賦
活処理によつて活性炭となり得るような取り扱い
にくいピツチやタールを使用するため、加圧成型
以外の各種成型法を適用し難く、しかも成型後に
賦活処理を施こすため、水蒸気の通にくい複雑な
形状のものであれば内部まで充分に賦活し難い欠
点がある。従つて、このタイプの活性炭成型体
は、板状もしくは之に準ずる極く簡単な形状とせ
ざるを得ないのが実情であり、用途に適した種々
の形状のものを得ることが困難である。 亦、上記のものと別タイプの活性炭成型体とし
て、賦活した活性炭粉粒を有機バインダーで結合
したものがある。しかしながら、このタイプの成
型体は、該バインダーが活性炭粉粒の表面を覆う
ため充分な活性を発揮することが出来ず、しかも
加熱、経時変化等によつて該バインダーが劣化す
るため強度低下を来たす欠点があり、実用性に乏
しいものである。 更に別タイプの活性炭成型体としては、セラミ
ツクス製のベースの表面に活性炭粉粒をゴム系な
いしは他の有機質バインダーでコーテイングした
ものがある。この成型体は、前記の有機バインダ
ーで結合したものに比べると、活性が大きく強度
低下もわずかであるが、ベース表面に活性炭粉粒
をコーテイングしているため、活性炭粉粒保有量
が少なく、従つて比較的短時間の使用によつてそ
の活性を失う欠点がある。 亦、以上のような活性炭成型体に準ずるものと
しては、例えば活性炭繊維紙をダンボール状に成
層したものなどが、フイルター等の用途分野で開
発されているが、材料が紙であるため湿気で形状
変化を来し、強度も上記の活性炭成型体とは比較
にならず、且つ活性炭繊維の含有量が多くないの
で可使時間も長くないと云つた欠点がある。 上記諸問題に照らし、活性炭粉粒を山皮,ベン
トナイト,ベントナイト以外の粘土鉱物,ケイ酸
塩類等の無機担持体中に接合・担持して之を焼成
した活性炭成型体が提案がなされたが、いまだ十
分な実用性を保証せる製品は市場に出現していな
いようである。他方活性炭成型体の応用分野に於
てはよりコンパクトで高性能な機能が要求され之
を成型体の構造に求めるとき、ハニカム成型体を
例に採ると有効接触単位面積に於けるセル個数が
多く且つ各セル壁が極薄(0.10〜0.25mm)なもの
で相応の機械的強度のあるものが望まれ、一例と
してセル個数が300個/1平方インチ以上、出来
れば400個/1平方インチもしくはそれを超える
ものが前記要望に応えられるものとして鶴首され
ていた。ちなみに一般の押出技術からすれば300
個/1平方インチが精一杯の細多構造である。さ
て而してこのような細多セル構造(薄壁セル構
造)のものを前記したような無機担持体のみにて
押出成型することは至難であつた。その理由は担
持体の結着力及び成型材料の滑性が夫々不足する
ためであり押出后のセルその形をとゞめない程に
崩壊もしくは変形してしまう。これを防ぐ意味で
澱粉、ふのり、ポリエーテル樹脂等の有機バイン
ダを用いてもなお結着力の不足、およびもしくは
滑性の不足等で要求される性質をなお満足出来な
いので、これが実用品の未出現の原因として推察
される。 本発明は後述する特定な有機バインダ、製造条
件を採択することによつて細多薄壁セル構造のハ
ニカム成型体の製品化に成功し、また、このハニ
カム成型体をオゾン分解用に適用した時にオゾン
ガスとの接触面積、通気抵抗及び機械的見地から
みた最適なセル占積率(開口率)の範囲を定立し
たのである。本発明に於ける別の特筆すべき点は
担持体内に担持されている活性炭粉粒は該担持体
の積極的多孔質化によつてその吸着面を露出的に
保持され、接触吸着能を喪失することがないこと
並びに担持体としては粘土鉱物のうち孔隙形成
性、コスト、市場入手性の上から有利な木節粘土
を採択したことである。本発明ハニカム成型体に
よれば450(セル個)/1平方インチの細多にして
薄壁セル構造が得られるのである。 以下、望ましい実施態様を図に採り、之を参照
しながら本発明を詳細に説明するに、第1図は本
発明活性炭ハニカム成型体の実施態様をその一部
拡大図と共に示す斜視図、第2図は本発明活性炭
ハニカム成型体の内部構造を模式的に示す説明図
である。本発明は、活性炭粉粒2と、該活性炭粉
粒2を多孔質体内に接合担持する木節粘土焼成担
持体1とより成り、該木節粘土焼成担持体1はガ
スの逸散によつて形成された微細な孔隙3を多数
備えて接合担持している上記活性炭2の吸着面と
オゾンとの接触を許容し、ハニカム成型体はオゾ
ンとの有効接触単位面積に於けるセル個数ほゞ
450個/1平方インチの細多セル構造をなしてそ
のセル占積率が60〜70%であるオゾン分解用活性
炭ハニカム成型体に関する。 このようなハニカム成型体は、活性炭粉粒2
と、焼成しうる木節粘土粉末とを混合し、結着力
及び滑性付与剤兼熱分解ガスによる孔隙形成用有
機バインダー即ち、ポリビニルアルコール及びメ
チルセルローズいづれか単独もしくは混合物を上
記混合粉末に加えて良く混練し、この混練物を、
第1図の如きハニカム状成型体とするためハニカ
ムダイから押出した後、所定厚みに輪切りにして
乾燥し、更に非酸化性雰囲気中で焼成(有機バイ
ンダーの分解温度以上の約1100℃で焼成)するこ
とによつて活性炭粉粒2…を多孔質体内に含む焼
成木節粘土担持体1を形成することにより得られ
るものであり、而してこのハニカム成型体の焼成
木節粘土担持体1は、上記木節粘土粉末が互いに
焼成して三次元方向に不規則に連なつて活性炭粉
粒2を体内に混在して下記の多孔質構造を維持し
つつ活性炭粉粒2を混合担持する。即ち、このよ
うな活性炭ハニカム成型体Aは、活性炭粉粒2を
接合担持する焼成木節粘土担持体1が強度が大で
熱劣化や経時変化が少なく、しかも後述の実施例
1における含水率の測定結果からも判るように熱
分解性有機バインダーであるポリビニルアルコー
ル、メチルセルローズの熱分解揮発ガスによる孔
隙3の多数により多孔性に極めて富んでいて活性
炭粉粒2の有効接触面を封鎖しない。従つて、オ
ゾンが内部までよく浸透し、活性炭粉粒2と充分
接触し得るので満足な活性を発揮する。有機バイ
ンダーとしてのポリビニルアルコール,メチルセ
ルローズの単独若しくは混合物は粘土の結着力を
高めると共に押出時の滑性を良好にして多細にし
て薄壁のハニカム構造を保証し焼成温度に至る間
に熱分解して活性炭粉粒2の吸着面を露出するも
のである。 以上の如き内部構造を有する本発明活性炭ハニ
カム成型体Aにあつては、焼成木節粘土担持体1
を得る木節粘土の占める割合を5〜90重量%(但
し、後述の有機バインダの適量を含んで)、活性
炭粉粒2の占める割合を95〜10重量%とするがよ
い。もし、木節粘土の割合が5重量%未満で活性
炭粉粒2が95重量%を超える場合には、木節粘土
が欠損だらけの不規則立体網に近い状態となり、
活性炭粉粒2を充分に接合担持し難くなるため、
成型体Aの機械的強度が著しく低下して小さな外
力によつても崩壊する惧れを生じ、逆に木節粘土
が90重量%を超え活性炭粉粒2が10重量%未満の
場合には活性炭粉粒2が木節粘土担持体1の構造
体の中に埋没してしまうため、オゾンの活性炭粉
粒2との接触性が低下して充分な活性即ち吸着特
性を発揮し難くなると共に、活性炭粉粒2の保有
量が少ないため可使時間もかなり短くなる等の弊
害を生じるからである。このように、本発明オゾ
ン分解用活性炭ハニカム成型体は、活性炭粉粒の
含有量が最大限90重量%と多量であり、且つその
殆どが有効に働くので、長時間の使用に充分耐え
ることができる。 尚、活性炭ハニカム成型体の強度と活性及び可
使時間とを比較衡量すれば、木節粘土が20〜70重
量%,活性炭粉粒2が80〜30重量%の範囲とする
のがより望ましく、この範囲内では、充分満足し
得る強度,活性,可使時間を有する成型体とな
る。 而して木節粘土を前述上限90重量%加えると木
節粘土による活性炭粉粒の結着力(粘結力)が細
多且つ薄壁のセル構造を押出すについてはなお不
足する、例えばセル個数とハニカム押出体の有効
接触単位面積とが、450個/1平方インチの如き
ハニカム構造では各セルは薄壁(0.10〜0.25mm)
となるので押出状態に於て十分な保形性が保証出
来ない。このため結着力を補充する意味で付加的
なバインダが必要となるが、、このバインダとし
ての条件は結着力付与の他押出材料の滑性を改善
し押出時にダイスの内外について材料の停溜を形
成しないようせねば薄壁なセル構造を円滑に押出
せない、これと共に木節粘土の焼成温度に於て熱
分解してガス化しないと活性炭粉粒2の有効吸着
面をソリツドな被覆で閉鎖してしまうので(所謂
呼吸出来なくなる)焼成に至る間に熱分解せねば
ならない。このような条件を満すバインダとして
はポリビニルアルコール及びメチルセルローズの
単独もしくは混合物が最適であることを発見し
た。これら有機バインダの配合量は適量、例えば
5〜20重量%とする。またPVAの熱分解温度は
250〜600゜、メチルセルローズのそれは200〜500゜
である。 活性炭粉粒2としては、市販の各種活性炭粉粒
がいずれも使用可能であるが、そのうち、水蒸気
賦活法による表面積800m2/g以上の比較的純度
の高いものは、活性が良いので、これは選択使用
するのが望ましい。亦、焼成担持体1を形成する
無機粉末としては、孔隙形成性、市場入手性、価
格、或は担持体1にあまり硬度が要求されないこ
と等を勘案して木節粘土が最適であり、木節粘土
粉末及び前記の活性炭粉粒は、混練性,取扱い
性,成型性、孔隙形成性等の観点から、100〜300
メツシユ程度の粒度を有するものが好適である。 叙上の如き本発明オゾン分解活性炭ハニカム成
型体は、既述したようにセラミツクス製造法と同
様の方法で容易に製造し得るものであるため、複
写機、航空機のオゾン排ガスの分解フイルターの
用途に供する。本発明者はこうした細多薄壁セル
構造をもつハニカム成型体をオゾン分解用に適合
させるには、セル占積率(開口率)が60〜70%が
必要条件であることを更に知悉した(理由下記)。 このようなセル占積率を持つハニカム状成型体
はオゾンとの接触性が良好で、通気抵抗が小さ
く、しかも大きい機械的強度を有するものであ
り、オゾン分解用として要求される諸要件を充分
に備えているからである。即ち60%より小さい場
合はオゾンとの接触性や通気抵抗に於て劣り、70
%を超えると構造上の機械的強度に不足するので
ある。従つて450個/1平方インチのハニカム構
造に於てはこのようなセル占積率が限定要件とな
る。 次に実施例を挙げて、本発明活性炭成型体を更
に具体的に説明する。 (実施例)以下の実施例での効果をより明確に
するため、板状成型体について3点曲げ強度及び
含水法による給水率の測定を行つた。即ち100メ
ツシユパスしたパーム活性炭粉粒,木節粘土、及
びPVAとメチルセルローズの混合物を、下記第
1表の割合で混練して5種類の原料組成物(イ)(ロ)(ハ)
(ニ)(ホ)を調整し、各組成物を油圧プレス(50t)に
よつて5mm×10mm×30mmの板状に加圧成型したの
ち乾燥した。次いで、これら板状成型物をH2
N2よりなる非酸化性雰囲気炉にて1100℃で2時
間焼成し、5種類の活性炭板状成型体を得た。か
くして得られた5種類の成型体について、3点曲
げ強度(スパン20mm)及び含水法による給水率の
側定を行なつた。その結果を第3図及び第4図に
示す。 この第3図を見ると、成型体の曲げ強度は、活
性炭粉粒2を接合担持する木節粘土の割合が増加
するにつれて加速度的に大きくなるが、木節粘土
が5重量%では1Kg/cm2と少々強度不足の惧れが
あり、従つて実用に耐え得る数Kg/cm2以上の曲げ
強度を付与するには、木節粘土を20重量%以上と
するのが望ましいことが判る。亦、第4図を見れ
ば、成型体の吸水量は木節粘土の増加に伴つて小
さくなるが、木節粘土が90重量%のものでも20%
以上の吸水率を示しており、この成型体が如何に
多孔性に富んでいるかが判る。
The present invention relates to a novel activated carbon honeycomb molded body for ozone decomposition, and more particularly to an activated carbon honeycomb molded body for ozone decomposition used as a filter for decomposing ozone emitted from aircraft, copying machines, etc. This article provides a historical explanation of the usage structure of activated carbon up until now. Activated carbon has long been widely used as an adsorbent for deodorization or decolorization, as a catalyst for ozone decomposition, or as a carrier for various catalysts. However, most of them are in the form of powder or pellets, and there are only a few molded bodies of a certain shape. In one of the latter activated carbon molded bodies, a mixture of activated carbon raw material powder such as charcoal or coal and a caking agent such as tar or pitch is pressure molded, dried at about 100℃, and then heated to 600℃ or less. Some products are carbonized at high temperatures and then activated by passing steam through them in an activation furnace. However, since this product uses pitch and tar, which are difficult to handle and can themselves become activated carbon through activation treatment, as a binder, it is difficult to apply various molding methods other than pressure molding, and furthermore, it is difficult to apply molding methods other than pressure molding. Since the treatment is carried out, it is difficult to fully activate the inside of the product if it has a complicated shape that makes it difficult for water vapor to pass through. Therefore, the reality is that this type of activated carbon molded body has no choice but to have a plate-like shape or a very simple shape similar to this, and it is difficult to obtain a variety of shapes suitable for various uses. In addition, as a different type of activated carbon molded body from the one mentioned above, there is one in which activated activated carbon powder is bound with an organic binder. However, this type of molded product cannot exhibit sufficient activity because the binder covers the surface of the activated carbon particles, and furthermore, the binder deteriorates due to heating, changes over time, etc., resulting in a decrease in strength. It has drawbacks and is of little practical use. Another type of activated carbon molded body is one in which activated carbon powder is coated on the surface of a ceramic base with a rubber-based or other organic binder. This molded product has higher activity and only a slight decrease in strength than the one bound with the organic binder described above, but since the base surface is coated with activated carbon powder, the amount of activated carbon powder retained is small, and However, they have the disadvantage of losing their activity after relatively short use. In addition, products similar to the above-mentioned activated carbon molded products, such as those made by layering activated carbon fiber paper in a cardboard shape, have been developed for applications such as filters, but since they are made of paper, they do not change shape due to moisture. The disadvantage is that the strength is not comparable to the above-mentioned activated carbon molded product, and the pot life is not long because the activated carbon fiber content is not large. In light of the above problems, an activated carbon molded body was proposed in which activated carbon powder particles were bonded and supported in an inorganic support such as mountain skin, bentonite, clay minerals other than bentonite, and silicates, and then fired. It seems that no product that can guarantee sufficient practicality has yet appeared on the market. On the other hand, in the field of application of activated carbon molded bodies, more compactness and high performance functionality are required in the structure of the molded body, and when taking a honeycomb molded body as an example, the number of cells in the effective contact unit area is large. In addition, it is desirable that each cell wall is extremely thin (0.10 to 0.25 mm) and has appropriate mechanical strength.For example, the number of cells is 300 cells/1 square inch or more, preferably 400 cells/1 square inch, or Something that exceeds that requirement has been proposed as something that can meet the above requirements. By the way, based on general extrusion technology, it is 300
It is a thin structure with a maximum size of 1 square inch. However, it has been extremely difficult to extrude and mold such a multi-cell structure (thin-walled cell structure) using only the above-mentioned inorganic carrier. The reason for this is that the binding force of the carrier and the lubricity of the molding material are insufficient, and the cells collapse or deform to such an extent that their shape cannot be maintained after extrusion. Even if organic binders such as starch, funori, and polyether resin are used to prevent this, the required properties are still not satisfied due to insufficient binding strength and/or lack of slipperiness. This is assumed to be the cause of its appearance. The present invention has succeeded in commercializing a honeycomb molded body with a fine and thin-walled cell structure by adopting a specific organic binder and manufacturing conditions described below, and also when this honeycomb molded body is applied to ozone decomposition. The optimal range of cell space ratio (opening ratio) was established from the viewpoint of contact area with ozone gas, ventilation resistance, and mechanical viewpoint. Another noteworthy point in the present invention is that the activated carbon particles supported in the carrier have their adsorption surfaces exposed by actively making the carrier porous, and lose their catalytic adsorption ability. In addition, Kibushi clay, which is advantageous among clay minerals in terms of pore-forming properties, cost, and market availability, was selected as the carrier. According to the honeycomb molded body of the present invention, a thin-walled cell structure with a cell count of 450 (cells)/1 square inch can be obtained. Hereinafter, the present invention will be described in detail with reference to the drawings showing preferred embodiments. Fig. 1 is a perspective view showing an embodiment of the activated carbon honeycomb molded body of the present invention together with a partially enlarged view thereof; The figure is an explanatory view schematically showing the internal structure of the activated carbon honeycomb molded body of the present invention. The present invention comprises activated carbon powder 2 and a fired Kibushi clay carrier 1 that supports the activated carbon powder 2 in a porous body. The honeycomb molded body has a large number of fine pores 3 formed to allow contact between the adsorption surface of the bonded activated carbon 2 and ozone, and the honeycomb molded body has approximately the number of cells per unit area of effective contact with ozone.
This invention relates to an activated carbon honeycomb molded body for ozone decomposition, which has a multi-cell structure of 450 cells per square inch and has a cell space factor of 60 to 70%. Such a honeycomb molded body is made of activated carbon powder 2
and sinterable Kibushi clay powder, and an organic binder that serves as a binding force and lubricating agent and for forming pores by pyrolysis gas, that is, polyvinyl alcohol and methyl cellulose, either alone or in combination, may be added to the above mixed powder. Knead this kneaded material,
To obtain a honeycomb-shaped molded body as shown in Figure 1, it is extruded from a honeycomb die, cut into rounds of a predetermined thickness, dried, and then fired in a non-oxidizing atmosphere (fired at approximately 1100°C, which is above the decomposition temperature of the organic binder). This is obtained by forming a fired Kibushi clay carrier 1 containing activated carbon powder particles 2 in a porous body, and the fired Kibushi clay carrier 1 of this honeycomb molded body is The above-mentioned Kibushi clay powders are fired together and irregularly connected in a three-dimensional direction, so that the activated carbon powder particles 2 are intermingled in the body, and the activated carbon powder particles 2 are mixed and supported while maintaining the porous structure described below. That is, in such an activated carbon honeycomb molded body A, the fired Kibushi clay carrier 1 that supports the activated carbon powder particles 2 has a high strength and has little thermal deterioration or change over time, and the water content is lower than that in Example 1, which will be described later. As can be seen from the measurement results, it is extremely porous due to the large number of pores 3 created by the thermally decomposed volatile gases of polyvinyl alcohol and methyl cellulose, which are thermally decomposable organic binders, and does not block the effective contact surface of the activated carbon particles 2. Therefore, ozone can penetrate well into the inside and come into sufficient contact with the activated carbon powder particles 2, thereby exhibiting satisfactory activity. Polyvinyl alcohol or methyl cellulose, singly or in combination, as an organic binder increases the binding strength of the clay, improves the lubricity during extrusion, ensures a fine, thin-walled honeycomb structure, and prevents thermal decomposition before reaching the firing temperature. This exposes the adsorption surface of the activated carbon powder particles 2. In the case of the activated carbon honeycomb molded body A of the present invention having the internal structure as described above, the fired Kibushi clay carrier 1
It is preferable that the proportion of Kibushi clay to obtain the desired value is 5 to 90% by weight (including an appropriate amount of the organic binder described below), and the proportion of activated carbon powder 2 to be 95 to 10% by weight. If the proportion of Kibushi clay is less than 5% by weight and the activated carbon powder 2 exceeds 95% by weight, the Kibushi clay will be in a state close to an irregular three-dimensional network full of defects,
Since it becomes difficult to sufficiently bond and support the activated carbon powder particles 2,
The mechanical strength of the molded body A is significantly reduced and there is a risk of it collapsing even with a small external force.On the other hand, if the Kibushi clay exceeds 90% by weight and the activated carbon powder 2 accounts for less than 10% by weight, the activated carbon Since the powder particles 2 are buried in the structure of the Kibushi clay carrier 1, the contact of ozone with the activated carbon powder particles 2 is reduced, making it difficult to exhibit sufficient activity, that is, adsorption properties, and the activated carbon This is because the amount of powder particles 2 held is small, causing disadvantages such as a considerably shortened pot life. As described above, the activated carbon honeycomb molded body for ozone decomposition of the present invention has a large content of activated carbon powder, as high as 90% by weight, and most of it works effectively, so it can withstand long-term use. can. In addition, when comparing and weighing the strength, activity, and pot life of the activated carbon honeycomb molded body, it is more desirable that the Kibushi clay be in the range of 20 to 70% by weight and the activated carbon powder 2 be in the range of 80 to 30% by weight. Within this range, the molded product will have sufficiently satisfactory strength, activity, and pot life. However, if Kibushi clay is added at the above-mentioned upper limit of 90% by weight, the binding force (cohesive force) of activated carbon powder particles due to Kibushi clay is still insufficient to extrude a fine and thin-walled cell structure, for example, the number of cells decreases. In a honeycomb structure where the effective contact unit area of the honeycomb extrusion is 450 cells/1 square inch, each cell has a thin wall (0.10 to 0.25 mm).
Therefore, sufficient shape retention cannot be guaranteed in the extruded state. For this reason, an additional binder is required to supplement the binding force, but in addition to providing binding force, this binder improves the slipperiness of the extruded material and prevents material from pooling inside and outside the die during extrusion. If this is not prevented, the thin-walled cell structure cannot be extruded smoothly, and at the same time, if it is not thermally decomposed and gasified at the firing temperature of Kibushi clay, the effective adsorption surface of the activated carbon powder particles 2 must be closed with a solid coating. Therefore, it must be thermally decomposed before firing (making it impossible to breathe). It has been discovered that polyvinyl alcohol and methyl cellulose, alone or in combination, are optimal as binders that meet these conditions. The blending amount of these organic binders is an appropriate amount, for example, 5 to 20% by weight. Also, the thermal decomposition temperature of PVA is
250 to 600°, and that of methylcellulose is 200 to 500°. As the activated carbon powder 2, any of various commercially available activated carbon powders can be used, but among them, those with a relatively high purity with a surface area of 800 m 2 /g or more obtained by the steam activation method have good activity. It is desirable to use selectively. In addition, Kibushi clay is most suitable as the inorganic powder for forming the fired support 1, taking into consideration its pore-forming property, market availability, price, and the fact that the support 1 is not required to have much hardness. From the viewpoints of kneading, handling, moldability, pore-forming properties, etc., the compacted clay powder and the activated carbon powder have a particle size of 100 to 300.
Preferably, the particles have a mesh-like particle size. The ozone-decomposing activated carbon honeycomb molded body of the present invention as described above can be easily manufactured by a method similar to the ceramic manufacturing method as described above, and therefore can be used in ozone exhaust gas decomposition filters for copying machines and aircraft. provide The present inventor further learned that in order to make a honeycomb molded body having such a thin-walled cell structure suitable for ozone decomposition, a cell space ratio (opening ratio) of 60 to 70% is a necessary condition ( Reason below). A honeycomb-shaped molded body with such a cell space factor has good contact with ozone, low ventilation resistance, and high mechanical strength, and satisfies various requirements for ozone decomposition. This is because they are preparing for In other words, if it is less than 60%, the contact with ozone and ventilation resistance will be poor;
%, the structural mechanical strength is insufficient. Therefore, in a honeycomb structure of 450 cells per square inch, such a cell space factor is a limiting requirement. Next, the activated carbon molded article of the present invention will be described in more detail with reference to Examples. (Example) In order to clarify the effects in the following examples, the three-point bending strength and water supply rate of a plate-shaped molded body were measured by the water absorption method. That is, 100-mesh-passed palm activated carbon powder, Kibushi clay, and a mixture of PVA and methyl cellulose were kneaded in the proportions shown in Table 1 below to produce five types of raw material compositions (a), (b), and (c).
(d) and (e) were prepared, each composition was pressure-molded into a plate shape of 5 mm x 10 mm x 30 mm using a hydraulic press (50 tons), and then dried. Next, these plate-shaped molded products were heated with H2 .
It was fired at 1100° C. for 2 hours in a non-oxidizing atmosphere furnace containing N 2 to obtain five types of activated carbon plate-shaped molded bodies. For the five types of molded bodies thus obtained, three-point bending strength (span 20 mm) and water supply rate were determined by the water absorption method. The results are shown in FIGS. 3 and 4. Looking at this Figure 3, the bending strength of the molded body increases at an accelerating rate as the proportion of Kibushi clay that binds and supports activated carbon powder particles 2 increases, but when Kibushi clay is 5% by weight, it is 1 Kg/cm 2 , which may be a little insufficient in strength. Therefore, in order to provide a bending strength of several kg/cm 2 or more that can withstand practical use, it is found that it is desirable to use Kibushi clay in an amount of 20% by weight or more. Furthermore, if you look at Figure 4, the water absorption of the molded body decreases as the amount of Kibushi clay increases, but even if the amount of Kibushi clay is 90% by weight, it will still absorb 20% of the water.
The water absorption rate shown above shows how highly porous this molded body is.

【表】 (実施例 1) 前記実験例で調整した原料組成物(ロ)(ハ)(ニ)(ホ)(

し、成型性を良くするため更に適量の水を加えて
ある)をそれぞれハニカムダイより押出し、乾燥
後、非酸化性雰囲気炉にて1100℃で3時間焼成し
て、1平方インチ当りの方形セルの個数が450個、
寸法が直径25mm×長さ22mmの4種類の活性炭ハニ
カム成型体を得た。 かくして得られた成型体のうち、ロ,ハ,ニの
3種類について、次の条件下で吸着試験を行なつ
た。 (条件) 成型体ロ,ハ,ニをそれぞれ2個重ね、これに
対して、スチレンモノマーを5000ppm以上となし
た空気−スチレン混合ガスを1.26/minの流量
で通過させ、経時的な吸着重量増加を側定する。 その結果を第5図に示す。 更に、成型体ロ及びホについては、空気−スチ
レン混合ガスの流量を2/minに変えて同様の
吸着試験を行なつた。その結果を第6図に示す。
比較のために、活性炭粉粒をコージライト系ハニ
カム構造体の表面にコーテイングした同形,同寸
の従来品についても同様の吸着試験を行ない、そ
の結果を第6図に併せて示した。 第5図を見れば、木節粘土の割合が小さいもの
ほど吸着重量増加が大きく、優れた吸着能を有す
ることが判るが、木節粘土が50重量%の成型体ハ
と、70重量%の成型体ニとはそれほど差がなく、
従つて木節粘土70重量%の成型体ニでも充分な性
能を発揮し得ることが判る。 亦、第6図を見れば、木節粘土30重量%の成型
体ロは、従来のハニカム構造体に塗布したものに
比して4乃至5倍の吸着能を示し、木節粘土90重
量%を成型体ホは、従来品とほぼ同様の吸着能を
示しており、ここより本発明のハニカム成型体が
如何に活性の大きい高性能品であるかが判る。 (実施例 2) 実施例1で得たハニカム成型体ロ(活性炭粉粒
70重量%、木節粘土30重量%)に、n−ブチルメ
タアクリレートを1ppm含む空気を0.5m/secの
流速で通過させ、該成型体ロの出口におけるn−
ブチルメタアクリレート濃度Cを経時的に測定す
ることにより可使時間を調べた。その結果を第7
図に示す。 比較のために、コージライト系担持体の表面に
活性炭粉粒をコーテイングした従来のハニカム成
型体チ、及び活性炭繊維紙をダンボール状に成層
した従来のフイルターリについても同条件で可使
時間を調べ、その結果を第8図に併せて示した。 第7図を見れば、C/Co値が0.5となる、つま
り活性炭ハニカム成型体の入口におけるn−ブチ
ルメタアクリレートの濃度Co(1ppm)に対して
出口のn−ブチルメタアクリレート濃度Cが半分
になるのに要する時間は、本発明のハニカム成型
体では約400時間、従来のハニカム成型体チでは
約25時間、従来の活性炭繊維紙成層フイルターリ
では約240時間であり、このことから、本発明活
性炭ハニカム成型体ロの可使時間が如何に長いか
が判る。 次に本発明品のオゾン分解性能を従来品との比
較に於て第8図に示す。カーヴロは既述の本発明
実施例品、同ヌ,ルは公知の活性炭繊維布ヲは公
知の粒状活性炭を夫々示す。同図から明らかなよ
うに、本発明品によると排出オゾン濃度は時間の
経過によつても殆んど変らない、即ちオゾン分解
性能はほゞ一定であるのに対し、従来品ヲ,ル,
ヌはいづれも時間の経過によつて排出オゾン濃度
が高くなること、即ちオゾン分解能が低減するこ
とを示し、この傾向の他に排出オゾン濃度のポテ
ンシヤル量値も遥かに高いことが判る。 第9図にはハニカム成型体のセル個数がハニカ
ム成型体の前後のオゾン濃度に如何にかゝわり合
うかを示す。直線ロは実施例(ロ)のセル個数450個
製品、直線ワは実施例(ロ)品と全く同じ構成でセル
個数を300個に代えた製品を夫々示す。図から、
ハニカム成型体前のオゾン濃度(フイルタ入口濃
度)と同後のオゾン濃度(フイルタ出口濃度)と
はセル個数に関係して直線的比例関係を維持して
いる、つまり入口濃度が判れば出口濃度も比例的
に判明しオゾン除去率は一定であることが明らか
となり、このうち、セル個数450個のものは同300
個(通常の押出技術で到達出来る上限)のものよ
りオゾン分解能が優れていることが判明してい
る。 以上の説明から理解できるように、本発明オゾ
ン分解用活性炭ハニカム成型体は、従来技術では
実現のなかつた所の、有効接触単位面積当りのセ
ル個数が450/1平方インチの細多(薄壁)のセ
ル構造を有するハニカム成型体で、オゾンとの接
触範域の広い高性能の分解能を備えたものであ
り、活性炭粉粒を焼成木節粘土担持体によつて接
合担持させるように構成したため、活性炭粉粒の
保有量が多く、従つて可使時間(耐用時間)の大
巾な増加が可能となることはもちろん、有機バイ
ンダーの分解ガスによつて形成される孔隙を多数
備えて多孔性に富んでいるため活性炭粉粒とオゾ
ンとの接触性が良好で優れた活性を発揮する。更
にハニカムのセル占積率を60〜70%とすることに
より、ハニカム成型体のガスとの接触効率を大き
くとり且つ通気抵抗を小となし、しかも機械的強
度も十分にとれる…等の優れた効果がある。
[Table] (Example 1) Raw material compositions (B) (C) (D) (E) (
(However, an appropriate amount of water was added to improve moldability) were extruded through a honeycomb die, dried, and fired at 1100°C for 3 hours in a non-oxidizing atmosphere furnace to form square cells per square inch. The number of pieces is 450,
Four types of activated carbon honeycomb molded bodies having dimensions of 25 mm in diameter and 22 mm in length were obtained. Of the molded bodies thus obtained, three types, B, C, and D, were subjected to an adsorption test under the following conditions. (Conditions) Two molded bodies B, C, and D are stacked, and an air-styrene mixed gas containing styrene monomer of 5000 ppm or more is passed through them at a flow rate of 1.26/min to increase the adsorbed weight over time. Determine. The results are shown in FIG. Furthermore, for molded bodies B and E, a similar adsorption test was conducted by changing the flow rate of the air-styrene mixed gas to 2/min. The results are shown in FIG.
For comparison, a similar adsorption test was also conducted on a conventional product of the same shape and size in which activated carbon powder was coated on the surface of a cordierite honeycomb structure, and the results are also shown in FIG. Looking at Figure 5, it can be seen that the smaller the proportion of Kibushi clay is, the larger the increase in adsorption weight is, and the better the adsorption ability is. There is not much difference from molded body 2,
Therefore, it can be seen that even a molded body containing 70% by weight of Kibushi clay can exhibit sufficient performance. Moreover, if you look at Figure 6, the molded body RO containing 30% by weight of Kibushi clay exhibits 4 to 5 times the adsorption capacity compared to that applied to a conventional honeycomb structure, and the adsorption capacity of the molded body containing 30% by weight of Kibushi clay is 4 to 5 times higher than that applied to a conventional honeycomb structure. The molded body E shows almost the same adsorption capacity as the conventional product, which shows how highly active and high-performance the honeycomb molded body of the present invention is. (Example 2) Honeycomb molded body obtained in Example 1 (activated carbon powder)
Air containing 1 ppm of n-butyl methacrylate was passed through 70% by weight of Kibushi clay and 30% by weight of Kibushi clay at a flow rate of 0.5 m/sec, and the n-
The pot life was investigated by measuring the butyl methacrylate concentration C over time. The results are shown in the 7th section.
As shown in the figure. For comparison, we also investigated the pot life under the same conditions for a conventional honeycomb molded body in which activated carbon powder was coated on the surface of a cordierite carrier, and a conventional filter in which activated carbon fiber paper was layered in a cardboard shape. The results are also shown in FIG. Looking at Figure 7, the C/Co value is 0.5, that is, the n-butyl methacrylate concentration C at the outlet is half of the n-butyl methacrylate concentration Co (1 ppm) at the inlet of the activated carbon honeycomb molded body. It takes about 400 hours for the honeycomb molded body of the present invention, about 25 hours for the conventional honeycomb molded body, and about 240 hours for the conventional activated carbon fiber paper laminated filter. It can be seen how long the pot life of the activated carbon honeycomb molded body is. Next, the ozone decomposition performance of the product of the present invention is shown in FIG. 8 in comparison with a conventional product. "Cavro" indicates a product according to an embodiment of the present invention, "N" indicates a known activated carbon fiber cloth, and "Kavro" indicates a known granular activated carbon, respectively. As is clear from the figure, with the product of the present invention, the emitted ozone concentration hardly changes over time, that is, the ozone decomposition performance is almost constant, whereas with the conventional product,
Both of the results show that the emitted ozone concentration increases with the passage of time, that is, the ozone decomposition ability decreases, and in addition to this tendency, it can be seen that the potential value of the emitted ozone concentration is also much higher. FIG. 9 shows how the number of cells in a honeycomb molded body varies with the ozone concentration before and after the honeycomb molded body. Straight line B shows a product with 450 cells in Example (B), and straight line Wa shows a product with exactly the same configuration as Example (B) but with 300 cells. From the figure,
The ozone concentration before the honeycomb molded body (filter inlet concentration) and the ozone concentration after the same (filter outlet concentration) maintain a linear proportional relationship in relation to the number of cells.In other words, if the inlet concentration is known, the outlet concentration can also be determined. It was found that the ozone removal rate was found to be proportional, and that the ozone removal rate was constant.
It has been found that the ozone decomposition ability is superior to that of the conventional extrusion technology. As can be understood from the above description, the activated carbon honeycomb molded body for ozone decomposition of the present invention has a thin-walled (thin-walled) cell count of 450/1 square inch, which has not been realized with the prior art. ) It is a honeycomb molded body with a cellular structure, and has high resolution with a wide range of contact with ozone.It is structured so that activated carbon powder particles are bonded and supported by a fired Kibushi clay carrier. , it has a large amount of activated carbon powder, which makes it possible to greatly increase the pot life (service life), and it also has a large number of pores formed by the decomposition gas of the organic binder, making it porous. Activated carbon powder has good contact with ozone and exhibits excellent activity. Furthermore, by setting the cell space factor of the honeycomb to 60 to 70%, the honeycomb molded body has excellent contact efficiency with gas, low ventilation resistance, and sufficient mechanical strength. effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のオゾン分解用活性炭ハニカム
成型体の実施態様をその一部拡大図と共に示す傾
斜図、第2図は同ハニカム成型体の内部構造を模
式的に示す説明図、第3図及び第4図はそれぞれ
本発明実験例成型体の曲げ強度及び吸水率を示す
グラフ、第5図は本発明オゾン分解用活性炭ハニ
カム成型体の吸着性能を示すグラフ、第6図は同
ハニカム成型体と従来品との吸着性能比較グラ
フ、第7図は同ハニカム成型体と従来品との可使
時間比較グラフであり、第8図は本発明ハニカム
成型体のオゾン分解性能を従来品との比較に於て
示すグラフ、第9図はセル個数とオゾン分解性能
との関係を示すグラフである。 符号の説明、1……焼成木節粘土担持体、2…
…活性炭粉粒、A……本発明のオゾン分解用活性
炭ハニカム成型体、a……セル。
FIG. 1 is a tilted view showing an embodiment of the activated carbon honeycomb molded body for ozone decomposition of the present invention together with a partially enlarged view, FIG. 2 is an explanatory diagram schematically showing the internal structure of the honeycomb molded body, and FIG. 3 and Fig. 4 are graphs showing the bending strength and water absorption rate of the molded body of an experimental example of the present invention, Fig. 5 is a graph showing the adsorption performance of the activated carbon honeycomb molded body for ozone decomposition of the present invention, and Fig. 6 is a graph showing the same honeycomb molded body. Figure 7 is a comparison graph of the pot life of the same honeycomb molded body and a conventional product, and Figure 8 is a comparison graph of the ozone decomposition performance of the honeycomb molded body of the present invention with a conventional product. The graph shown in FIG. 9 is a graph showing the relationship between the number of cells and ozone decomposition performance. Explanation of symbols, 1...Calcined Kibushi clay carrier, 2...
...Activated carbon powder, A...Activated carbon honeycomb molded body for ozone decomposition of the present invention, a...Cell.

Claims (1)

【特許請求の範囲】[Claims] 1 活性炭粉粒と、該活性炭粉粒を多孔質体内に
接合担持する木節粘土焼成担持体とより成り、該
木節粘土焼成担持体はガスの逸散によつて形成さ
れた微細な孔隙を多数備えて接合担持している上
記活性炭の吸着面とオゾンとの接触を許容し、ハ
ニカム成形体はオゾンとの有効接触単位面積に於
けるセル個数がほゞ450個/1平方インチの細多
セル構造をなしてそのセル占積率が60〜70%であ
るオゾン分解用活性炭ハニカム成型体。
1 Consists of activated carbon powder and a fired Kibushi clay carrier that supports the activated carbon powder in a porous body. The honeycomb molded body has a small number of cells of approximately 450 cells/1 square inch in the unit area of effective contact with ozone, allowing contact between the adsorption surface of the activated carbon and the adsorption surface of the activated carbon that is bonded and supported in large numbers. An activated carbon honeycomb molded body for ozone decomposition that has a cell structure and a cell space factor of 60 to 70%.
JP55173500A 1980-12-08 1980-12-08 Molded body of activated carbon Granted JPS5795816A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP55173500A JPS5795816A (en) 1980-12-08 1980-12-08 Molded body of activated carbon
US06/545,074 US4518704A (en) 1980-12-08 1983-10-24 Activated carbon formed body and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55173500A JPS5795816A (en) 1980-12-08 1980-12-08 Molded body of activated carbon

Publications (2)

Publication Number Publication Date
JPS5795816A JPS5795816A (en) 1982-06-14
JPH0260602B2 true JPH0260602B2 (en) 1990-12-17

Family

ID=15961663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55173500A Granted JPS5795816A (en) 1980-12-08 1980-12-08 Molded body of activated carbon

Country Status (1)

Country Link
JP (1) JPS5795816A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD242326A3 (en) * 1983-05-27 1987-01-28 Reiner Kinder PROCESS FOR THE PRODUCTION OF HYDROPHOBIC ADSORBENTS
JPS6090808A (en) * 1983-10-25 1985-05-22 Kobe Steel Ltd Molded body of honeycomb activated carbon for decomposing ozone
JPH075286B2 (en) * 1986-03-06 1995-01-25 株式会社神戸製鋼所 Activated carbon molding for ozone decomposition
JP4851721B2 (en) * 2005-03-01 2012-01-11 太平洋セメント株式会社 Manufacturing method of exhaust gas treatment material
JP2007117863A (en) * 2005-10-27 2007-05-17 Kyocera Corp Honeycomb structure and canister made from the same
JP4817367B2 (en) * 2006-03-03 2011-11-16 財団法人北九州産業学術推進機構 Method for producing charcoal-containing porous glass ceramics having fine pores
US8691722B2 (en) 2008-07-03 2014-04-08 Corning Incorporated Sorbent comprising activated carbon particles, sulfur and metal catalyst
WO2012066656A1 (en) * 2010-11-17 2012-05-24 日本たばこ産業株式会社 Adsorbent-supported granules and process for production thereof, cigarette filter, and cigarette
CN113952929A (en) * 2021-11-24 2022-01-21 清华大学 Shaped activated carbon, method for the production thereof and use thereof

Also Published As

Publication number Publication date
JPS5795816A (en) 1982-06-14

Similar Documents

Publication Publication Date Title
US4518704A (en) Activated carbon formed body and method of producing the same
US5389325A (en) Activated carbon bodies having phenolic resin binder
EP1877180B1 (en) Method for passing nitrobenzene through an activated carbon monolith catalyst to form aniline
US4367166A (en) Steam reforming catalyst and a method of preparing the same
EP0745416B1 (en) Device for removal of contaminants from fluid streams
US20190275496A1 (en) Activated carbon filter articles and methods of making and their use
US20050126395A1 (en) Filter element
JPS61212331A (en) Preparation of monolithic catalyst carrier having integratedhigh surface area phase
JPS60255671A (en) High strength porous silicon carbide sintered body and manufacture
CN107129318B (en) Method for manufacturing honeycomb structure
WO2008085571A2 (en) Carbon black monolith, carbon black monolith catalyst, methods for making same, and uses thereof
US4617060A (en) Silica catalyst supports
JPH0260602B2 (en)
CN105683090A (en) Catalytic activated carbon structures and methods of use and manufacture
US4937394A (en) Silica catalyst supports for hydration of ethylene to ethanol
JPH02282442A (en) Aluminide structure
US5391533A (en) Catalyst system for producing chlorine dioxide
JPH0232003B2 (en)
US20080210090A1 (en) Extruded Porous Ceramic Fuel Cell Reformer Cleanup Substrate
JP3125808B2 (en) Activated carbon honeycomb structure and manufacturing method thereof
JPS61127682A (en) Honeycomb_form silica gel formed body
JPS60264365A (en) Porous silicon carbide sintered body and manufacture
JPS61138513A (en) Preparation of cleaning filter for collecting fine particle
JPH06116059A (en) Production of ceramic honeycomb
CN113332810B (en) Method for manufacturing honeycomb filter