JPH0260455A - Superconducting shielded stator of dc machine - Google Patents
Superconducting shielded stator of dc machineInfo
- Publication number
- JPH0260455A JPH0260455A JP63208401A JP20840188A JPH0260455A JP H0260455 A JPH0260455 A JP H0260455A JP 63208401 A JP63208401 A JP 63208401A JP 20840188 A JP20840188 A JP 20840188A JP H0260455 A JPH0260455 A JP H0260455A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- commutator
- pole
- winding
- stator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 claims abstract description 52
- 238000004804 winding Methods 0.000 claims abstract description 49
- 239000000463 material Substances 0.000 claims abstract description 26
- 230000002093 peripheral effect Effects 0.000 claims abstract description 7
- 238000009415 formwork Methods 0.000 claims description 11
- 239000007769 metal material Substances 0.000 claims description 6
- 239000011810 insulating material Substances 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 3
- 239000000758 substrate Substances 0.000 claims description 3
- 230000004907 flux Effects 0.000 abstract description 20
- 239000003507 refrigerant Substances 0.000 abstract description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 12
- 239000007788 liquid Substances 0.000 abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 6
- 238000001816 cooling Methods 0.000 abstract description 4
- 238000002347 injection Methods 0.000 abstract description 4
- 239000007924 injection Substances 0.000 abstract description 4
- 239000002184 metal Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 230000006698 induction Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000005292 diamagnetic effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductive Dynamoelectric Machines (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は直流機の固定子に係り、特に、主磁極。[Detailed description of the invention] [Industrial application field] The present invention relates to a stator for a DC machine, and particularly to a main pole.
補極の界磁巻線や補極巻線の磁気シールドに関する。It relates to the field winding of a commutating pole and the magnetic shielding of the commutating pole winding.
従来、回転電機固定イの磁気シールドは、例えば、米国
特許第3772543号に記載のように、固定子を形成
している固定子鉄心の裏部や端部の磁気シールドに関す
るものはあるが、直流機の主磁極や補極のような固定子
の突極磁極周部の漏洩磁束は考慮されていなかった。Conventionally, magnetic shielding for fixed rotating electric machines includes magnetic shielding for the back and ends of the stator core forming the stator, as described in U.S. Pat. No. 3,772,543, for example, but for direct current The leakage magnetic flux around the salient magnetic poles of the stator, such as the machine's main magnetic pole and interpolation, was not considered.
従来、固定子の磁気シールドは、電源容量の増加に伴う
電機子巻線の電流増加と共に、漏れ磁束が増太し、電流
変化がある場合固定子鉄心周部に渦電流が発生して鉄損
を増加させていた。この防止対策として、固定子鉄心の
裏部、端部等に非磁性板を配設して磁気シールを図って
いたが、交通機器電源として汎用性の高い直流機では考
慮がされておらず、容量増加に伴って磁極間の漏洩磁束
が増太し、電力損失の増加と、容量の割に大形化になる
問題があった。Conventionally, stator magnetic shielding has been affected by leakage magnetic flux, which increases as the current in the armature winding increases due to an increase in power supply capacity, and when there is a change in current, eddy currents occur around the stator core, resulting in iron loss. was increasing. As a preventive measure, non-magnetic plates were installed on the back and ends of the stator core to create a magnetic seal, but this was not taken into consideration in DC machines, which are highly versatile as power sources for transportation equipment. As the capacity increases, the leakage magnetic flux between the magnetic poles increases, leading to problems such as an increase in power loss and an increase in size relative to the capacity.
本発明の目的は、磁極間の漏洩磁束を遮蔽して磁束の有
効利用を図り、小型軽量化の図れる直流機の超電導シー
ルド固定子を提供することにある。An object of the present invention is to provide a superconducting shield stator for a DC machine that can be made smaller and lighter by shielding magnetic flux leakage between magnetic poles and effectively utilizing the magnetic flux.
上記「1的は、固定子を構成している固定子鉄心内周部
の界磁巻線と補極巻線をもつ磁極と補極の間に、固定子
鉄心の内周面から界磁巻線、及び、補極巻線の内周端面
の近傍まで突きでた超電導遮蔽突起を、または、主磁極
の界磁巻線ど補極の補極巻線周部を、非磁性金属材、或
いは、絶縁材の型枠に超電導物質を埋設した超電導遮蔽
枠て包囲配設し、かつ、超電導遮蔽突起、超電導遮蔽枠
に、液体窒素などの冷媒貯槽を設け、液体窒素で冷却す
ることにより達成される。``First, the field winding is placed between the magnetic poles and the commutating poles, which have field windings and commutating pole windings on the inner circumferential part of the stator core that constitutes the stator. The wire and the superconducting shield protrusion protruding to the vicinity of the inner circumferential end face of the commutator winding, or the field winding of the main pole or the circumferential part of the commutator coil of the commutator, are made of non-magnetic metal material or This is achieved by enclosing a superconducting shielding frame in which a superconducting material is embedded in an insulating material formwork, and providing a refrigerant storage tank such as liquid nitrogen in the superconducting shielding protrusion and the superconducting shielding frame, and cooling with liquid nitrogen. Ru.
このように固定子鉄心内周部の主磁極と補極の間に配設
した超電導遮蔽突起、或いは、主磁極。In this way, the superconducting shielding protrusion or main pole is arranged between the main pole and the commutating pole on the inner circumference of the stator core.
補極を包囲する超電導遮蔽枠は、超電導物質を固定して
いる遮蔽突起内や遮蔽枠の内部に冷媒貯槽管を設け、超
電汚物質を液体窒素で直接、あるいは、間接的に冷却す
ることにより、遮蔽突起を被覆している超電導物質や遮
蔽枠に埋設した超電導物質は電気抵抗零の超電導状態に
なり、超電導物質特有の外部磁界を反射させる完全反磁
性を維持する。この完全反磁性により、界磁巻線や補極
巻線の漏洩磁束は完全に遮蔽される。The superconducting shielding frame that surrounds the interpolation is provided with a refrigerant storage tank pipe inside the shielding protrusion that fixes the superconducting material or inside the shielding frame, and the superconducting material is cooled directly or indirectly with liquid nitrogen. As a result, the superconducting material covering the shielding protrusion and the superconducting material embedded in the shielding frame enters a superconducting state with zero electrical resistance, and maintains the perfect diamagnetism that reflects external magnetic fields unique to superconducting materials. Due to this complete diamagnetism, leakage magnetic flux from the field winding and the commutator winding is completely shielded.
以下、本発明の一実施例を図に沿って詳細に説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.
第1図、第2図において、固定子1は、固定子鉄心2と
、界磁巻線3を備えた主磁極4゜補極巻線5を備えた補
極6で構成されている。そして、界磁巻線3と補極巻線
5を設けた主磁極4と補極6の間の固定子鉄心2の内周
部に、固定子鉄心2と一体に遮蔽突起7を設け、遮蔽突
起7の周部に固定凹部を設け、固定凹部と一体に超電導
物質で被覆して超電導遮蔽板8を形成している。In FIGS. 1 and 2, a stator 1 is composed of a stator core 2, a main pole 4° having a field winding 3, and a commutator 6 having a commutator winding 5. A shielding protrusion 7 is provided integrally with the stator core 2 on the inner periphery of the stator core 2 between the main pole 4 and the commutator pole 6 on which the field winding 3 and the commutator winding 5 are provided. A fixed recess is provided around the protrusion 7, and the fixed recess is integrally coated with a superconducting material to form a superconducting shielding plate 8.
超電導遮蔽板8の内部に冷媒貯槽管9を設け、その両端
部に注入弁]−0と安全弁11を備えた冷媒貯槽12a
、12bが配設されている。このように構成された固定
子1の主磁極4.補極6から一定間隙を得て回転子13
が配設されている。A refrigerant storage tank 12a is provided inside the superconducting shielding plate 8, and has an injection valve ]-0 and a safety valve 11 at both ends thereof.
, 12b are arranged. The main magnetic pole 4 of the stator 1 configured in this way. A fixed gap is obtained from the commutating pole 6, and the rotor 13
is installed.
このように構成された超電導遮蔽板8と冷媒貯槽12a
、12bを備えた固定子]は、冷媒貯槽1.2a、12
bから冷媒貯槽管9に冷媒、(例えば、液体窒素)を注
入することにより、固定子鉄心2と、超電導遮蔽板8は
冷却され、固定子鉄心2の冷却と共に超電導遮蔽板8の
超電導物質は電気抵抗零の超電導状態になり、超電導物
質特有の外部磁界を反射させる完全反磁性を維持するよ
うになる。この超電導物質特有の反磁性により、界磁巻
線3、および、補極巻線5から固定子鉄心2や隣接巻線
に入射する漏洩磁束は完全に遮蔽され、磁束の有効利用
が図られ、起磁力を小さくして小型軽量化するのに効果
的な優れた直流機の超電導シールド固定子を提供できる
。Superconducting shielding plate 8 and refrigerant storage tank 12a configured in this way
, 12b] is the refrigerant storage tank 1.2a, 12b.
By injecting a refrigerant (for example, liquid nitrogen) into the refrigerant storage pipe 9 from b, the stator core 2 and the superconducting shielding plate 8 are cooled, and as the stator core 2 is cooled, the superconducting material of the superconducting shielding plate 8 is It becomes a superconducting state with zero electrical resistance, and maintains the perfect diamagnetism that reflects external magnetic fields, which is characteristic of superconducting materials. Due to the diamagnetic property unique to this superconducting material, leakage magnetic flux from the field winding 3 and the commutator winding 5 that enters the stator core 2 and adjacent windings is completely shielded, allowing effective use of magnetic flux. It is possible to provide an excellent superconducting shield stator for a DC machine that is effective in reducing the magnetomotive force and reducing the size and weight.
以りの実施例では、界磁巻線3を備えた主磁極4と補極
巻線5を備えた補極6の間の固定子鉄心2の固定用四部
14に超電導物質で被覆した超電導遮蔽板8を設けて問
題の解決を図っていた。しかし1、!−述のように、固
定子鉄心2部に固定用凹部14をもった遮蔽突起7に超
電導物質を固定する方法は、作業能率を低下し、回転振
動により亀裂が生じ破損することが心配される。このよ
うな問題を解消し、実施例と同様の効果の得られる方法
として、第3図、第4図に示すような、界磁巻線3.補
極巻線5を非磁性金属材、或いは、絶縁材で冷媒貯槽管
9を埋設する型枠を形成し、冷媒貯槽管9と型枠を超電
導物質で埋設した超電導遮蔽枠で包囲する方法がある。In the following embodiments, a superconducting shield coated with a superconducting material is provided on the four fixing parts 14 of the stator core 2 between the main pole 4 with the field winding 3 and the commutator 6 with the commutator winding 5. A board 8 was installed to solve the problem. But 1! - As mentioned above, the method of fixing the superconducting material to the shielding protrusion 7 having the fixing recess 14 in the stator core 2 reduces work efficiency and there is concern that rotational vibration may cause cracks and damage. . As a method to solve such problems and obtain the same effects as in the embodiment, a field winding 3. as shown in FIGS. 3 and 4 is proposed. There is a method of forming a formwork in which the refrigerant storage tank pipe 9 is embedded in the commutating pole winding 5 using a non-magnetic metal material or an insulating material, and surrounding the refrigerant storage tank pipe 9 and the formwork with a superconducting shielding frame embedded with a superconducting material. be.
第31m1.第4図に本発明に他の実施例を示す。31st m1. FIG. 4 shows another embodiment of the present invention.
第3図、第4図の実施例は、固定子鉄心2に支持される
主磁極4の界磁巻線3と補極6の補極巻線5の周部を、
非磁性金属材のU字状の金属型枠15に冷媒貯槽16を
支持板17で固定し、冷媒貯槽16を内設した金属型枠
]−5に超電導物質18を埋設した超電導遮蔽枠19で
包囲したものである。In the embodiments shown in FIGS. 3 and 4, the circumferences of the field winding 3 of the main pole 4 and the commutator winding 5 of the commutator pole 6 supported by the stator core 2 are
A refrigerant storage tank 16 is fixed to a U-shaped metal formwork 15 made of a non-magnetic metal material with a support plate 17, and a superconducting shielding frame 19 in which a superconducting substance 18 is embedded in the metal formwork with the refrigerant storage tank 16 inside]-5 is used. It is surrounded.
このように構成すると、主磁極4の界磁巻線3や補極6
の補極巻線5の漏洩磁束は、実施例と同様に、金属型枠
15内の超電導物質1−8を、冷媒貯槽16に液体窒素
を注入して冷却することにより、超電導物質特有の反磁
性を維持し、超電導遮蔽枠19は完全な磁気シールド板
となるため、界磁巻線3.補極巻線5の漏洩磁束は完全
に遮蔽され、界磁巻線3.補極巻線5の漏洩磁束は有効
磁束として利用できるので、起磁力を小さくして小型軽
量化が図れ、超電導遮蔽枠]9の組立作業を固定子鉄心
2と個別に分割して作業できることから、作業能率改善
を図ることができる。また、超電導物質18を金属型枠
15で固定しているので亀裂進入の心配はなく、信頼性
の高い直流機の超電導シールド固定子を提供することが
できる。With this configuration, the field winding 3 of the main pole 4 and the commutating pole 6
The leakage magnetic flux of the commutator winding 5 can be reduced by cooling the superconducting material 1-8 in the metal formwork 15 by injecting liquid nitrogen into the refrigerant storage tank 16, as in the embodiment. Since the superconducting shielding frame 19 functions as a complete magnetic shielding plate while maintaining magnetism, the field winding 3. The leakage magnetic flux of the commutator winding 5 is completely shielded and the field winding 3. Since the leakage magnetic flux of the commutator winding 5 can be used as effective magnetic flux, the magnetomotive force can be reduced and the structure can be made smaller and lighter, and the assembly work of the superconducting shielding frame] 9 can be done separately from the stator core 2. , work efficiency can be improved. Further, since the superconducting material 18 is fixed by the metal formwork 15, there is no fear of cracks entering, and a highly reliable superconducting shield stator for a DC machine can be provided.
以上の実施例では、固定子鉄心2の内周部の主磁極4と
補極6の周辺の漏洩磁束の超電導シール1−について述
へてきたが、以上のような磁気シールドの方法は、磁極
周辺のシールドばかりでなく、制御回路系の小型モータ
フレームの外部誘導防止どして応用することもできる。In the above embodiments, the superconducting shield 1- for leakage magnetic flux around the main magnetic pole 4 and commutator pole 6 on the inner circumference of the stator core 2 has been described. It can be used not only as a peripheral shield, but also for preventing external induction in small motor frames in control circuit systems.
このような回転電機の具体的な固定子のシールド構造の
実施例を第5図に示す。第5図では、小型回転電機の固
定子裏部のシール1へ構造は、主磁極4.補極6を固定
している固定子鉄心2の裏部に、固定子鉄心2と一体的
に複数個の固定突起20を設け、固定突起20をもった
固定子鉄心2に、固定凹部21を設けた非磁性金属型枠
22に冷媒貯槽23を内設して超電導物質24を埋設し
た、超電導フレーム25を装着させ、そして、超電導フ
レーム25には注入弁1oと安全弁11を配設した超電
導フレーム回転機26としたものである。FIG. 5 shows an example of a concrete stator shield structure of such a rotating electric machine. In FIG. 5, the structure of the seal 1 on the back side of the stator of a small rotating electric machine is as follows: main magnetic pole 4. A plurality of fixing protrusions 20 are provided integrally with the stator core 2 on the back side of the stator core 2 to which the commutating pole 6 is fixed, and a fixing recess 21 is provided in the stator core 2 having the fixing protrusions 20. A superconducting frame 25 is attached to a non-magnetic metal formwork 22 with a refrigerant storage tank 23 and a superconducting substance 24 buried therein, and an injection valve 1o and a safety valve 11 are disposed on the superconducting frame 25. This is a rotating machine 26.
このように構成すると、固定子鉄心2から外部に放射す
る漏洩磁束防止は勿論、外周部の回路や配線ケーブルか
らの磁界入射は、超電導フレーム25で完全に遮断され
る。これにより外部浸入磁束の渦電流による固定子の加
熱防止や回転むらのない、信頼性ある回転電機を構成で
きる。With this configuration, the superconducting frame 25 not only prevents leakage magnetic flux radiating from the stator core 2 to the outside, but also completely blocks the incidence of magnetic fields from the circuits and wiring cables on the outer periphery. As a result, it is possible to construct a reliable rotating electrical machine that is free from heating of the stator due to eddy currents caused by externally penetrating magnetic flux and free from uneven rotation.
また、本発明は回転電機の他、超電導制御回路や超電導
電源回路等の切換スイッチのスイッチフレームとして応
用できる。第6図に切換スイッチの超電導フレーム構造
を示す。切換スイッチ27は、超電導電子回路SCCの
回路端子を超電導端子28に、また、超電導電源回路S
CPの回路端子を超電導端子29とし、超電導端子28
.29を絶縁固定基板30に固定し、その超電導端子2
8.29の切換接点を超電導接点3↓としている。この
ように超電導端子28.29が固定される絶縁固定基板
30は、注入弁32と安全弁33を備えた冷媒貯槽34
を非磁性金属型枠35内に、超電導物質36で埋設した
超電導フレーム37に収納固定した構造となっている。Further, the present invention can be applied as a switch frame for a changeover switch in a superconducting control circuit, a superconducting power supply circuit, etc. in addition to rotating electric machines. Figure 6 shows the superconducting frame structure of the changeover switch. The changeover switch 27 connects the circuit terminal of the superconducting electronic circuit SCC to the superconducting terminal 28 and also connects the superconducting power supply circuit S to the superconducting terminal 28.
The circuit terminal of the CP is a superconducting terminal 29, and the superconducting terminal 28
.. 29 is fixed to an insulating fixed substrate 30, and its superconducting terminal 2
8.29 switching contact is superconducting contact 3↓. The insulating fixing substrate 30 to which the superconducting terminals 28 and 29 are fixed in this way has a refrigerant storage tank 34 equipped with an injection valve 32 and a safety valve 33.
is housed and fixed in a superconducting frame 37 embedded with a superconducting material 36 within a non-magnetic metal formwork 35.
このように超電導電子回路SCCや超電導電源回路SC
Pの切換スイッチの固定フレームを超電導フレーム37
にすると、外部周辺から進入する誘導信号や外部に放射
しようとする放射磁界は超電導フレーム37で完全に遮
蔽される。これにより切換スイッチ27から電子回路に
誘導信号が入り誤動作させることがないので、信頼性の
高い超電導回路用の切換スイッチを提供することができ
る。In this way, superconducting electronic circuits SCC and superconducting power supply circuits SC
The fixed frame of P changeover switch is superconducting frame 37
In this case, the superconducting frame 37 completely blocks the induction signal entering from the outside periphery and the radiation magnetic field attempting to radiate to the outside. This prevents an induction signal from entering the electronic circuit from the changeover switch 27 and causing it to malfunction, making it possible to provide a highly reliable changeover switch for superconducting circuits.
なお、常温超電導物質を用いれば、第7図および第8図
に示すような、固定子鉄心の内周部の磁極固定部分だけ
超電導物質を抜き取った状態の超電導被覆固定子が考え
られる。主磁極4.補極6が装着されない固定子鉄心2
に、主磁極4と補極6の磁極固定部分41を抜いて、そ
の他の内周面全周を超電導物質48で被覆した超電導シ
ール体81を配設した固定子構造としたものである。Incidentally, if a normal temperature superconducting material is used, a superconducting coated stator with the superconducting material removed from only the magnetic pole fixing portion of the inner circumference of the stator core, as shown in FIGS. 7 and 8, can be considered. Main pole 4. Stator core 2 where commutating pole 6 is not attached
In this stator structure, the magnetic pole fixing portions 41 of the main pole 4 and the counter pole 6 are removed, and a superconducting seal member 81 covered with a superconducting material 48 is provided over the entire other inner peripheral surface.
こうして、超電導シール体81は非常に薄く、軽量にで
きるので、固定突起や固定枠等が不要となり、また、冷
却設備が不要で前述の実施例と同様の効果が得られる。In this way, the superconducting seal body 81 can be made extremely thin and lightweight, eliminating the need for fixing protrusions, fixing frames, etc., and also eliminating the need for cooling equipment, providing the same effects as in the previous embodiments.
本発明によれば、主磁極の界磁巻線から隣接の補極巻線
間の漏洩磁束は完全に遮蔽され、漏洩磁束を有効磁束と
して利用でき、起磁力を小さくして小型軽量化を図るの
に効果がある。According to the present invention, the leakage magnetic flux between the field winding of the main pole and the adjacent copole winding is completely shielded, the leakage magnetic flux can be used as effective magnetic flux, and the magnetomotive force is reduced to achieve a reduction in size and weight. It is effective.
第1図は本発明の一実施例の直流機の断面図、第2図は
第1図のn−n線に沿った縦断面図、第3図は本発明の
第二の実施例の直流機の断面図、第4図は第3図の要部
を示す部分破断斜視図、第5図は本発明の第三の実施例
を示す直流機の部分断面図、第6図は本発明の第四の実
施例の、切換スイッチ部分の破断斜視図、第7図は本発
明のさらに他の実施例を示した回転機の断面図、第8図
は第7図の固定子鉄心のみを示した斜視図である。
1・固定子、2 固定子鉄心、3・界磁巻線、4・主磁
極、5 補極巻線、6 補極、7 遮蔽突起、8・超電
導遮蔽板、9 冷媒貯槽管。FIG. 1 is a cross-sectional view of a DC machine according to an embodiment of the present invention, FIG. 4 is a partially cutaway perspective view showing the main parts of FIG. 3, FIG. 5 is a partial sectional view of a DC machine showing a third embodiment of the present invention, and FIG. FIG. 7 is a cross-sectional view of a rotating machine showing still another embodiment of the present invention, and FIG. 8 shows only the stator core of FIG. 7. FIG. 1. Stator, 2. Stator core, 3. Field winding, 4. Main magnetic pole, 5. Commutating pole winding, 6. Commuting pole, 7. Shielding protrusion, 8. Superconducting shielding plate, 9. Refrigerant storage tank pipe.
Claims (1)
巻線と、前記補極巻線を支持する補極と、前記主磁極と
前記補極とを支持する固定子鉄心よりなる直流機の固定
子において、 前記主磁極と前記補極との間に、前記固定子鉄心の内周
面から前記界磁巻線、及び前記補極巻線の内周端部近傍
まで突きでた、超電導遮蔽板を設けたことを特徴とする
直流機の超電導シールド固定子。 2、界磁巻線を固定する主磁極と、補極巻線を固定する
補極と、前記主磁極と前記補極とを支持する固定子鉄心
よりなる直流機の固定子において、 前記界磁巻線と前記補極巻線の外周部を超電導板で被覆
したことを特徴とする直流機の超電導シールド固定子。 3、特許請求の範囲第2項おいて、 前記主磁極の前記界磁巻線と前記補極の前記補極巻線を
、金属材、或いは絶縁材の型枠に超電導物質を埋設した
、超電導遮蔽枠で包囲したことを特徴とする直流機の超
電導シールド固定子。 4、界磁巻線支持の主磁極と、補極巻線支持の補極と、
前記主磁極と前記補極を固定する固定子鉄心より成る直
流機の固定子において、 前記固定子鉄心を収納固定するフレームを、非磁性金属
材、或いは、絶縁材で型枠を形成し、前記型枠に超電導
物質を埋設した超電導フレームとしたことを特徴とする
回転電機の固定フレーム。 5、複数個の超電導電子回路の端子と、超電導電源回路
の端子と、端子切換の摺動接点と、前記超電導電子回路
の端子と前記超電導電源回路の端子を固定する絶縁性固
定基板を固定するスイッチフレームより成る切換スイッ
チにおいて、前記スイッチフレームを、非磁性金属材、
或いは、絶縁材で内筒と外筒の同筒型枠を形成し、前記
内筒と前記外筒の間に超電導物質を埋設して超電導円筒
フレームとしたことを特徴とする切換スイッチのスイッ
チフレーム。[Claims] 1. A field winding, a main pole that supports the field winding, a commutator winding, a commutator that supports the commutator winding, and the main pole and the commutator. In the stator of a DC machine, the field winding and the commutator winding are connected from the inner peripheral surface of the stator core between the main magnetic pole and the commutator pole. A superconducting shield stator for a DC machine, characterized by being provided with a superconducting shield plate that protrudes to the vicinity of the inner peripheral end. 2. In a stator for a DC machine, the stator includes a main pole that fixes a field winding, a commutator that fixes a commutator winding, and a stator core that supports the main pole and the commutator. A superconducting shield stator for a DC machine, characterized in that the outer periphery of the winding and the commutator winding is covered with a superconducting plate. 3. In claim 2, the field winding of the main pole and the commutator winding of the commutator pole are made of a superconducting material in which a superconducting material is embedded in a mold made of a metal material or an insulating material. A superconducting shield stator for a DC machine characterized by being surrounded by a shielding frame. 4. A main pole supporting the field winding, a commutating pole supporting the commutating pole winding,
In the stator of a DC machine, which is composed of a stator core that fixes the main magnetic pole and the commutative pole, the frame that houses and fixes the stator core is formed with a formwork made of a non-magnetic metal material or an insulating material, and A fixed frame for a rotating electric machine characterized by a superconducting frame in which a superconducting material is embedded in a formwork. 5. Fixing the terminals of the plurality of superconducting electronic circuits, the terminals of the superconducting power supply circuit, the sliding contacts for terminal switching, and the insulating fixing substrate that fixes the terminals of the superconducting electronic circuit and the terminals of the superconducting power supply circuit. In a changeover switch consisting of a switch frame, the switch frame is made of a non-magnetic metal material,
Alternatively, a switch frame for a changeover switch, characterized in that a cylindrical frame of an inner cylinder and an outer cylinder is formed of an insulating material, and a superconducting substance is buried between the inner cylinder and the outer cylinder to form a superconducting cylindrical frame. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63208401A JPH0260455A (en) | 1988-08-24 | 1988-08-24 | Superconducting shielded stator of dc machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63208401A JPH0260455A (en) | 1988-08-24 | 1988-08-24 | Superconducting shielded stator of dc machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0260455A true JPH0260455A (en) | 1990-02-28 |
Family
ID=16555642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63208401A Pending JPH0260455A (en) | 1988-08-24 | 1988-08-24 | Superconducting shielded stator of dc machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0260455A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140100114A1 (en) * | 2012-10-08 | 2014-04-10 | General Electric Company | Cooling assembly for electrical machines and methods of assembling the same |
US20150332829A1 (en) * | 2014-05-19 | 2015-11-19 | General Electric Company | Cryogenic cooling system |
CN106374644A (en) * | 2016-09-09 | 2017-02-01 | 中国石油大学(华东) | Novel static sealed high-temperature superconductive excitation magnetic flux switching motor |
-
1988
- 1988-08-24 JP JP63208401A patent/JPH0260455A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140100114A1 (en) * | 2012-10-08 | 2014-04-10 | General Electric Company | Cooling assembly for electrical machines and methods of assembling the same |
US10224799B2 (en) * | 2012-10-08 | 2019-03-05 | General Electric Company | Cooling assembly for electrical machines and methods of assembling the same |
US20150332829A1 (en) * | 2014-05-19 | 2015-11-19 | General Electric Company | Cryogenic cooling system |
US10184711B2 (en) * | 2014-05-19 | 2019-01-22 | General Electric Company | Cryogenic cooling system |
CN106374644A (en) * | 2016-09-09 | 2017-02-01 | 中国石油大学(华东) | Novel static sealed high-temperature superconductive excitation magnetic flux switching motor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5317297A (en) | MRI magnet with robust laminated magnetic circuit member and method of making same | |
US4565938A (en) | Permanent magnet rotor toroidal generator and motor | |
US4577126A (en) | Synchronous electric machine with superconductive field windings | |
DK0403317T3 (en) | Magnetization circuit for an electric motor stator and stator with such circuit | |
JPH1056745A (en) | Electric motor | |
JPS6477109A (en) | Ignition coil | |
GB2221348A (en) | Superconducting magnet device | |
JPH0260455A (en) | Superconducting shielded stator of dc machine | |
US3670187A (en) | Ironless direct-current machine having a normal conducting rotor and a superconducting excitation system | |
EP1348251A1 (en) | Superconductive armature winding for an electrical machine | |
JPH11146586A (en) | Permanent magnet motor | |
JP2004103633A (en) | Amorphous core molded transformer | |
JPH0715936A (en) | Single-pole motor | |
JPH1189123A (en) | Motor provided with auxiliary magnetic circuit | |
SU1162008A1 (en) | Contactless synchronous electric machine | |
GB2082847A (en) | Variable Reluctance Motor | |
JPH11285183A (en) | Rotor structure of synchronous motor | |
JPH053228B2 (en) | ||
CN221531108U (en) | Magnetism isolating strip, permanent magnet motor rotor and permanent magnet motor | |
JP2003319584A (en) | Buried magnet motor and method for assembling the same | |
SU1537094A1 (en) | Topologic generator | |
US20050067910A1 (en) | Bobbinless high-density armature having no substrate, and rotor using the same | |
SU1601692A1 (en) | Combination-type electric machine | |
JPH0419964Y2 (en) | ||
KR200144947Y1 (en) | motor |