JPH0260303B2 - - Google Patents

Info

Publication number
JPH0260303B2
JPH0260303B2 JP57186710A JP18671082A JPH0260303B2 JP H0260303 B2 JPH0260303 B2 JP H0260303B2 JP 57186710 A JP57186710 A JP 57186710A JP 18671082 A JP18671082 A JP 18671082A JP H0260303 B2 JPH0260303 B2 JP H0260303B2
Authority
JP
Japan
Prior art keywords
calcium
salts
milk
whey
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57186710A
Other languages
Japanese (ja)
Other versions
JPS5978644A (en
Inventor
Satoshi Chihara
Takeshi Shinkubo
Toshitaka Kobayashi
Koji Iida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Dairies Corp
Original Assignee
Meiji Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Milk Products Co Ltd filed Critical Meiji Milk Products Co Ltd
Priority to JP57186710A priority Critical patent/JPS5978644A/en
Publication of JPS5978644A publication Critical patent/JPS5978644A/en
Publication of JPH0260303B2 publication Critical patent/JPH0260303B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Dairy Products (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は乳質原料よりのカルシウム吸収率のよ
いカルシウムを主成分とする塩類を含有するカル
シウム強化剤である。 従来より、牛乳等乳質原料には良質のカルシウ
ムが含まれ、これが動物体内に効率よく取り入れ
られ骨格形成に重要な役割を演じていることは公
知である。この良質のカルシウムも牛乳加工工程
においてはホエー等の廃棄物として廃棄せられる
ことが多く、例えば、発酵チーズ、カゼイン等を
製造する場合は牛乳又は脱脂乳にスターターを加
えて酸性化したり或は硫酸、塩酸、乳酸等の酸を
加えて酸性化し、凝固した蛋白質を分離して母液
は酸性ホエーとして廃棄するが、このときカルシ
ウム、マグネシウム、りん等は酸性化によりコロ
イド状蛋白質との結合が失なわれ、母液中に移行
して廃棄せられるものである。その理由はレンネ
ツトによりほゞ中性で蛋白質を凝固させるとカル
シウム等は蛋白質に移行し、母液中の塩類含量は
少なくなつて製菓原料等に利用できる甘性ホエー
となるに対し、酸性化した母液中には塩類含量が
多く、異味を呈するので利用できないためであ
り、現在では排水処理設備で処理し、河川に放流
するのが常である。 本発明は上記の事情によりなされたもので、従
来廃棄していた酸性の乳質原料処理液を有効利用
せんと研究を進め、乳質原料中の良質のカルシウ
ム塩に着目し、乳質原料溶液を酸性化し、生成す
る凝固蛋白質を分離した後、母液にアルカリを加
えてカルシウムを主成分とする塩類を沈澱分離
し、分離した塩類を濃縮又は乾燥してカルシウム
を主成分とする塩類とすることにより解決したの
である。 本発明に使用する乳質原料とは全脂乳、脱脂
乳、部分脱脂乳の如き牛乳、全脂濃縮乳、部分脱
脂濃縮乳、脱脂濃縮乳の如き濃縮乳又は全脂粉
乳、脱脂粉乳の如き粉乳などである。通常牛乳の
場合はそのまゝ、濃縮乳、粉乳の場合は水を加え
て適度の濃度となし、乳質原料溶液として使用す
る。 乳質原料の酸性化はカゼイン製造におけるが如
く乳質原料溶液に塩酸、硫酸、硝酸の如き無機
酸、クエン酸、乳酸の如き有機酸を直接添加する
か或はストレプトコツカス・ラクチス(Str.
lactis)、ストレプトコツカス・クレモリス(Str.
cremoris)、ストレプトコツカス・サーモフイラ
ス(Str.thermophilus)、ラクトバチルス・ブル
ガリカス(L.bulgalrcus)等の一種又は二種以上
を接種し、乳酸発酵を行なわせ、PH3.0〜5.5、好
ましくはPH4.0〜5.0とする。酸性化により蛋白質
は凝固し、母液は酸性ホエーとなつて多量のカル
シウム等を含有するに到る。今、この関係を説明
するためのレンネツトにより中性前後で蛋白質を
分離した後の所謂甘性ホエー及び酸性ホエーの組
成の例を第1表に示す。
The present invention is a calcium fortifying agent containing salts whose main component is calcium, which has a good calcium absorption rate from milk raw materials. It has been known that milk materials such as milk contain high-quality calcium, which is efficiently taken into the animal body and plays an important role in skeletal formation. This high-quality calcium is often discarded as waste such as whey in the milk processing process. For example, when producing fermented cheese, casein, etc., it is necessary to add a starter to milk or skim milk to make it acidic, or to add sulfuric acid to it. The coagulated proteins are acidified by adding acids such as hydrochloric acid or lactic acid, and the mother liquor is discarded as acidic whey. At this time, calcium, magnesium, phosphorus, etc. lose their bonds with colloidal proteins due to acidification. It migrates into the mother liquor and is disposed of. The reason for this is that when proteins are coagulated with rennet in an almost neutral state, calcium and other substances are transferred to the proteins, and the salt content in the mother liquor decreases, resulting in sweet whey that can be used as a raw material for confectionery. This is because some of them have a high salt content and give off an unpleasant taste, making them unusable.Currently, they are usually treated with wastewater treatment equipment and discharged into rivers. The present invention was made in view of the above-mentioned circumstances, and we conducted research to effectively utilize the acidic milk raw material processing solution that had been previously discarded.We focused on the high quality calcium salts in the milk raw material and acidified the milk raw material solution. The problem was solved by separating the coagulated proteins produced, adding an alkali to the mother liquor to precipitate and separate the salts containing calcium as the main component, and concentrating or drying the separated salts to obtain salts containing calcium as the main component. It is. The milk raw materials used in the present invention are milk such as whole milk, skim milk, partially skimmed milk, concentrated milk such as whole fat concentrated milk, partially skimmed concentrated milk, skim concentrated milk, or milk powder such as whole milk powder, skim milk powder. etc. In the case of regular milk, use it as is, or in the case of concentrated milk or powdered milk, add water to make an appropriate concentration and use it as a milk raw material solution. Acidification of milk raw materials can be achieved by directly adding inorganic acids such as hydrochloric acid, sulfuric acid, or nitric acid, or organic acids such as citric acid or lactic acid to the milk raw material solution, as in casein production, or by adding Streptococcus lactis (Str.
lactis), Streptococcus cremoris (Str.
cremoris), Str. thermophilus, Lactobacillus bulgaricus (L.bulgalrcus), etc., and carry out lactic acid fermentation, pH 3.0 to 5.5, preferably PH 4. .0 to 5.0. Proteins coagulate due to acidification, and the mother liquor becomes acidic whey containing a large amount of calcium and the like. To explain this relationship, Table 1 shows examples of the compositions of so-called sweet whey and acid whey after separating proteins before and after neutrality using rennet.

【表】 上表より判明するように酸ホエーの灰分は通常
の甘性ホエーの0.55%に対し0.77%と高く、カル
シウムについて甘性ホエーが0.05%で殆んど含ま
れないのに対し、酸ホエーでは0.125%と極めて
高い。 上記酸ホエー等の溶液から塩類の分離はアルカ
リを添加し、PH5.0〜8.0好ましくはPH6.0〜7.0に
中和し塩類を不溶化して行う。使用するアルカリ
としては水酸化ナトリウム、水酸化カリウム、水
酸化アンモニウム、水酸化カルシウム、炭酸ナト
リウム、炭酸カリウム等があり、好ましくは水酸
化ナトリウムである。即ち、前記酸ホエー等の溶
液にアルカリを添加すると溶液中のカルシウムが
りん成分と結合し、不溶性の塩類を生成する。し
かし、そのまゝ添加したのでは不溶化した塩類粒
子は極めて微粒となり、分離に不便を伴うので好
ましくは酸ホエー等の溶液を予め加熱し、これに
アルカリを添加すると容易に沈降する巨大な粒子
が得られ分離が容易となる。今加熱温度と不溶化
した塩類の沈降速度の関係を第1図により説明す
る。実験は第1表の酸ホエーを使用し、各種温度
に加熱して水酸化ナトリウム溶液を加えPH6.5と
なし、その温度で3分間撹拌したものである。 第1図より判明するように加熱温度の上昇と共
に沈降速度も増加する。しかし60℃以下の加熱で
は沈降速度は2.5×10-2cm/sec以下となり沈降
法、遠心分離法による分離には不向きで、過に
よる分離がよい。60℃以上に加熱すると結晶がよ
く育ち、遠心分離法又は沈降法により効率よく分
離できる。勿論加熱温度を更に上昇させると分離
の容易な結晶となるが、130℃以上の高温迄加熱
すると酸ホエー等の溶液中で褐色変化現象がおこ
り不溶化した塩類も着色して来るのでさけた方が
良い。加熱はプレート式、加熱機、ジヤケツト式
加熱機等により間接加熱によつてもよく。場合に
よつては蒸気吹き込みによる直接加熱によつても
よい。しかし、この加熱を中和後に行うと沈降容
易な結晶が得られず、且つ加熱装置の壁面に蛋白
質が付着し、作業を困難にするので注意を要す
る。 前記中和は前記アルカリを5〜50%の濃度に溶
解し、加熱後の酸ホエー等の溶液に直接添加しPH
を5.0〜8.0好ましくは6.0〜7.0とする。これはPH
5.0以下では殆んど沈澱が生成せず、PH8.0以上と
すると中和臭が生成するためで、特にPH6.0〜7.0
では収量もよく、優れた品質の製品を得ることが
できる。今、これを第1表の組成の酸ホエーを使
用し、20%の水酸化ナトリウム溶液で中和した場
合の例を第2図に示す。図中縦軸は塩の不溶化率
を、横軸はPHを示すが、図により判明する如く不
溶化はPH5.0より見られPH6.0以上となると急激に
増加しPH6.5では酸ホエー中の全カルシウムの60
%以上が不溶化する。しかし、それ以上では次第
に収率の上昇度が鈍化する。従つて、PH6.0〜7.0
が実用的範囲となる。中和後、直ちに析出した塩
類を分離してもよいが、好ましくは中和後1〜30
分間その温度に維持し、充分結晶を析出させると
よい。この維持は配管内で行つてもよく、保持タ
ンクを設けその中で行つてもよく、更に沈降法に
よる分離を採用する場合は沈降タンの中で行なわ
せてもよいものである。 中和に使用する装置としてはバツチ式で反応層
内を使用してもよいが、好ましくは連続添加装置
であり、このような添加装置の例としてはスタテ
イツクミキサーを挙げることができる。該ミキサ
ーは酸ホエー等の配管内の流動量に応じアルカリ
溶液を連続的に添加し混合するもので、作業を連
続化できる利点を有する。 中和後、生成した不溶化塩類の分離は通常の固
液分離法は何れも使用でき、遠心分離法、沈降法
又は過法が採用できる。又、特に加熱中和後の
前記塩類の分離では沈降法が便利であり、液体サ
イクロンの如き装置を使用し、側部より連続的に
中和溶液を供給し、上部より連続的に上澄液を取
り出し、沈澱した不溶化塩類は下部より間欠的に
取り出すと、簡単な装置で作業を連続化し得る。 上記方法により、通常酸ホエー中のカルシウム
量の50〜60%が不溶化塩類として取り出される
が、この不溶化塩類は泥状をなす。今、このよう
にして得られた不溶化塩類の組成の例及び不溶化
塩類を分離した処理ホエーの組成の例を第2表に
示す。
[Table] As can be seen from the table above, the ash content of acid whey is higher at 0.77% compared to 0.55% for regular sweet whey, and sweet whey contains almost no calcium at 0.05%, whereas acid whey contains almost no calcium at 0.05%. In whey, it is extremely high at 0.125%. Separation of salts from a solution such as acid whey is carried out by adding an alkali to neutralize the pH to 5.0 to 8.0, preferably 6.0 to 7.0, and insolubilize the salts. Examples of the alkali used include sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, sodium carbonate, potassium carbonate, etc., and sodium hydroxide is preferred. That is, when an alkali is added to a solution of acid whey or the like, calcium in the solution combines with the phosphorus component to produce insoluble salts. However, if they are added as they are, the insolubilized salt particles become extremely fine particles, which is inconvenient to separate. Therefore, it is preferable to heat a solution such as acid whey in advance and add an alkali to it to remove large particles that easily settle. can be easily separated. The relationship between heating temperature and sedimentation rate of insolubilized salts will now be explained with reference to FIG. In the experiment, the acid whey shown in Table 1 was heated to various temperatures, a sodium hydroxide solution was added to adjust the pH to 6.5, and the mixture was stirred at that temperature for 3 minutes. As is clear from FIG. 1, as the heating temperature increases, the sedimentation rate also increases. However, when heated below 60°C, the sedimentation rate is less than 2.5 x 10 -2 cm/sec, making it unsuitable for separation by sedimentation or centrifugation, and separation by filtration is preferable. Crystals grow well when heated above 60°C, and can be efficiently separated by centrifugation or sedimentation. Of course, raising the heating temperature further will result in crystals that are easy to separate, but heating to a high temperature of 130°C or higher will cause a browning phenomenon in solutions such as acid whey, and the insolubilized salts will also become colored, so it is better to avoid this. good. Heating may be achieved by indirect heating using a plate type, heating machine, jacket type heating machine, etc. In some cases, direct heating by steam blowing may be used. However, if this heating is performed after neutralization, crystals that easily settle will not be obtained, and proteins will adhere to the walls of the heating device, making the work difficult, so care must be taken. The neutralization involves dissolving the alkali to a concentration of 5 to 50% and directly adding it to the solution of acid whey after heating to adjust the pH.
is set to 5.0 to 8.0, preferably 6.0 to 7.0. This is PH
If the pH is below 5.0, almost no precipitate will be formed, and if the pH is above 8.0, a neutralized odor will be generated, especially if the pH is between 6.0 and 7.0.
The yield is good and the product is of excellent quality. Now, Fig. 2 shows an example in which acid whey having the composition shown in Table 1 is used and neutralized with a 20% sodium hydroxide solution. In the figure, the vertical axis shows the insolubilization rate of the salt, and the horizontal axis shows the pH. As can be seen from the figure, insolubilization is seen from PH5.0 and increases sharply when the pH is above 6.0. 60 of total calcium
% or more becomes insolubilized. However, beyond that, the rate of increase in yield gradually slows down. Therefore, PH6.0~7.0
is the practical range. Precipitated salts may be separated immediately after neutralization, but preferably 1 to 30 minutes after neutralization.
It is preferable to maintain the temperature for a minute to allow sufficient crystal precipitation. This maintenance may be carried out within the piping, or may be carried out in a holding tank provided, or furthermore, in the case where separation by a sedimentation method is employed, it may be carried out in a settling tank. Although the apparatus used for neutralization may be a batch type in the reaction bed, a continuous addition apparatus is preferable, and an example of such an addition apparatus is a static mixer. This mixer continuously adds and mixes an alkaline solution according to the flow rate of acid whey or the like in the piping, and has the advantage of being able to perform continuous operations. After neutralization, any conventional solid-liquid separation method can be used to separate the produced insolubilized salts, such as centrifugation, sedimentation, or filtration. In addition, the sedimentation method is especially convenient for separating the salts after neutralization by heating, and a device such as a hydrocyclone is used to continuously supply the neutralizing solution from the side, and continuously supply the supernatant from the top. If the precipitated insolubilized salts are taken out from the bottom intermittently, the operation can be made continuous using a simple device. By the above method, 50 to 60% of the amount of calcium in acid whey is usually extracted as insolubilized salts, but these insolubilized salts are in the form of mud. Table 2 shows an example of the composition of the insolubilized salts thus obtained and an example of the composition of the treated whey from which the insolubilized salts have been separated.

【表】 第2表より判明する如く、不溶化塩類には大量
の灰分が含まれ、主としてりん酸のカルシウム塩
として存在するが、その詳細分析値を第3表に示
す。
[Table] As is clear from Table 2, the insolubilized salts contain a large amount of ash and are mainly present as calcium salts of phosphoric acid, and detailed analysis values thereof are shown in Table 3.

【表】 上記の不溶化塩類は多量の水分を含み、そのま
ま放置すると腐敗を起こすので、これを濃縮する
か乾燥する必要がある。濃縮は常法により脱水機
を使用して脱水するのが便利であり、通常固形分
として50%以上なる如く脱水する。又乾燥は脱水
後天日乾燥、表面乾燥、熱風乾燥、真空乾燥等の
手段により行なわれ、通常10%以下の水分含量と
なる迄乾燥するとよい。 上記の如くして得られた製剤は主として粉剤、
錠剤として使用するものであるが、これに乳糖等
のカルシウムの吸収を助け、併せて賦型効果を有
する物質を混合してもよい。又上記製剤は良質の
カルシウムを主成分とする関係上食品添加物、飼
料添加物或は土壌改良剤として使用すると動植物
の生育に極めて大きい効果を奏するものである。
今、基本飼料に炭酸カルシウムa、牛骨粉b、か
きがら粉c、焼成牛骨粉d、卵殻粉e、及び本発
明の製剤fをカルシウムとして同一量添加し、ラ
ツトの飼育試験を行つた実験で説明する。 試験はラツトをカルシウム源を異にする飼料で
24日、30日間飼育し、屠殺後のカルシウム吸収
率、骨破断力を試験したもので、その結果は第3
図(24日)第4図(31日)に知す通りである。図
中棒グラフは骨破断力を示し、折れ線グラフはそ
れに対応するカルシウム吸収率を示すもので、図
により判明する如く、カルシウム吸収率及び骨破
断力はカルシウム源によつてそれぞれ異なり、本
発明製剤fは何れにおいても優れた成績を示す。 本発明のカルシウムを主成分をする塩類は単独
又は乳糖等と併用し、カルシウム強化剤としてス
ープ、ベビーフード、飴等その他菓子、食品に添
加するか、家畜、愛玩動物の飼料に添加するか或
は土壌改良剤として圃場に撒布すると動植物の生
育を助長し、良くその効果を奏するものである。
又、カルシウムを主成分とする塩類を除去した処
理ホエー等は塩類含量が減少しているので従来の
甘性ホエーと同様濃縮、乾燥して製菓原料に使用
できるものである。従つて本発明を酸ホエーにつ
いて適用した場合、従来廃棄していた酸ホエーを
余すことなく利用でき産業上極め有用な発明であ
る。 以下実施例により説明する。 実施例 1 脱脂乳1250Kgを95℃で5分間加熱殺菌し、冷却
後ストレプトコツカス・ラクチス(Str.lactis)
とストレプトコツカス・クレモリス(Str.
cremoris)の混合スターターを接種し、22℃で
16時間発酵させPH4.5とした。次いでカードを破
砕し、62℃で2分間加熱殺菌を行ない、ホエー分
離機クワルクセパレーター(西独製)を用いクワ
ルク250Kgとクワルクホエー(酸ホエー)1000Kg
を得た。 上記クワルクホエーはプレート式熱交換機で95
℃に加熱し、配管中に設けたスタテイツクミキサ
ーにより20%の水酸化ナトリウム溶液を添加混合
しPH6.5に調整した。中和後配管内の平均滞留時
間は約2分で、これを150の液体サイクロンに
送入した。この液体サイクロンの平均滞留時間は
約6分で処理ホエー983Kgと不溶化塩類含水物
17.3Kgを得た。その組成は前記第2表、第3表に
示す通りである。 上記不溶化塩類は更に圧脱水してケーキ状と
なし、熱風乾燥して粉砕し、カルシウムを主成分
とする水分2.7%の製品2.2Kgを得た。この製品は
製パン製菓用のカルシウム強化剤として好適であ
つた。
[Table] The above insolubilized salts contain a large amount of water and will rot if left as is, so they must be concentrated or dried. Concentration is conveniently carried out by using a dehydrator in a conventional manner, and usually the solid content is 50% or more. Drying is carried out after dehydration by methods such as sun drying, surface drying, hot air drying, and vacuum drying, and drying is usually carried out until the moisture content is 10% or less. The preparations obtained as above are mainly powders,
Although it is used as a tablet, it may be mixed with a substance such as lactose that helps absorption of calcium and also has a shaping effect. Moreover, since the above-mentioned preparation contains high-quality calcium as its main component, when used as a food additive, feed additive, or soil conditioner, it has an extremely large effect on the growth of animals and plants.
Now, an experiment was conducted in which the same amounts of calcium carbonate a, beef bone meal b, oyster shell meal c, calcined beef bone meal d, eggshell meal e, and the formulation f of the present invention were added as calcium to the basic feed, and a feeding test was conducted on rats. explain. The test involved feeding rats with diets containing different calcium sources.
The animals were kept for 24 days and 30 days, and the calcium absorption rate and bone breaking force after slaughter were tested.
As shown in Figures (24th) and Figure 4 (31st). In the figure, the bar graph shows the bone breaking force, and the line graph shows the corresponding calcium absorption rate. As is clear from the figure, the calcium absorption rate and the bone breaking force differ depending on the calcium source, and the present invention formulation f shows excellent results in both cases. The salts containing calcium as a main component of the present invention can be used alone or in combination with lactose, etc., and added as a calcium fortifier to soups, baby foods, candy, and other sweets and foods, or added to feed for livestock and pets. When sprayed on fields as a soil conditioner, it promotes the growth of plants and animals, and is highly effective.
In addition, treated whey from which salts containing calcium as a main component have been removed has a reduced salt content, so it can be used as a raw material for confectionery after being concentrated and dried in the same way as conventional sweet whey. Therefore, when the present invention is applied to acid whey, the acid whey that was conventionally discarded can be fully utilized, making it an extremely useful invention industrially. This will be explained below using examples. Example 1 1250 kg of skim milk was heat sterilized at 95°C for 5 minutes, and after cooling, Str. lactis
and Streptococcus cremoris (Str.
cremoris) mixed starter and heated at 22℃.
Fermented for 16 hours to a pH of 4.5. Next, the curd was crushed, heat sterilized at 62℃ for 2 minutes, and 250 kg of quark and 1000 kg of quark whey (acid whey) were separated using a whey separator, the quark separator (manufactured in West Germany).
I got it. The above quark whey is produced using a plate heat exchanger at 95%
℃, 20% sodium hydroxide solution was added and mixed using a static mixer installed in the piping, and the pH was adjusted to 6.5. After neutralization, the average residence time in the pipe was approximately 2 minutes, and this was sent to 150 hydrocyclones. The average residence time of this liquid cyclone is approximately 6 minutes, and 983 kg of processed whey and insolubilized salt water are processed.
Obtained 17.3Kg. Its composition is as shown in Tables 2 and 3 above. The above-mentioned insolubilized salts were further dehydrated under pressure to form a cake, dried with hot air and pulverized to obtain 2.2 kg of a product containing calcium as the main component and having a moisture content of 2.7%. This product was suitable as a calcium fortifier for baking and confectionery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は不溶化塩類の沈降速度と加熱温度の関
係を示す図、第2図は酸ホエーPHと塩(カルシウ
ムを主成分とする)の不溶化率を示す図、第3
図、第4図はそれぞれ炭酸カルシウムa、牛骨粉
b、かきがら粉c、焼成牛骨粉d、卵殻粉e及び
本発明の製剤fをカルシウム源とし、ラツトの骨
破断力(棒グラフ)及びカルシウム吸収率(折れ
線グラフ)を示す図である。
Figure 1 shows the relationship between sedimentation rate of insolubilized salts and heating temperature, Figure 2 shows the insolubilization rate of acid whey PH and salt (mainly composed of calcium), and Figure 3
Figure 4 shows bone breaking force (bar graph) and calcium absorption in rats using calcium carbonate a, beef bone powder b, oyster shell powder c, calcined beef bone powder d, eggshell powder e, and preparation f of the present invention as calcium sources, respectively. It is a figure showing a rate (line graph).

Claims (1)

【特許請求の範囲】 1 乳質原料溶液を酸性化し、生成する凝固物を
除去する工程と、凝固物を除去後アルカリでPH
6.0を越えPH8.0以下の範囲で中和して塩類を沈澱
分離する工程と、分離した塩類を濃縮又は乾燥す
る工程とから得られる、乳質原料よりのカルシウ
ムを主成分とする塩類を含有するカルシウム強化
剤。 2 酸性化は、酸の添加又は乳酸発酵によりPH
3.0〜5.5とすることにより行うことを特徴とする
特許請求の範囲第1項の乳質原料よりのカルシウ
ムを主成分とする塩類を含有するカルシウム強化
剤。
[Claims] 1. A process of acidifying the milk raw material solution and removing the generated coagulates, and PHing with alkali after removing the coagulates.
Contains salts whose main component is calcium from milk raw materials, which are obtained from the steps of neutralizing to a pH of over 6.0 and below 8.0 and precipitating and separating the salts, and concentrating or drying the separated salts. Calcium fortifier. 2 Acidification is done by adding acid or by lactic acid fermentation.
3.0 to 5.5. A calcium fortifying agent containing salts containing calcium as a main component from a milk raw material according to claim 1.
JP57186710A 1982-10-26 1982-10-26 Preparation of salt consisting essentially of calcium from milky raw material Granted JPS5978644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57186710A JPS5978644A (en) 1982-10-26 1982-10-26 Preparation of salt consisting essentially of calcium from milky raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57186710A JPS5978644A (en) 1982-10-26 1982-10-26 Preparation of salt consisting essentially of calcium from milky raw material

Publications (2)

Publication Number Publication Date
JPS5978644A JPS5978644A (en) 1984-05-07
JPH0260303B2 true JPH0260303B2 (en) 1990-12-14

Family

ID=16193279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57186710A Granted JPS5978644A (en) 1982-10-26 1982-10-26 Preparation of salt consisting essentially of calcium from milky raw material

Country Status (1)

Country Link
JP (1) JPS5978644A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05103645A (en) * 1991-03-22 1993-04-27 Meiji Milk Prod Co Ltd Calcium-enriched drink and its production

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248152A (en) * 1984-05-24 1985-12-07 Meiji Milk Prod Co Ltd Calcium salt for enriching, its production and use
JPH0648960B2 (en) * 1986-11-18 1994-06-29 協同乳業株式会社 Method for producing jelly-like food
JP4627512B2 (en) * 2006-04-11 2011-02-09 雪印乳業株式会社 Dried cheese and method for producing the same
JP6026768B2 (en) * 2012-05-07 2016-11-16 株式会社Adeka Method for producing flavor material and method for producing flavor-improved fats and oils

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120578A (en) * 1974-08-09 1976-02-18 Kobe Steel Ltd DENSENNADOSENJOBUTSUMAKITORISOCHINIOKERU MAKITORITANMATSUSHORISOCHI
JPS51101165A (en) * 1975-02-03 1976-09-07 Stauffer Chemical Co
JPS526660A (en) * 1975-07-04 1977-01-19 Morinaga Milk Ind Co Ltd Production of lactulose-including powders for livestock feed

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120578A (en) * 1974-08-09 1976-02-18 Kobe Steel Ltd DENSENNADOSENJOBUTSUMAKITORISOCHINIOKERU MAKITORITANMATSUSHORISOCHI
JPS51101165A (en) * 1975-02-03 1976-09-07 Stauffer Chemical Co
JPS526660A (en) * 1975-07-04 1977-01-19 Morinaga Milk Ind Co Ltd Production of lactulose-including powders for livestock feed

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05103645A (en) * 1991-03-22 1993-04-27 Meiji Milk Prod Co Ltd Calcium-enriched drink and its production

Also Published As

Publication number Publication date
JPS5978644A (en) 1984-05-07

Similar Documents

Publication Publication Date Title
US4519945A (en) Process for the preparation of a precipitate of casein and whey protein
US4202909A (en) Treatment of whey
US4137339A (en) Method of preparing processed food material from soybean
CA1054436A (en) Process for preparing a lactulose-containing powder for feed
US2695235A (en) Process for the treatment of whey
JPH0710875B2 (en) Method for producing desalted lactose containing sialic acids
US2477558A (en) Preparation of high-grade crude lactose
US2714068A (en) Diacasein and process for its manufacture
Webb et al. The utilization of whey: a review
US3896240A (en) Preparation of simulated human milk
KR930009336B1 (en) Method for purification of growth hormone
US4053643A (en) Process for increasing cheese curd yield
JPH0260303B2 (en)
US4957751A (en) Method of producing rennet cheese from raw milk
US3883448A (en) Recovery and purification of protein
US3423208A (en) Method of precipitating casein from milk
DE2605627C2 (en) Process for the production of dry cheese
GB1575089A (en) Process for the treatment of whey and whey permeate and products resulting therefrom
JPS6121053B2 (en)
FR2331963A1 (en) Whey prodn. from skimmed milk together with casein - comprising concentrating protein before precipitating casein with acid milk product
JPS60232052A (en) Method of making milk mineral concentrate
US2494148A (en) Method of purifying lactalbumin
CA1336240C (en) Water-soluble milk protein and process for producing same
US2497420A (en) Manufacture of lactalbumin
SU816461A1 (en) Method of obtaining feed from milk industry waste