JPH0259840B2 - - Google Patents

Info

Publication number
JPH0259840B2
JPH0259840B2 JP58220668A JP22066883A JPH0259840B2 JP H0259840 B2 JPH0259840 B2 JP H0259840B2 JP 58220668 A JP58220668 A JP 58220668A JP 22066883 A JP22066883 A JP 22066883A JP H0259840 B2 JPH0259840 B2 JP H0259840B2
Authority
JP
Japan
Prior art keywords
fluid transport
substance
molecular weight
fraction
isoelectric point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58220668A
Other languages
Japanese (ja)
Other versions
JPS60115527A (en
Inventor
Shigeru Aonuma
Masaaki Yamamoto
Kenju Yamamoto
Masao Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aska Pharmaceutical Co Ltd
Original Assignee
Teikoku Hormone Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Hormone Manufacturing Co Ltd filed Critical Teikoku Hormone Manufacturing Co Ltd
Priority to JP58220668A priority Critical patent/JPS60115527A/en
Publication of JPS60115527A publication Critical patent/JPS60115527A/en
Publication of JPH0259840B2 publication Critical patent/JPH0259840B2/ja
Granted legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/98Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution of animal origin
    • A61K8/981Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution of animal origin of mammals or bird

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Zoology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dental Preparations (AREA)
  • Peptides Or Proteins (AREA)
  • Cosmetics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はウシの唾液腺、殊に耳下腺から得られ
る新規な歯牙体液輸送促進物質及びその製造方法
である。 ウサギの視床下部抽出物を耳下腺摘出ラツトに
投与すると、歯牙の歯髄から証牙質造歯細胞細管
への体液輸送が認められなくなるが、該視床下部
抽出物をブタの耳下腺組織抽出物と共に投与する
と体液輸送が認められることは既に明らかにされ
ている。このことから、視床下部因子は耳下腺に
直接作用し、歯牙の歯髄から歯牙質造歯細胞細管
への体液輸送の促進は耳下腺に依存すると考えら
れている。Steinmanらはカリエス誘発性物質と
ラツトに対する齲蝕症の発生についての研究を進
め歯牙体液輸送を促進させる物質をブタ耳下腺よ
り分離し、分子量8100、等電点PH7.5、紫外部吸
収をほとんどもたないタンパク質であることを明
らかにしている〔Endocrinology,83,807
(1968);Endocrinology,106,1994(1980)〕。さ
らに、Steinmanらはこの活性物質をラツトに投
与すると、歯牙への栄養物の補給が向上し、歯牙
発育、歯構造強化などが促進され、齲蝕発生率が
抑制することも報告している。 本発明者らはウシの唾液腺、特に耳下腺にも、
ブタの場合と同様に、歯牙体液輸送を促進する作
用をもつ物質(以下「歯牙体液輸送促進物質」と
いう)が存在するであろうとの予想の下に、ウシ
の耳下腺中に該物質が存在するかどうか研究を行
なつた結果、該物質の存在が確認され、その物質
の分離精製についてさらに研究を重ねた結果、極
めて高純度の歯牙体液輸送促進物質を単離できる
方法を見い出し、その理化学的性質を解明するに
至つた。 本発明により提供される歯牙体液輸送促進物質
は以下に示す如き理化学的性質を有するタンパク
質である。 (1) 性状:白色粉末 (2) 分子量:SDS―ポリアクリルアミドゲルのデ
イスク電気泳動法により測定し
て25000〜35000の範囲内にあ
る。 (3) 等電点:PH5.8〜6.6の範囲内にある。 (4) Rf値:10%ポリアクリルアミドゲルの電気
泳動法により測定して0.26〜
0.34の範囲内にある。 (5) 紫外線吸収スペクトル:極大吸収波長 (λmax)=
約 280nm 測定条件:試料0.80mgを生理食塩液1mlに
溶解したものにつき、光路長1
cmで、日立EPS―3T型分光光
度計を用いて測定。 (6) 吸光度:E1%280onが12〜17の範囲内にある。 測定条件:紫外線吸収スペクトルの測定条
件と同一。 (7) 溶解性:水(生理食塩液)に可溶アセトンに
不溶。 (8) 呈色反応:ニンヒドリン反応 陽性 ビユーレツト反応 陽性 ミロン反応 陽性 坂口反応 陽性 モリツシユ反応 陽性 アンスロン反応 陽性 エルソン・モーガン反応 陽性 (9) 分配係数(Kav値) ゲル過におけるゲル層と液層との間の分配係
数であり、下記式により算出される。 Kav=Ve−Vo/Vt−Vo Vt=ゲルベツドの総容積 Ve=溶出液量 Vo=ゲル粒子外部の溶媒量 ゲル過材としてSephadex G―100
(Pharmacia Fine Chemicals社製)を使用し
且つ溶出液としてPH7.2の0.05Mリン酸緩衝液
を用いた時の、本発明のタンパク質のKav値は
約0.40である。 前述したように、Steinmanらがブタ耳下腺か
ら抽出した歯牙体液輸送促進物質は、SDS―ポリ
アクリルアミドゲルのデイスク電気泳動法により
測定した分子量が8100、等電点がPH7.5、紫外線
吸収スペクトルに極大収波長(λmax)が存在せ
ず、従つて吸光度E1%280onが0の物質であるが、本
発明の物質の理化学的性質は、少なくとも分子
量、紫外部吸収特性がブタの耳下腺から抽出され
た歯牙体液輸送促進物質と明らかに異なつてお
り、従来の文献に未載の新規な物質であると考え
られる。 なお、哺乳動物の唾液腺、特に耳下腺には唾液
腺ホルモンが含まれ、この唾液腺ホルモンはタン
パク質であり、硬組織の発育促進作用、間葉性組
織賦活作用、血清カルシウム低下作用、白血球増
加作用等の種々の優れた生理活性を有し、医薬と
して広範に使用されている。しかし、この唾液腺
ホルモンにはラツト象牙質造歯細胞細管への体液
輸送に対して何ら作用を示さないことを本発明者
らは確認している。従つて、ウシ耳下腺に存在す
る歯牙体液輸送促進物質は唾液腺ホルモンとは作
用の上からも異つた物質であることは明らかであ
る。 すなわち、本発明の物質及び唾液腺ホルモンの
歯牙体液輸送促進活性を次の方法で測定した: 生後5週令のラツトに螢光物質としてアクリフ
ラビン塩酸塩を体重100gに対して5mgの割合で
腹腔内投与した後、直ちに本発明の物質又は唾液
腺ホルモンを0.1mlの液量で静脈内投与し16分後
に断頭した。断頭後1分以内に下顎を摘出し凍結
させたミクロトームを用いて咬合面に垂直な臼歯
切断を調製し、螢光顕微鏡下に象牙質造歯細胞細
管への螢光物質の移行を観察した。その結果移行
が充分に行われたものを陽性(+〜)、移行が
不充分または全く行われなかつたものを陰性
(−)とする。 ウシ耳下腺より抽出した本発明の歯牙体液輸送
促進物質と唾液腺ホルモンの歯牙への体液輸送促
進効果の比較結果を下記第1表に示す。
The present invention is a novel dental fluid transport promoting substance obtained from bovine salivary glands, particularly parotid glands, and a method for producing the same. When a rabbit hypothalamus extract is administered to parotidectomized rats, fluid transport from the pulp of the tooth to the dentin and odontogenic cell tubules is no longer observed; It has already been shown that body fluid transport is observed when administered with substances. From this, it is thought that hypothalamic factors act directly on the parotid gland, and that promotion of fluid transport from the pulp of the tooth to the odontogenic cell tubules of the tooth depends on the parotid gland. Steinman et al. conducted research on caries-inducing substances and the development of dental caries in rats, and isolated a substance that promotes tooth fluid transport from pig parotid gland. [Endocrinology, 83 , 807]
(1968); Endocrinology, 106 , 1994 (1980)]. Furthermore, Steinman et al. reported that administration of this active substance to rats improves the supply of nutrients to the teeth, promotes tooth development and strengthening of tooth structure, and suppresses the incidence of dental caries. The present inventors also found that the salivary glands of cattle, especially the parotid gland,
As in the case of pigs, based on the expectation that there would be a substance that promotes tooth fluid transport (hereinafter referred to as a "dental fluid transport promoting substance"), this substance was introduced into the parotid gland of a cow. As a result of conducting research to determine whether the substance exists, the existence of the substance was confirmed.As a result of further research on the separation and purification of the substance, a method was discovered that could isolate an extremely pure tooth fluid transport promoting substance. This led to the elucidation of its physical and chemical properties. The tooth body fluid transport promoting substance provided by the present invention is a protein having the following physicochemical properties. (1) Properties: White powder (2) Molecular weight: Within the range of 25,000 to 35,000 as measured by disk electrophoresis on SDS-polyacrylamide gel. (3) Isoelectric point: PH is within the range of 5.8 to 6.6. (4) Rf value: 0.26~ as measured by electrophoresis on 10% polyacrylamide gel
It is within the range of 0.34. (5) Ultraviolet absorption spectrum: Maximum absorption wavelength (λmax) =
Approximately 280 nm Measurement conditions: 0.80 mg of sample dissolved in 1 ml of physiological saline, optical path length 1
cm, measured using a Hitachi EPS-3T spectrophotometer. (6) Absorbance: E 1 % 280on is within the range of 12 to 17. Measurement conditions: Same as the measurement conditions for ultraviolet absorption spectrum. (7) Solubility: Soluble in water (physiological saline) Insoluble in acetone. (8) Color reaction: Ninhydrin reaction Positive Biuretz reaction Positive Miron reaction Positive Sakaguchi reaction Positive Moritshu reaction Positive Anthrone reaction Positive Elson-Morgan reaction Positive (9) Partition coefficient (Kav value) Between the gel layer and liquid layer in gel filtration The distribution coefficient is calculated using the following formula. Kav=Ve-Vo/Vt-Vo Vt=Total volume of gel bed Ve=Eluent volume Vo=Volume of solvent outside gel particles Sephadex G-100 as gel filtration material
(manufactured by Pharmacia Fine Chemicals) and a 0.05M phosphate buffer with a pH of 7.2 is used as the eluent, the Kav value of the protein of the present invention is about 0.40. As mentioned above, the tooth fluid transport promoting substance extracted from pig parotid gland by Steinman et al. has a molecular weight of 8100, an isoelectric point of PH7.5, and an ultraviolet absorption spectrum as measured by disc electrophoresis on SDS-polyacrylamide gel. Although the substance has no maximum absorption wavelength (λmax) and therefore has an absorbance of 0 at E 1 % 280on , the physical and chemical properties of the substance of the present invention indicate that at least the molecular weight and ultraviolet absorption characteristics are similar to those of pig parotid glands. It is clearly different from the tooth body fluid transport-promoting substance extracted from , and is considered to be a new substance that has not been described in conventional literature. The salivary glands of mammals, especially the parotid gland, contain salivary gland hormones, which are proteins and have effects such as promoting hard tissue growth, activating mesenchymal tissue, lowering serum calcium, and increasing white blood cells. It has various excellent physiological activities and is widely used as a medicine. However, the present inventors have confirmed that this salivary gland hormone has no effect on body fluid transport to rat dentin odontogenic cell tubules. Therefore, it is clear that the dental fluid transport promoting substance present in the bovine parotid gland is a substance different from the salivary gland hormone in terms of its action. That is, the tooth fluid transport promoting activity of the substances of the present invention and salivary gland hormones was measured by the following method: Acriflavine hydrochloride as a fluorescent substance was intraperitoneally administered to 5-week-old rats at a rate of 5 mg per 100 g of body weight. Immediately after administration, the substance of the present invention or salivary gland hormone was intravenously administered in a volume of 0.1 ml, and the animals were decapitated 16 minutes later. Within 1 minute after decapitation, the mandible was extracted and frozen. A molar cut perpendicular to the occlusal plane was prepared using a frozen microtome, and the migration of fluorescent substances to the dentinal odontogenic cell tubules was observed under a fluorescence microscope. As a result, a case where the transfer was sufficiently carried out is judged as positive (+~), and a case where the transfer was insufficient or not carried out at all is judged as negative (-). Table 1 below shows the results of a comparison of the effects of the tooth body fluid transport promoting substance of the present invention extracted from bovine parotid gland and salivary gland hormones on promoting body fluid transport to the teeth.

【表】 本発明の歯牙体液輸送促進物質は、ウシの唾液
腺、例えば耳下腺を原料として以下に述べる工
程、すなわち、 (a) ウシの唾液腺の水抽出液をPH4.5〜5.5の酸性
にし、生ずる沈殿を除去する工程、 (b) 得られる上清を分子篩にかけて分子量が5000
〜50000の画分を捕集する工程、及び (c) 該画分をイオン交換体による等電点分画に付
して等電点がPH5.8〜6.6の画分を捕集する工程 を経て製造することができる。 ウシの唾液腺の腺体の水抽出はそれ自体公知の
方法により行なうことができる。例えば、ウシの
唾液腺から採取した新しい腺体を細かく切り刻ん
だものに、約4倍容量の水を加え、アルカリ例え
ば水酸化ナトリウム、炭酸ナトリウム、炭酸水素
ナトリウム等によりPHを中性(PH6.5〜7.5)、好
ましくはPH7.0に調整した後、撹拌しながら抽出
を行なう。撹拌は一般に冷却下、好ましくは0〜
5℃において適宜防腐剤(例えばトルエン)を加
え、数時間、通常2〜3時間行なうのが有利であ
る。 抽出が終つたら、混合液をフルイ(10〜20メツ
シユ程度のもの)にかけ、水性抽出液を分離す
る。 フルイ上に残つた残渣はそそのまま廃棄するこ
とができ、或いは必要に応じて、該残渣について
上記と同じ抽出操作を所望回数(通常はさらに
1、2回)繰り返し行なつてもよい。 残渣が除去された水性抽出液のPHを無機酸例え
ば塩酸により4.5〜5.5、好ましくは5.0に調整する
と沈殿が生ずるが、これを冷却下(好ましくは冷
蔵庫中;約0〜5℃に保持)に数時間乃至1日静
置して沈殿をさらに完結せしめることが望まし
い。 該沈殿を遠心分離(例えば8000rpmで20分間)
し、その上清液を分離回収する。 回収した上清液はゲル粒子を用いる分子篩クロ
マトグラフイーもしくは限外過膜または限外
過フアイバーなどの平板膜または中空繊維膜を用
いる分子篩操作に付される。 分子篩クロマトグラフイーによる分子篩操作
は、デキストラン及びポリアクリルアミドなどの
ゲル粒子をカラムに充填して用いられる。用いら
れるデキストランゲルとしては、例えば
Sephadex G―50,G―75及びG―100
(Pharmacia Fine Chemicals社製)、ポリアクリ
ルアミドゲルとしては、例えばBio―Gel P―
30,P―60およびP―100(Bio―Rad
Laboratories社製)などが有利に使用し得る。こ
れらゲル粒子の粒径には特に制約はないが、通常
40〜120μのものが好適である。また展開に使用
し得る緩衝液としては、ゲル粒子を平衡化させた
緩衝液を使用するのが好ましく、例えば0.1M酢
酸緩衝液(PH5.0)などが用いられれる。操作は
それ自体公知の方法で行うことができ、目的とす
る画分を容易に得ることができる。 また、限外過膜または限外過フアイバーを
用いる場合は、分画分子量30000〜100000、好ま
しくは約50000の上限限外過膜または上限限外
過フアイバー及び分画分子量1000〜10000、好
ましくは5000の下限限外過膜または下限限外
過フアイバーを用いる限外過に付することによ
つて行なわれる。限外過膜としては、例えば、
Diaflo XM―50(保持限界50000)、及びYM―5
(同5000 Amicon社製)、限外過フアイバーと
しては、例えばHollow Fiber H1P50(保持限界
50000)及びH1P5(同5000、Amicon社製)など
を用いることができる。 分離は限外過膜を用いる場合、上記で得られ
た上清液をXM―50を装填した202型撹拌式セル
(Amicon社製)に入れ、2Kg/cm2の窒素ガスで
加圧して過する。この過液をYM―5を装填
した上記したと同じセルに入れ、同様に窒素ガス
で加圧しながら、濃縮することにより、分画分子
量約5000〜50000の画分を得ることができる。 限外過フアイバーを用いる場合は、上記で得
られた上清液をDC4型限外過装置に装填した
Hollow Fiber中を高速で循環させることにより、
限外過膜を用いた場合と同様の画分を得ること
ができる。 かくして、分画分子量5000〜50000の活性成分
含有液を得ることができる。 このようにして得られた分画分子量5000〜
50000の活性成分含有液はイオン交換体による等
電点分画に付すことができるが、該活性成分含有
液を精製するために凍結乾燥したのち、水で抽出
するか、あるいは該濃縮液に約70〜80%飽和にな
るように硫酸アンモニウムを加えて沈殿を生ぜし
め、この沈殿を水に溶解したのち透析により脱塩
する操作を行なうことができる。脱塩操作はそれ
自体公知の方法、例えば該溶解液をセロフアンチ
ユーブにつめ蒸留水を透析外液とすることにより
容易に行うことができる。 該濃縮液は必要に応じ、電気泳動による等電点
分画、疎水性吸着体、陰イオン交換体または多孔
質ガラスを用いるクロマトグラフイーを単独であ
るいは2種以上組合せることにより、さらに精製
することができる。 電気泳動による等電点分画による方法は、それ
自体公知の方法により、すなわち、通電によつて
自由溶液あるいは適当なゲル中にあらかじめ安定
なPH勾配を形成させ、そのPH勾配に対して、本願
活性物質をその等電点と同一のPH層まで泳動さ
せ、そのPH層内に目的物を濃縮させたのち、該濃
縮分画より抽出する方法である。自由溶液又はゲ
ルとしては、シヨ糖の密度勾配溶液またはポリア
クリルアミドゲルを用いることができ、目的物を
PH層内に濃縮するためには自由溶液の場合は約48
時間、ゲルの場合は約6時間通電する必要があ
る。尚本願目的物はPH5.8〜6.6の層内から得るこ
とができる。 疎水性吸着体を用いる方法は、例えば疎水性吸
着体として、オクチル―セルローズCL―6Bまた
はフエニル―セフアローズCL―6B(Pharmacia
Fine Chemicals社製)などをカラムに充填し、
硫酸アンモニウム、食塩などの無機塩を約10〜20
%含有する溶液に前記工程で得られた濃縮液を加
え、この混合液をカラムに流すことによつて精製
することができる。 陰イオン交換体を用いる方法は、弱アルカリ性
好ましくは10〜50mMトリス緩衝液(PH8.5〜9.5)
等の緩衝液に溶解した活性物質を陰イオン交換体
と接触させ目的物を吸着させた後、塩化ナトリウ
ム、塩化カリウムなどの無機塩を加えイオン濃度
を高めた上記緩衝液もしくはPHを酸性(PH約4〜
5)とした酢酸緩衝液を用いて溶出させることに
よつて精製することができる。 多孔質ガラスを用いる方法は、上記活性物質を
含有する濃縮液を酸性、好ましくはPH4.5〜6.0と
したのち、多孔質ガラスと接触させ、次いでグリ
シンまたはプロリンなどのアミノ酸を加えたアル
カリ性、好ましくはPH7.5以上とした溶液を用い
て目的物を溶出させることができる。 これらの精製工程のほか、次に示す陰イオン交
換体による等電点分画法を繰り返し行うこともで
きる。 前記の如くして得られた分画分子量5000〜
50000の活性成分含有液は次いでイオン交換体に
よる等電点分画に付す。 イオン交換体による等電点分画は、蛋白質の等
電点の差を利用して分離するクロマトフオーカシ
ングを用いることができる。 クロマトフオーカシングに使用するイオン交換
体としては、例えばPBE94陰イオン交換体
(Pharmacia Fine Chemicals社製)を用いるこ
とができる。クロマトフオーカシングを行うに
は、上記したPBE94陰イオン交換体を開始緩衝
液で平衡化させる。ここで使用する緩衝液は、従
来より用いられている通常の陰イオン交換体に使
用する緩衝液を使用することができ、例えば
0.025Mトリス緩衝液(PH8.3)などが挙げられ
る。 平衡化した陰イオン交換体をカラムに充填し、
次いで上記分子節操作により得た分画分子量5000
〜50000の活性物質含有液を弱アルカリ性、好ま
しくはPH7.5〜8.5としのちカラムに添加し、溶出
液を用いて溶出する。溶出液としてはポリバツフ
アー(広いPH範囲で均一な緩衝能をもたせるため
に数種類の緩衝イオンが含まれている緩衝液)が
用いられる。 用いられるポリバツフアーとしては、ポリバツ
フアー74またはポリバツフアー96(Pharmacia
Fine Chemicals社製)などが挙げられる。 カラムに滴下する際のポリバツフアーのPHを
5.0に合わせ、ポリバツフアーがカラムを流れる
に従つて、カラム内でPH勾配が形成され、蛋白質
はその等電点の高いものから順次溶出され、本願
目的物質はPH7.0〜7.4の溶出液に含まれている。
かくして得られた溶出液は、前記した限外過
膜、限外過フアイバーまたは透析などの操作に
付し、脱塩したのち凍結乾燥することにより目的
とする歯牙体液輸送促進物質を得ることができ
る。 かくして得られた該歯牙体液輸送促進物質は齲
蝕の予防、治療に有用である。即ち、齲歯は微生
物の作用により生じた歯垢中に、同じく微生物の
代謝物である乳酸が滞留ることにより酸腐蝕が進
み、エナメル層のみならず象牙質へ齲蝕が進行す
る。齲歯の発生に関する要因は多枝にわたるが最
終的に象牙質まで齲蝕された場合においても歯牙
は第二象牙質を形成することにより防御する能力
を備えている。この際、象牙質の機能的増殖にお
いて栄養源の供給は必須なものであり、歯牙体液
輸送を亢進させる物質が第二象牙質の形成に対し
て促進的に作用すると考えられる。 本発明に従う歯牙体液促進物質をかかる齲蝕防
止剤または治療剤などとして用いるには、医薬製
剤調製液(注射用蒸留水、生理食塩液、燐酸緩衝
液、グリシン緩衝液、ベロナール緩衝液等)に歯
牙体液促進物質を添加溶解させ、注射液とするこ
とができる。さらに、この注射液に成形性を高め
るために補助剤として例えば塩化ナトリウム、グ
リシン、乳糖、マンニツト、ソルビツト、シヨ
糖、水解でんぷん、デキストラン等の補助剤を加
え、凍結乾燥製剤とすることもできる。さらに、
通常使用している歯みがき剤に歯牙体液輸送物質
を加え、齲蝕防止剤及び治療剤として使用するこ
ともできる。 さらに、本物質は歯牙のみならず、生体の硬組
織全般、特に骨化形成の促進を期待することがで
きる。 実施例 1 ウシ耳下腺1Kgをミンチし、4倍量の水を加え
て2時間撹拌抽出した後、遠心分離し、沈殿と上
清に分ける。沈殿はさらに2倍量の水を加えて再
び抽出、遠心分離を繰返し、得られた上清とさき
の分と合わせ、1N塩酸を加えてPH5.0に調整す
る。析出した沈殿を8000rpm、20分間遠心分離し
て除去し、この上清を1N水酸化ナトリウムでPH
7.0とした。この溶液をDC4型限外過装置
(Amicon社製)を用い、分画分子量50000の限外
過フアイバーHIP50(Amicon社製)で過し、
得られた過液を分画分子量5000の限外過フア
イバーHIP5(Amicon社製)で濃縮した。この濃
縮液に硫酸アンモニウムを80%飽和になるように
溶解した後、約4℃で一夜静置し、遠心分離し
た。得られた沈殿に水を加え、活性成分を抽出し
た。抽出液を0.1M酢酸緩衝液(PH5.0)で平衡化
したセフアデツクスG―75カラム(Pharmacia
Fine Chemicals社製ゲル、径5cm、高さ90cm)
に添加し、同緩衝液で溶出し、活性分画を回収
し、凍結乾燥し、活性物質を得た。 次いで、該活性物質を0.025Mトリス緩衝液
(PH8.3)に溶解し、同緩衝液で平衡化したPBE94
ゲルカラム(Pharmacia Fine Chemicals社製ゲ
ル、径1.4cm、高さ13cm)に添加し、水で10倍に
希釈したポリバツフアー74(PH5.0:Pharmacia
Fine Chemicals社製)で溶出し、活性ピークを
集めて濃縮した。再びPBE94ゲルカラムを用い
て同様にクロマトフオーカシングによつて精製
し、分画分子量10000の限外過膜PM―10
(Amicon社製)で脱塩してから凍結乾燥し、歯
牙体液輸送促進物質(8.1mg)を得た。本物質は
ポリアクリルアミドゲルのデイスク電気泳動で単
一バンドを示し、SDS―ポリアクリルアミドゲル
のデイスク電気泳動により測定した分子量は約
30000、10%ポリアクリルアミドゲルの電気泳動
法によるRf値は0.28であつた。また6N塩酸を用
い110℃で24時間加水分解した結果によるアミノ
酸分析値は下記に示す通りであつた。 構成アミノ酸(100残基当りの残基数) リジン 7.54,ヒスチジン 4.27,アルギニン
3.63,アスパラギン酸 12.50,トレオニン
5.17,セリン 4.52,グルタミン酸 9.31,プロ
リン 8.09,グリシン7.92,アラニン 6.78,バ
リン 7.48,メチオニン 1.05,イソロイシン
1.92,ロイシン 10.57,チロシン 3.10,フエニ
ルアラニン 4.35,トリプトフアン0.77 ラツトに対して70ng/Kgi.v.で歯牙への体液輸
送促進活性を示した。 実施例 2 実施例1と同様にして得たセフアデツクスG―
75活性分画の凍結乾燥物を1.0M硫酸アンモニウ
ムを含む0.01Mリン酸ナトリウム緩衝液(PH6.8)
に溶解し、この溶解液を同緩衝液で平衡化したオ
クチル―セフアローズCL―6Bカラム
(Pharmacia Fine Chemicals社製ゲル、径2.6
cm、高さ20cm)に添加し、同緩衝液で洗浄し素通
りさせる。この非吸着液を透析した後、濃縮して
から2%両性担体(バイオライトPH3〜10、Bio
―Rad Laboratories社製)を含む4%ポリアク
リルアミドゲルによる等電点電気泳動を行つた。
等電点電気泳動ゲルの活性部分を水で抽出し、限
外過膜PM―10(Amicon社製)によつて脱塩し
てから実施例1と同様にクロマトフオーカシング
によつて純化した凍結乾燥物(5.6mg)を得た。
ラツトに対して90ng/Kgi.v.で歯牙への体液輸送
促進活性を示した。 実施例 3 実施例1と同様にして得たセフデツクスG―75
活性分画の凍結乾燥物を0.05Mトリス緩衝液(PH
9.0)に溶解し、該溶解液を同緩衝液で平衡化し
たDEAE―セルロースカラム(ワツトマン社製
DE52、径5.6cm、高さ20cm)に添加し、同緩衝液
で洗浄してから0.5M NaClを含む0.05Mトリス緩
衝液(PH9.0)で溶出した。この溶出液を限外
過膜PM―10(Amicon社製)を用いて脱塩してか
ら実施例1と同様な方法でクロマトフオーカシン
グを行い純化した凍結乾燥物を得た。得られた活
性物質の収量は6.8mgであり、ラツトに対して
70ng/Kgi.v.で歯牙への体液輸送促進活性を示し
た。 実施例 4 実施例1と同様にして得たセフアデツクスG―
75活性分画の凍結乾燥物を0.05M酢酸緩衝液(PH
5.0)に溶解し、同緩衝液で平衡化したCPG―10
カラム(エレクトロヌクレオニクス社製2000Å、
120〜200メツシユ、径2.6cm、高さ20cm)に添加
し、同緩衝液で洗浄してから、0.5Mグリシン溶
液(PH9.0)で溶出した。この溶出液を限外過
膜PM―10(Amicon社製)により脱塩してから実
施例1と同様な方法でクロマトフオーカシングを
行い純化し、目的とする凍結乾燥物(7.5mg)を
得た。ラツトに対して80ng/Kgi.v.で歯牙への体
液輸送促進活性を示した。
[Table] The tooth body fluid transport promoting substance of the present invention is produced by using bovine salivary glands, such as parotid glands, as a raw material and following the steps described below: (a) Aqueous extract of bovine salivary glands is made acidic to a pH of 4.5 to 5.5. (b) passing the resulting supernatant through a molecular sieve until the molecular weight is 5000.
50,000, and (c) subjecting the fraction to isoelectric point fractionation using an ion exchanger to collect a fraction with an isoelectric point of PH5.8 to 6.6. It can be manufactured through Water extraction of the bodies of bovine salivary glands can be carried out by methods known per se. For example, a fresh gland body taken from a cow's salivary gland is finely chopped, about 4 times the volume of water is added, and the pH is neutralized (PH6.5 ~ 7.5), preferably after adjusting the pH to 7.0, perform extraction while stirring. Stirring is generally carried out under cooling, preferably between 0 and
It is advantageous to carry out the reaction at 5° C. for several hours, usually 2 to 3 hours, with the addition of an appropriate preservative (for example toluene). Once the extraction is complete, pass the mixture through a sieve (about 10 to 20 meshes) to separate the aqueous extract. The residue remaining on the sieve can be discarded as is, or if necessary, the same extraction operation as described above may be repeated for the residue a desired number of times (usually one or two more times). When the pH of the aqueous extract from which the residue has been removed is adjusted to 4.5 to 5.5, preferably 5.0, with an inorganic acid such as hydrochloric acid, a precipitate is formed, which is then cooled (preferably in a refrigerator; kept at about 0 to 5°C). It is desirable to allow the mixture to stand for several hours to one day to further complete the precipitation. Centrifuge the precipitate (e.g. 8000 rpm for 20 minutes)
Then, separate and collect the supernatant. The collected supernatant liquid is subjected to molecular sieve chromatography using gel particles or molecular sieving operation using a flat membrane or hollow fiber membrane such as an ultrafiltration membrane or an ultrafiltration fiber. Molecular sieve operation by molecular sieve chromatography is used by filling a column with gel particles such as dextran and polyacrylamide. As the dextran gel used, for example,
Sephadex G-50, G-75 and G-100
(manufactured by Pharmacia Fine Chemicals), and polyacrylamide gels such as Bio-Gel P-
30, P-60 and P-100 (Bio-Rad
Laboratories, Inc.) can be advantageously used. There are no particular restrictions on the particle size of these gel particles, but usually
A thickness of 40 to 120μ is suitable. Further, as a buffer solution that can be used for development, it is preferable to use a buffer solution in which gel particles are equilibrated, such as a 0.1M acetate buffer solution (PH5.0). The operation can be performed by a method known per se, and the desired fraction can be easily obtained. In addition, when using an ultrafiltration membrane or ultrafilter, an upper limit ultrafiltration membrane or an ultrafiltration fiber with a molecular weight cut off of 30,000 to 100,000, preferably about 50,000 and a molecular weight cutoff of 1000 to 10,000, preferably 5,000 This is carried out by ultrafiltration using a lower limit ultrafiltration membrane or a lower limit ultrafiltration fiber. Examples of ultrafiltration membranes include:
Diaflo XM-50 (retention limit 50000) and YM-5
(manufactured by Amicon 5000), for example, Hollow Fiber H1P50 (retention limit
50000) and H1P5 (5000, manufactured by Amicon), etc. can be used. When using an ultrafiltration membrane for separation, put the supernatant obtained above into a 202 type stirred cell (manufactured by Amicon) loaded with XM-50, pressurize with 2 kg/cm 2 of nitrogen gas, and filtrate. do. This filtrate is placed in the same cell as described above loaded with YM-5 and concentrated while pressurized with nitrogen gas to obtain a fraction with a molecular weight cut-off of about 5,000 to 50,000. When using an ultrafiltration fiber, load the supernatant obtained above into a DC4 type ultrafiltration device.
By circulating the hollow fiber at high speed,
Fractions similar to those obtained using an ultrafiltration membrane can be obtained. In this way, an active ingredient-containing liquid having a molecular weight cut-off of 5,000 to 50,000 can be obtained. The molecular weight fraction obtained in this way is 5000~
50,000 active ingredient-containing liquid can be subjected to isoelectric point fractionation using an ion exchanger, but in order to purify the active ingredient-containing liquid, it is freeze-dried and then extracted with water, or the concentrated liquid is An operation can be carried out in which ammonium sulfate is added to produce a precipitate at a saturation of 70 to 80%, the precipitate is dissolved in water, and then desalted by dialysis. The desalting operation can be easily carried out by a method known per se, for example, by filling the solution in a cellophane tube and using distilled water as the external dialysis fluid. The concentrated solution is further purified, if necessary, by isoelectric point fractionation by electrophoresis, chromatography using a hydrophobic adsorbent, an anion exchanger, or porous glass, either alone or in combination of two or more. be able to. The method of isoelectric focusing by electrophoresis is carried out by a method known per se, that is, by applying an electric current to form a stable PH gradient in a free solution or a suitable gel, and applying the present invention to the PH gradient. In this method, the active substance is migrated to a PH layer that is the same as its isoelectric point, the target substance is concentrated in the PH layer, and then extracted from the concentrated fraction. As a free solution or gel, a density gradient solution of sucrose or a polyacrylamide gel can be used, and the target substance can be
48 for the free solution to concentrate in the PH layer.
In the case of gel, it is necessary to apply electricity for about 6 hours. The object of the present application can be obtained from within the layer with a pH of 5.8 to 6.6. A method using a hydrophobic adsorbent includes, for example, octyl-cellulose CL-6B or phenyl-cephalose CL-6B (Pharmacia
Fine Chemicals) etc. are packed in the column.
Approximately 10 to 20 inorganic salts such as ammonium sulfate and common salt
Purification can be carried out by adding the concentrated solution obtained in the above step to a solution containing %. The method using an anion exchanger is a weak alkaline solution, preferably 10-50mM Tris buffer (PH8.5-9.5).
After contacting the active substance dissolved in a buffer solution such as ion exchanger with an anion exchanger to adsorb the target substance, the above buffer solution or PH in which inorganic salts such as sodium chloride, potassium chloride, etc. are added to increase the ion concentration is acidified (PH Approximately 4~
It can be purified by elution using the acetate buffer described in 5). In the method using porous glass, the concentrated liquid containing the active substance is made acidic, preferably pH 4.5 to 6.0, and then brought into contact with porous glass, and then made alkaline, preferably pH 4.5 to 6.0, by adding an amino acid such as glycine or proline. The target substance can be eluted using a solution with a pH of 7.5 or higher. In addition to these purification steps, the following isoelectric focusing method using an anion exchanger can also be repeatedly performed. The molecular weight cutoff obtained as above is 5000~
The solution containing 50,000 active ingredients is then subjected to isoelectric point fractionation using an ion exchanger. For the isoelectric point fractionation using an ion exchanger, chromatofocusing, which separates proteins using the difference in isoelectric point, can be used. As the ion exchanger used for chromatofocusing, for example, PBE94 anion exchanger (manufactured by Pharmacia Fine Chemicals) can be used. To perform chromatofocusing, the PBE94 anion exchanger described above is equilibrated with a starting buffer. The buffer used here can be a buffer used for conventional anion exchangers, such as
Examples include 0.025M Tris buffer (PH8.3). Fill the column with the equilibrated anion exchanger,
Next, the molecular weight cutoff 5000 obtained by the above molecular section operation
~50,000 active substance-containing solution is slightly alkaline, preferably pH 7.5-8.5, is added to the column and eluted using the eluent. Polybuffer (a buffer containing several types of buffer ions to provide uniform buffering capacity over a wide pH range) is used as the eluent. The polybuffer used is Polybuffer 74 or Polybuffer 96 (Pharmacia
(manufactured by Fine Chemicals), etc. The pH of the polybuffer when dropping it onto the column
5.0, as the polybuffer flows through the column, a pH gradient is formed within the column, and proteins are eluted in order from those with higher isoelectric points, and the target substance of the present application is contained in the eluate with a pH of 7.0 to 7.4. It is.
The eluate thus obtained can be subjected to the above-mentioned ultrafiltration membrane, ultrafiltration fiber, or dialysis, desalted, and then freeze-dried to obtain the desired tooth fluid transport promoting substance. . The tooth fluid transport promoting substance thus obtained is useful for the prevention and treatment of dental caries. That is, in dental caries, lactic acid, which is also a metabolite of microorganisms, remains in dental plaque caused by the action of microorganisms, and acid corrosion progresses, and caries progresses not only to the enamel layer but also to the dentin. There are many factors involved in the development of dental caries, but even when the dentin is finally caried, the tooth has the ability to protect itself by forming secondary dentin. At this time, the supply of nutrients is essential for the functional growth of dentin, and it is thought that substances that enhance tooth body fluid transport act to promote the formation of secondary dentin. In order to use the tooth fluid promoting substance according to the present invention as such an anti-caries agent or a therapeutic agent, it is necessary to add the tooth fluid promoter to a pharmaceutical preparation solution (distilled water for injection, physiological saline, phosphate buffer, glycine buffer, veronal buffer, etc.). An injection solution can be prepared by adding and dissolving a body fluid promoting substance. Furthermore, in order to improve moldability, adjuvants such as sodium chloride, glycine, lactose, mannitrate, sorbitol, sucrose, hydrolyzed starch, and dextran can be added to this injection solution to form a freeze-dried preparation. moreover,
Dental fluid transport substances can also be added to commonly used dentifrices and used as anti-caries and therapeutic agents. Furthermore, this substance can be expected to promote not only teeth but also the hard tissues of living organisms in general, especially ossification. Example 1 1 kg of bovine parotid gland was minced, 4 times the volume of water was added, and the mixture was stirred for 2 hours for extraction, followed by centrifugation and separation into precipitate and supernatant. Add twice as much water to the precipitate, repeat the extraction and centrifugation, combine the resulting supernatant with the previous one, and adjust the pH to 5.0 by adding 1N hydrochloric acid. The precipitate was removed by centrifugation at 8000 rpm for 20 minutes, and the supernatant was PHified with 1N sodium hydroxide.
It was set to 7.0. This solution was passed through an ultrafiltration fiber HIP50 (manufactured by Amicon) with a molecular weight cutoff of 50,000 using a DC4 type ultrafiltration device (manufactured by Amicon).
The obtained filtrate was concentrated using an ultrafiltration fiber HIP5 (manufactured by Amicon) with a molecular weight cutoff of 5000. After ammonium sulfate was dissolved in this concentrated solution to 80% saturation, it was left standing at about 4° C. overnight and centrifuged. Water was added to the resulting precipitate to extract the active ingredient. The extract was equilibrated with 0.1M acetate buffer (PH5.0) using a Sephadex G-75 column (Pharmacia
Gel manufactured by Fine Chemicals, diameter 5 cm, height 90 cm)
and eluted with the same buffer, the active fraction was collected and lyophilized to obtain the active substance. The active substance was then dissolved in 0.025M Tris buffer (PH8.3) and PBE94 equilibrated with the same buffer.
Polybuffer 74 (PH5.0: Pharmacia
Fine Chemicals), and active peaks were collected and concentrated. Purify by chromatography again using PBE94 gel column, and apply ultrafiltration membrane PM-10 with a molecular weight cutoff of 10,000.
(manufactured by Amicon) and freeze-dried to obtain a tooth fluid transport promoting substance (8.1 mg). This substance shows a single band in polyacrylamide gel disc electrophoresis, and the molecular weight measured by SDS-polyacrylamide gel disc electrophoresis is approximately
The Rf value determined by electrophoresis using 30,000, 10% polyacrylamide gel was 0.28. Furthermore, the amino acid analysis values obtained from the results of hydrolysis using 6N hydrochloric acid at 110°C for 24 hours were as shown below. Constituent amino acids (number of residues per 100 residues) Lysine 7.54, Histidine 4.27, Arginine
3.63, aspartic acid 12.50, threonine
5.17, serine 4.52, glutamic acid 9.31, proline 8.09, glycine 7.92, alanine 6.78, valine 7.48, methionine 1.05, isoleucine
1.92, leucine 10.57, tyrosine 3.10, phenylalanine 4.35, tryptophan 0.77 It showed activity in promoting body fluid transport to the teeth at 70 ng/Kgi.v. in rats. Example 2 Sephadex G- obtained in the same manner as Example 1
The lyophilized product of the 75 active fraction was added to 0.01M sodium phosphate buffer (PH6.8) containing 1.0M ammonium sulfate.
Octyl-Sepharose CL-6B column (Pharmacia Fine Chemicals gel, diameter 2.6) was prepared by equilibrating this solution with the same buffer.
cm, height 20 cm), wash with the same buffer solution and allow it to pass through. After dialyzing this non-adsorbed liquid, it was concentrated and then 2% amphoteric carrier (BioLite PH3-10, Bio
Isoelectric focusing was carried out using a 4% polyacrylamide gel containing 4% polyacrylamide gel (manufactured by Rad Laboratories).
The active part of the isoelectric focusing gel was extracted with water, desalted using ultrafiltration membrane PM-10 (manufactured by Amicon), and purified by chromatofocusing in the same manner as in Example 1. A lyophilized product (5.6 mg) was obtained.
In rats, a dose of 90 ng/Kgi.v. showed activity in promoting body fluid transport to the teeth. Example 3 Cefdex G-75 obtained in the same manner as Example 1
The lyophilized active fraction was dissolved in 0.05M Tris buffer (PH
9.0) and equilibrated the solution with the same buffer.
DE52 (diameter 5.6 cm, height 20 cm), washed with the same buffer, and eluted with 0.05 M Tris buffer (PH 9.0) containing 0.5 M NaCl. This eluate was desalted using an ultrafiltration membrane PM-10 (manufactured by Amicon), and then subjected to chromatofocusing in the same manner as in Example 1 to obtain a purified lyophilized product. The yield of active substance obtained was 6.8 mg, which was
At 70ng/Kgi.v., it showed activity in promoting body fluid transport to teeth. Example 4 Cephadex G- obtained in the same manner as Example 1
The lyophilized product of the 75 active fraction was dissolved in 0.05M acetate buffer (PH
CPG-10 dissolved in 5.0) and equilibrated with the same buffer
Column (Electronucleonics 2000Å,
(120 to 200 meshes, diameter 2.6 cm, height 20 cm), washed with the same buffer, and eluted with 0.5 M glycine solution (PH9.0). This eluate was desalted using an ultrafiltration membrane PM-10 (manufactured by Amicon) and purified by chromatofocusing in the same manner as in Example 1 to obtain the desired lyophilized product (7.5 mg). Obtained. In rats, a dose of 80 ng/Kgi.v. showed activity in promoting body fluid transport to the teeth.

Claims (1)

【特許請求の範囲】 1 ウシの唾液腺から得られる、SDS―ポリアク
リルアミドゲルのデイスク電気泳動法により測定
した分子量が25000〜35000、等電点がPH5.8〜
6.6、10%ポリアクリルアミドゲルの電気泳動法
により測定したRf値が0.26〜0.34、紫外線吸収ス
ペクトルの極大吸収波長(λmax)が約280nmで
且つ吸光度E1%280onが12〜17であることを特徴とす
る歯牙体液輸送促進物質。 2 (a) ウシの唾液腺の水抽出液をPH4.5〜5.5の
酸性にし、生ずる沈殿を除去する工程、 (b) 得られる上清を分子篩にかけて分子量が5000
〜50000の画分を捕集する工程、及び (c) 該画分をイオン交換体により等電点分画に付
して等電点がPH5.8〜6.6の画分を捕集する工程 よりなることを特徴とする歯牙体液輸送促進物質
の製造方法。 3 工程(b)で得られる分子量が5000〜50000の画
分を、硫酸アンモニウムを用いる塩析、水抽出及
び脱塩処理に付した後工程(c)に付す特許請求の範
囲第2項記載の方法。
[Claims] 1. Obtained from bovine salivary glands, has a molecular weight of 25,000 to 35,000 and an isoelectric point of PH5.8 to 35,000, as measured by disk electrophoresis on SDS-polyacrylamide gel.
6.6, the Rf value measured by 10% polyacrylamide gel electrophoresis is 0.26 to 0.34, the maximum absorption wavelength (λmax) of the ultraviolet absorption spectrum is approximately 280 nm, and the absorbance E 1 % 280on is 12 to 17. Substances that promote tooth fluid transport. 2 (a) A process of acidifying the aqueous extract of bovine salivary glands to pH 4.5 to 5.5 and removing the resulting precipitate, (b) Passing the resulting supernatant through a molecular sieve until the molecular weight is 5000.
50,000, and (c) subjecting the fraction to isoelectric point fractionation using an ion exchanger to collect a fraction with an isoelectric point of PH5.8 to 6.6. A method for producing a tooth fluid transport promoting substance, characterized in that: 3. The method according to claim 2, wherein the fraction having a molecular weight of 5,000 to 50,000 obtained in step (b) is subjected to salting out using ammonium sulfate, water extraction, and desalting treatment, followed by step (c). .
JP58220668A 1983-11-25 1983-11-25 Substance for promoting transport of dental fluid and its production Granted JPS60115527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58220668A JPS60115527A (en) 1983-11-25 1983-11-25 Substance for promoting transport of dental fluid and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58220668A JPS60115527A (en) 1983-11-25 1983-11-25 Substance for promoting transport of dental fluid and its production

Publications (2)

Publication Number Publication Date
JPS60115527A JPS60115527A (en) 1985-06-22
JPH0259840B2 true JPH0259840B2 (en) 1990-12-13

Family

ID=16754576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58220668A Granted JPS60115527A (en) 1983-11-25 1983-11-25 Substance for promoting transport of dental fluid and its production

Country Status (1)

Country Link
JP (1) JPS60115527A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4424759B2 (en) * 1997-04-28 2010-03-03 あすか製薬株式会社 Moisturizer, cosmetics and pharmaceuticals containing it
JP6846844B2 (en) * 2016-07-05 2021-03-24 多木化学株式会社 Collagen manufacturing method

Also Published As

Publication number Publication date
JPS60115527A (en) 1985-06-22

Similar Documents

Publication Publication Date Title
US4761471A (en) Bone morphogenetic protein composition
Hay The isolation from human parotid saliva of a tyrosine-rich acidic peptide which exhibits high affinity for hydroxyapatite surfaces
Armstrong Characterisation studies on the specific human salivary proteins adsorbed in vitro by hydroxyapatite
FR2501692A1 (en) NEW ERYTHROPOIETIN PRODUCT AND PROCESS FOR PREPARING THE SAME
JPH0430960B2 (en)
JPH11509721A (en) How to obtain high purity von Willebrand factor
PT88626B (en) Process for the preparation of a polyphenol-based growth factor of milk
JPH0764875B2 (en) Novel polypeptide having anticoagulant effect
JPH11504316A (en) Agents that bind to advanced glycosylation end products and methods of use
US4526717A (en) Polypeptide having an action on the immunological system, processes for its isolation and purification, its use, agents containing this compound, and its cleavage products, their use and agents containing these products
CA1199579A (en) Process for the purification of physiologically active substance having antitumor activity
SU1012786A3 (en) Method for preparing proteinaceous complex stimulating secretion of insulin
JPS6019719A (en) Protein having antitumor activity
JPS6236326A (en) Remedy for disease of hematopoietic organ
JPH06312922A (en) Skin-beautifying agent
CA1198672A (en) Fibrinolytically active agent and a method for the preparation thereof
JPH0259840B2 (en)
EP0397571A1 (en) Use of K-Caseinoglycopeptide for preparation of a composition, especially a drug, for prevention and treatment of thrombosis
CA1297634C (en) Anticoagulating substance and preparation process thereof
US3522229A (en) Glycoprotein from saliva or salivary glands having gastric acid secretion inhibitory as well as anti-ulcerative activity and method of collecting the same
Huebers et al. Isolation and characterisation of rat mucosal ferritin
US4745101A (en) Novel peptide having dentinal fluid transport-stimulating activity
Nexø et al. Structural homologies of cobalamin-binding proteins: Tryptic peptide mapping of intrinsic factor, transcobalamin and haptocorrin from man, hog and rabbit
JPH0364519B2 (en)
JPS6346760B2 (en)