JPH0259805A - Temperature controller - Google Patents
Temperature controllerInfo
- Publication number
- JPH0259805A JPH0259805A JP21101188A JP21101188A JPH0259805A JP H0259805 A JPH0259805 A JP H0259805A JP 21101188 A JP21101188 A JP 21101188A JP 21101188 A JP21101188 A JP 21101188A JP H0259805 A JPH0259805 A JP H0259805A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- zero
- materials
- refrigerator
- room
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 claims abstract description 24
- 238000001514 detection method Methods 0.000 claims description 10
- 239000003507 refrigerant Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 6
- 239000003638 chemical reducing agent Substances 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
Landscapes
- Control Of Temperature (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、冷凍機等に利用される温度制御装置に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a temperature control device used in refrigerators and the like.
従来の技術
近年、ニーズの多様化に伴い、正確な温度制御ができ、
経年に対しても安定な温度制御装置が必要とされている
。Conventional technology In recent years, with the diversification of needs, accurate temperature control has become possible.
There is a need for a temperature control device that is stable over time.
以下、図面を参照しながら従来の温度制御装置について
説明する。第2図は、圧縮式冷凍機の構成図であり、第
3図は第2図の圧縮式冷凍機の温度制御装置20に相当
する従来のサーモスタンドによる温度制御装置の構成図
である。Hereinafter, a conventional temperature control device will be described with reference to the drawings. FIG. 2 is a block diagram of a compression type refrigerator, and FIG. 3 is a block diagram of a conventional temperature control device using a thermostand, which corresponds to the temperature control device 20 of the compression type refrigerator shown in FIG.
第2図において、20は温度制御装置、21は圧縮機、
22は凝縮器、23は減圧器、24は蒸発器である。第
3図において25はツマミ、26はカム、27は調整バ
ネ、28はアームa、29は接点a、30は接点b、3
Iはアームb、32はダイヤフラム、33は怒熱管、3
4は支点a。In FIG. 2, 20 is a temperature control device, 21 is a compressor,
22 is a condenser, 23 is a pressure reducer, and 24 is an evaporator. In Fig. 3, 25 is a knob, 26 is a cam, 27 is an adjustment spring, 28 is an arm a, 29 is a contact a, 30 is a contact b, 3
I is arm b, 32 is diaphragm, 33 is raging tube, 3
4 is the fulcrum a.
35は支点b、36はケースである。以下動作を説明す
る。35 is a fulcrum b, and 36 is a case. The operation will be explained below.
第2図に示す圧縮式冷凍機は、冷媒が圧縮器21、凝縮
器22.減圧器23.蒸発器24を循環し、気体、液体
と変化する熱の移動により冷却機能を発渾するものであ
る。暴発器24から低温低圧の気体冷媒が圧縮器20に
加えられる。圧縮器20では、この冷媒を圧縮し高温高
圧の気体冷媒にし、凝縮器22に加える。凝縮器22は
、常温の冷却水または空気により熱交換し、高温高圧の
気体冷媒を常温高圧の液冷媒とし減圧器23に与える。In the compression refrigerator shown in FIG. 2, the refrigerant is supplied to a compressor 21, a condenser 22. Pressure reducer 23. It circulates through the evaporator 24 and develops a cooling function by transferring heat that changes between gas and liquid. A low-temperature, low-pressure gaseous refrigerant is added to the compressor 20 from the blower 24 . The compressor 20 compresses this refrigerant into a high-temperature, high-pressure gaseous refrigerant, which is then added to the condenser 22 . The condenser 22 exchanges heat with room-temperature cooling water or air, and supplies the high-temperature, high-pressure gas refrigerant to the pressure reducer 23 as a room-temperature, high-pressure liquid refrigerant.
減圧器23は、常温高圧の液冷媒を蒸発器24に送る前
に、あらかじめ蒸発しやすい状態にまで圧力を下げた低
温低圧の液体冷媒に変化させる。蒸発器24では、この
低温低圧の液体冷媒が周囲の空気から、蒸発に必要な熱
を奪1)ながら蒸発していき、熱を奪われた周囲の空気
は冷却されf発器24の設置した庫内または室内を冷却
することができる。この時庫内または室内の温度を一定
に保つものが温度制御装置20で、庫内または室内の温
度を検出して設定温度より庫内または室内の温度が高い
場合、圧縮機21を運転し庫内または室内を冷却し、設
定温度に達した場合圧llii機21を停止させ、庫内
または室内を一定に保つ働きをするものである。第3図
は、温度制御装置2+に使われる従来のサーモスタット
による温度制御装置であり、この動作は、庫内または室
内の温度が低(なると感熱管33の温度が低くなり、ダ
イヤフラム32の中に封入された冷媒ガスの温度も低く
なって、ダイヤフラム32の内部の圧力が低下するため
ダイヤフラム32が収縮しアームa28が支点a34を
支点として動き、接点a29と接点b30を切り離しO
FFとする。再び庫内または室内の温度が上昇した場合
、感熱管33により、ダイヤフラム32に封入された冷
媒ガスの温度が上昇し、ダイヤフラム32内部の圧力が
上昇し、ダイヤフラム32の膨張によりアームa28が
支点a34を支点として動き、接点a29と接点b30
を接触させONとする。接点a29と接点b30のON
、OFF点は調整バネ27の強さによって変化する。ま
た、この調整バネ27の強さは、ツマミ25を回すこと
により動くカム26により、アームb31が支点b35
を支点として動くことにより変えられる。従って、設定
温度に対応して、ツマミ25の位置を決め、接点a29
と接点b30のON、OFFにより、前記第2図の圧縮
機を制御してやれば、庫内あるいは室内の温度を一定に
保つことができる(例えば「製品別サービス技術 増補
版Jpp129〜pp166゜日本放送出版協会)。The pressure reducer 23 converts the normal temperature, high pressure liquid refrigerant into a low temperature, low pressure liquid refrigerant whose pressure has been lowered to a state where it can easily evaporate, before sending it to the evaporator 24 . In the evaporator 24, this low-temperature, low-pressure liquid refrigerant evaporates while removing the heat necessary for evaporation from the surrounding air. It is possible to cool the inside of the refrigerator or the room. At this time, the temperature control device 20 keeps the temperature inside the refrigerator or the room constant, and detects the temperature inside the refrigerator or the room.If the temperature inside the refrigerator or the room is higher than the set temperature, the compressor 21 is operated. It functions to cool the inside or the room, and when the set temperature is reached, the pressurizer 21 is stopped to keep the inside or the room at a constant temperature. Fig. 3 shows a conventional thermostat-based temperature control device used in the temperature control device 2+. The temperature of the enclosed refrigerant gas also decreases, and the pressure inside the diaphragm 32 decreases, so the diaphragm 32 contracts and the arm a28 moves about the fulcrum a34, separating the contacts a29 and b30.
FF. When the temperature inside the refrigerator or the room rises again, the temperature of the refrigerant gas sealed in the diaphragm 32 rises due to the heat-sensitive tube 33, the pressure inside the diaphragm 32 rises, and the expansion of the diaphragm 32 causes the arm a28 to move to the fulcrum a34. It moves with the fulcrum as a fulcrum, and the contact a29 and the contact b30
Touch it to turn it ON. ON of contact a29 and contact b30
, the OFF point changes depending on the strength of the adjustment spring 27. Further, the strength of the adjustment spring 27 is determined by the cam 26 that moves by turning the knob 25, so that the arm b31 is moved to the fulcrum b35.
It can be changed by moving using the fulcrum as a fulcrum. Therefore, the position of the knob 25 is determined according to the set temperature, and the contact a29 is
By controlling the compressor shown in Fig. 2 by turning on and off contact b30, the temperature inside the refrigerator or room can be kept constant (for example, "Product Service Technology Expanded Edition Jpp129-pp166゜Nippon Broadcasting Publishing association).
発明が解決しようとする課題
しかしながら上記のような構成では、メカ的に制御する
ためツマミ25の位置に対する動作温度のバラツキや、
調整バネ27の経年変化による動作温度の変動が発生し
、さらにはメカ的に破壊するという問題点を有していた
。Problems to be Solved by the Invention However, in the above configuration, since the control is performed mechanically, there may be variations in the operating temperature depending on the position of the knob 25,
There have been problems in that operating temperature changes occur due to aging of the adjustment spring 27, and furthermore, it may be mechanically damaged.
本発明は上記問題点に鑑み、温度設定希望値に対し正確
で経年変化に対しても安定な、温度制御装置を提供する
ものである。In view of the above-mentioned problems, the present invention provides a temperature control device that is accurate to a desired temperature setting value and is stable against changes over time.
課題を解決するための手段
上記課題を解決するために本発明の温度制御装置は、温
度側′41のための温度検出に、複数の@電導材料を用
いるという構成を備えたものである。Means for Solving the Problems In order to solve the above problems, the temperature control device of the present invention has a configuration in which a plurality of conductive materials are used for temperature detection on the temperature side '41.
作用
本発明は上記した構成によって、超電導材料の電気抵抗
がゼロになるという超電導材料で決まる温度により温度
検出を行うため、動作温度を超電導材料により正確に設
定でき、経年変化に対しても安定な温度検出ができる。Effect The present invention uses the above-mentioned configuration to detect temperature based on the temperature determined by the superconducting material at which the electrical resistance of the superconducting material becomes zero. Therefore, the operating temperature can be set more accurately using the superconducting material, and it is stable against aging. Temperature detection is possible.
実施例
以下本発明の一実施例の温度制御装置について、図面を
参照しながら説明する。第1図は本発明の実施例におけ
る温度制御装置の構成図で第2図の圧縮式冷凍機の温度
制御装置20に相当する。1〜4はそれぞれ温度T1〜
T、で超を導状態である電気抵抗がゼロとなる超電導材
料、5は超電導材料1〜4の電気抵抗がゼロか否かであ
るかにより、温度状況を判断する温度検出回路、6は設
定温度と温度検出回路5との検出温度とを比較する比較
回路であり、比較結果は出力端子7より出力され第2図
における圧縮機21を制御する。EXAMPLE Hereinafter, a temperature control device according to an example of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of a temperature control device according to an embodiment of the present invention, and corresponds to the temperature control device 20 of a compression refrigerator shown in FIG. 1 to 4 are respectively temperatures T1 to
5 is a temperature detection circuit that determines the temperature situation depending on whether the electrical resistance of superconducting materials 1 to 4 is zero, and 6 is a setting. This is a comparison circuit that compares the temperature with the temperature detected by the temperature detection circuit 5, and the comparison result is outputted from the output terminal 7 to control the compressor 21 in FIG.
以上のように構成された温度制御装置について説明する
。第1図において、超電導材料1〜4はそれぞれ温度T
、〜T、(T、<T2<T3<T、)で電気抵抗がゼロ
となるものである。超電導材料1〜4の数と温度T1〜
T4は設定したい温度範囲、温度ステップにより選ばれ
る値である。The temperature control device configured as above will be explained. In FIG. 1, superconducting materials 1 to 4 are heated at a temperature T
, ~T, (T,<T2<T3<T,), the electrical resistance becomes zero. Number of superconducting materials 1 to 4 and temperature T1 to
T4 is a value selected depending on the desired temperature range and temperature step.
今、簡単のために超電導材料を1〜4の4つとし、それ
ぞれの電気抵抗がゼロとなる温度をT1〜T□としてい
るが、設定したい温度範囲がTa〜T、で、この範囲を
nステップで制御したい場合は、T、、T、、T2・・
・・・・T−+ 、Tb (Ta <T、<T2<・
・・・・・くT7−I<T、)の温度で電気抵抗がゼロ
となるn+1つの超電導材料を用いればよい。超電導材
料1〜4は温度制御したい庫内あるいは室内に設置され
る。比較回路6に設定された温度がT2の場合、庫内あ
るいは室内の温度が低下しT2に達すると電気抵抗ゼロ
なのは超電導材料1に加え超電導材料2となる、温度検
出回路5はこの状態を検出し比較回路6に庫内あるいは
室内の温度がT2に達したことを伝える。比較回路6は
、設定温度と庫内あるいは室内の温度がT2で一致して
いることを検出し出力端子7に結果を出力する。この出
力により、第2図の圧縮機21の運転を停止し、庫内あ
るいは室内の温度をT2に保つ。そして、庫内あるいは
室内の温度が上昇して、電気抵抗がゼロであるのが超電
導材料lのみで超電導材料2ば抵抗ゼロではなくなると
、この状態が温度検出回路5により検出され、比較回路
6により、庫内あるいは室内の温度がT2以上であるこ
とが検出され、その結果が出力端子7に出力される。こ
の出力により、第2図の圧縮機21の運転を開始し、庫
内あるいは室内の温度をT2に低下させる0以上のくり
返しにより庫内あるいは室内の温度を一定に保つことが
できる。Now, for the sake of simplicity, there are four superconducting materials 1 to 4, and the temperature at which the electrical resistance of each becomes zero is T1 to T□, but the temperature range you want to set is Ta to T, and this range is n If you want to control in steps, T,,T,,T2...
...T-+, Tb (Ta <T, <T2<・
It is sufficient to use n+1 superconducting materials whose electrical resistance becomes zero at a temperature of T7-I<T. The superconducting materials 1 to 4 are installed in a refrigerator or room where temperature control is desired. When the temperature set in the comparator circuit 6 is T2, when the temperature inside the refrigerator or room decreases and reaches T2, the electrical resistance becomes zero in addition to the superconducting material 1 and the superconducting material 2. The temperature detection circuit 5 detects this state. Then, it informs the comparator circuit 6 that the temperature inside the refrigerator or room has reached T2. The comparison circuit 6 detects that the set temperature and the temperature inside the refrigerator or the room match at T2, and outputs the result to the output terminal 7. By this output, the operation of the compressor 21 shown in FIG. 2 is stopped, and the temperature inside the refrigerator or room is maintained at T2. Then, when the temperature inside the refrigerator or room increases and only the superconducting material 1 has an electrical resistance of zero, and the resistance of the superconducting material 2 is no longer zero, this state is detected by the temperature detection circuit 5, and the comparison circuit 6 As a result, it is detected that the temperature inside the refrigerator or the room is higher than T2, and the result is outputted to the output terminal 7. With this output, the operation of the compressor 21 shown in FIG. 2 is started, and the temperature inside the refrigerator or the room can be kept constant by repeating 0 or more times to lower the temperature inside the refrigerator or the room to T2.
以上のように零寓施例によれば、電気抵抗がゼロになる
温度がそれぞれT1〜T、である超電導材料1〜4を用
い、その電気抵抗から庫内あるいは室内の温度を温度検
出回路5で検出し、比較回路6により設定温度との比較
結果を出力端子7に得ることにより、圧縮機21を制御
し、温度制御することにより、超電導材料1〜4の電気
抵抗ゼロとなる温度T1〜T4に対応した正確な温度制
御ができ、超電導材料1〜4に個有の値T1〜T4は経
年に対しても安定である。As described above, according to the zero example, superconducting materials 1 to 4 whose electrical resistance becomes zero at temperatures T1 to T, respectively, are used, and the temperature detection circuit 5 detects the temperature inside the refrigerator or room from the electrical resistance. The comparison circuit 6 obtains the comparison result with the set temperature at the output terminal 7, controls the compressor 21, and controls the temperature to set the temperature T1 at which the electrical resistance of the superconducting materials 1 to 4 becomes zero. Accurate temperature control corresponding to T4 is possible, and the values T1 to T4 unique to superconducting materials 1 to 4 are stable over time.
発明の効果
以上のように本発明は、温度制御のための温度検出に複
数の超電導材料を用いることにより、動作温度が正確で
、経年に対しても安定な温度制御装置を実現することが
できる。Effects of the Invention As described above, the present invention uses a plurality of superconducting materials for temperature detection for temperature control, thereby realizing a temperature control device with accurate operating temperature and stable over time. .
第1図は本発明の実施例における温度制御装置の構成図
、第2図は圧縮式冷凍機の構成図、第3図は従来のサー
モスタンドによる温度制御装置の構成図である。
1〜4・・・・・・超電導材料、5・・・・・・温度検
出回路、6・・・・・・比較回路、7・・・・・・出力
端子、2o・・・・・・温度制御装置、21・・・・・
・圧縮機、22・旧・・凝縮器、23・・・・・・減圧
器、24・・・・・・蒸発器、25・・・・・・ツマミ
、26・・・・・・カム、27・・・・・・調整バネ、
28・・・・・・アームa、29・・・・・・接点a、
30・旧・・接点b、31・・・・・・アームb、32
・・・・・・ダイヤフラム、33・・・・・・怒熱管、
34・・・・・・支点a、35・旧・・支点b、36・
・・・・・ケース。
代理人の氏名 弁理士 粟野重孝 はが】8第1図
f〜4−8震tO粘
7−tフ宜あ)FIG. 1 is a configuration diagram of a temperature control device according to an embodiment of the present invention, FIG. 2 is a configuration diagram of a compression refrigerator, and FIG. 3 is a configuration diagram of a temperature control device using a conventional thermostand. 1 to 4...Superconducting material, 5...Temperature detection circuit, 6...Comparison circuit, 7...Output terminal, 2o... Temperature control device, 21...
・Compressor, 22・Old...Condenser, 23...Reducer, 24...Evaporator, 25...Knob, 26...Cam, 27...adjustment spring,
28...Arm a, 29...Contact a,
30・Old...Contact b, 31...Arm b, 32
...Diaphragm, 33 ... Anger tube,
34...Fulcrum a, 35.Old...Fulcrum b, 36.
·····Case. Name of agent: Patent attorney Shigetaka Awano (Figure 8)
Claims (1)
たことを特徴とする温度制御装置。A temperature control device characterized by using a plurality of superconducting materials for temperature detection for temperature control.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21101188A JPH0259805A (en) | 1988-08-25 | 1988-08-25 | Temperature controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21101188A JPH0259805A (en) | 1988-08-25 | 1988-08-25 | Temperature controller |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0259805A true JPH0259805A (en) | 1990-02-28 |
Family
ID=16598859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21101188A Pending JPH0259805A (en) | 1988-08-25 | 1988-08-25 | Temperature controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0259805A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2865904A1 (en) * | 2004-02-06 | 2005-08-12 | Gabriac Clemence De | Underpants for supporting buttocks and genital organs of man, have external shorts, and two thin straps with bra forms to support buttocks and yoke forming supporting unit to cover and support genitals |
-
1988
- 1988-08-25 JP JP21101188A patent/JPH0259805A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2865904A1 (en) * | 2004-02-06 | 2005-08-12 | Gabriac Clemence De | Underpants for supporting buttocks and genital organs of man, have external shorts, and two thin straps with bra forms to support buttocks and yoke forming supporting unit to cover and support genitals |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7240502B2 (en) | Method for controlling operation of air-conditioner | |
US6745583B2 (en) | Defrosting apparatus of air conditioner and method thereof | |
EP1335167A4 (en) | Air conditioner | |
JPH0259805A (en) | Temperature controller | |
US6755034B2 (en) | Apparatus for preventing overload of air conditioner and method thereof | |
KR100347899B1 (en) | Control method of inverter compressor of air conditioner | |
JP2000105033A (en) | Air conditioner | |
JPH1038392A (en) | Speed adjuster of blower for condenser | |
JP3240700B2 (en) | Refrigeration cycle using non-azeotropic refrigerant mixture | |
AU2016422665B2 (en) | Refrigeration cycle apparatus | |
JPS61101736A (en) | Defrosting control device of air conditioner | |
JPH09318140A (en) | Air conditioner | |
JP2962978B2 (en) | Air conditioner | |
JP2000009358A (en) | Refrigerant circuit for refrigerating cycle and control device | |
JP2755037B2 (en) | Refrigeration equipment | |
JPWO2020157851A1 (en) | Air conditioner | |
EP1693634A1 (en) | Method for controlling the operation of an air-conditioner | |
JPH055562A (en) | Air conditioner | |
JPH1038388A (en) | Air conditioner and its control method | |
JPH09152237A (en) | Air conditioner | |
JPH0212345B2 (en) | ||
JPH07190505A (en) | Controller for air conditioner | |
JPS61237953A (en) | Heat pump type air conditioner | |
JPH04249725A (en) | Temperature detecting circuit | |
JPS61291862A (en) | Heat pump type air conditioner |