JPH025958B2 - - Google Patents

Info

Publication number
JPH025958B2
JPH025958B2 JP57083424A JP8342482A JPH025958B2 JP H025958 B2 JPH025958 B2 JP H025958B2 JP 57083424 A JP57083424 A JP 57083424A JP 8342482 A JP8342482 A JP 8342482A JP H025958 B2 JPH025958 B2 JP H025958B2
Authority
JP
Japan
Prior art keywords
vacuum
powder
container
diatomaceous earth
torr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57083424A
Other languages
Japanese (ja)
Other versions
JPS58199953A (en
Inventor
Hiroshi Komeno
Ryoichi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57083424A priority Critical patent/JPS58199953A/en
Publication of JPS58199953A publication Critical patent/JPS58199953A/en
Publication of JPH025958B2 publication Critical patent/JPH025958B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は粉末真空断熱体に関するものである。 従来、保温保冷用断熱材として、ガラス繊維、
岩綿、発泡ポリウレタンなどが使用されている。
ガラス繊維や岩綿は耐熱性が良好であるが、しか
しその熱伝導率は0.03〜0.5kcal/mh℃であり、
断熱効果はあまりよくない。また、発泡ポリウレ
タンや発泡ポリスチレンなどの発泡樹脂は、冷蔵
庫などの低温保冷材として一般に使用されてい
る。発泡ポリウレタンの場合、24℃における熱伝
導率は0.015kcal/mh℃に達しているが、これ以
上の断熱特性を向上することは容易でない状況に
ある。また発泡ポリスチレンも同様である。さら
に、液化石油ガスタンクや液体窒素タンクの保冷
断熱体として、タンク容器を2重にして、その間
隙に平均粒径100〜500μmの中空球殻状発泡パー
ライト粉末を真空充填した粉末真空断熱体が知ら
れているが、良好な断熱効果を得るためには
0.01Torrより高真空が必要であり、この真空度
を工業的に達成することは容易でない。工業的に
一般に使用されている大型のキニー型1段式油回
転真空ポンプの排気能力は、真空度の向上に伴な
つて排気速度が低下する。たとえば市販の油回転
ポンプでは0.05Torr付近から排気速度が急に低
下する。このように、0.01Torrの真空度を達成
するためには、かなりの長時間を要し、工業的に
非常に不利であるという欠点がある。 本発明は、粉末真空断熱体に関し、上記欠点を
除去し、高真空を必要とすることなく、工業的に
容易な0.1〜1Torr程度の真空度で容易に製造可
能であり、熱伝導率が0.01kcal/mh℃より小さ
く断熱効果に優れ、安価な断熱体を提供すること
を目的とするものであり、この断熱体は真空に保
たれた容器に、珪藻土粉末が充填されていること
を特徴とする。 珪藻土は、内部と外部通ずる無数の細孔を有す
る大きさ1〜100μmの珪藻殻の破片よりなり、一
般に天然に産する珪藻土原鉱を粉砕して、多くの
積類の粉末が製造され、過助剤として一般に使
用されている。 本発明において、珪藻土粉末としては、珪藻土
原鉱を粉砕乾燥した乾燥粉末、600〜1400℃で焼
成した焼成粉末、および無機溶融剤が添加された
融剤焼成粉末が使用可能であり、特に、平均粒子
径が20μm以下の微粉末あるいは比表面積が5m2/
g以上の微浮末を使用することにより、より優れ
た断熱効果を得ることができる。 珪藻土粉末はかさ比重が0.05〜0.5の軽くかさ
高い粉末であるため、容器に密に充填することが
困難である。その点、変形可能なフイルム状のプ
ラスチツク容器を用いた場合、容器内部が真空状
態で密封されたとき、真空容器の内部と外部との
圧力差によつてフイルムが内部に向かつて強く吸
い寄せられ密着する。その結果、粉末の充填密度
が大きくなり、機械的強度が強くなる効果があ
る。また熱シール機を用いて簡単に密封できる利
点を有する。 フイルム状のプラスチツク容器としては、真空
漏れを防止するために、ガス透過性の少ないフイ
ルムを使用する必要があり、ポリエチレン、ポリ
ビニルアルコール、ポリエステル、ポリプロピレ
ン、ポリ塩化ビニリデン、ポリアミド、アルミ蒸
着フイルム、アルミ箔などの数種類を積層したラ
ミネートフイルムを使用することが望ましい。 第1図に本発明の一実施例の基本構成を示す断
面図を示す。第1図において、1は珪藻土粉末
で、2は珪藻土粉末を収納する容器であり、容器
2内の容間は0.1〜1Torrの真空に保たれている。 以下に本発明を実施例によつて、さらに詳しく
説明する。 なお、本実施例において熱伝導率の測定は、ダ
イナテイツク社のK−マテツク熱伝導率測定装置
を用いて、ASTM−C518に準拠した方法で、13
℃と35℃との温度差における熱伝導率を測定し
た。 実施例 1 第1表に示すような比表面積がそれぞれ2、
5、22、95、175m2/gの珪藻土粉末(試料番号
A,B,C,D,Eという)をそれぞれクラフト
紙製の袋に充填し、さらにポリエチレンとアルミ
蒸着延伸ポリビニルアルコールと塩化ビニリデン
コートポリプロピレンとよりなるラミネートフイ
ルム袋の中に入れ、次に熱融着密封装置を具備し
た真空用容器(内容積50)内に前記フイルム袋
を置いた後、油回転ポンプ(排気能力950/分)
を用いて真空容器内の圧力をそれぞれ0.05Torr、
0.1Torr、0.3Torr、1Torr、3Torr、10Torr、
30Torrおよび760Torrの真空度に排気した。こ
のとき、珪藻土が充填されたフイルム袋内も真空
用容器と同じ真空度になる。このように、真空用
容器と粉末が充填されたフイルム袋内とを真空に
保つた状態下で、熱融着密封装置を用いてフイル
ム袋の開放部を圧着加熱してフイルム袋を密封し
た。次に真空用容器内に外気を導入して大気圧
(760Torr)に戻した後、珪藻土粉末が充填され
たフイルム袋を取り出して横幅30cm、縦幅30cm、
厚さ3cmのそれぞれの粉末真空断熱体を得た。 得られたそれぞれの粉末真空断熱体のフイルム
袋は内部充填粉末に強く吸い寄せられ、粉末に密
着して真空密封が完全であることが確認できた。
容器内を1Torr、0.1Torr、0.5Torrの真空にする
ために要した時間はそれぞれ20秒、40秒、および
900秒であつた。 得られたそれぞれの粉末真空断熱体の熱伝導
率、および密度などを測定した結果を第1表およ
び第2図に示したが、比表面積が5m2/g以上の
珪藻土粉末を使用した粉末真空断熱体(試料番号
B、C、D、E)の場合、1Torrの真空度におけ
る熱伝導率は0.01kcal/mh℃以下であり、比表
面積が大きくなるにしたがつて熱伝導率は小さく
なり、断熱効果が優れることが明らかである。
The present invention relates to powder vacuum insulation. Conventionally, glass fiber,
Rock wool, polyurethane foam, etc. are used.
Glass fiber and rock wool have good heat resistance, but their thermal conductivity is 0.03 to 0.5 kcal/mh℃,
The insulation effect is not very good. Furthermore, foamed resins such as foamed polyurethane and foamed polystyrene are commonly used as low-temperature cold insulation materials for refrigerators and the like. In the case of foamed polyurethane, the thermal conductivity at 24°C has reached 0.015 kcal/mh°C, but it is difficult to improve the thermal insulation properties further. The same applies to expanded polystyrene. Furthermore, as a cold insulation for liquefied petroleum gas tanks and liquid nitrogen tanks, powder vacuum insulation is known, which is made by doubling the tank container and vacuum filling the gap with hollow spherical foamed perlite powder with an average particle size of 100 to 500 μm. However, in order to obtain a good insulation effect,
A vacuum higher than 0.01 Torr is required, and it is not easy to achieve this degree of vacuum industrially. The evacuation capacity of a large Kinney-type single-stage oil rotary vacuum pump commonly used in industry decreases in evacuation speed as the degree of vacuum increases. For example, with commercially available oil rotary pumps, the pumping speed suddenly decreases from around 0.05 Torr. As described above, it takes a considerable amount of time to achieve a vacuum degree of 0.01 Torr, which is disadvantageous from an industrial standpoint. The present invention relates to a powder vacuum insulator that eliminates the above drawbacks, does not require a high vacuum, can be easily manufactured at an industrially easy degree of vacuum of about 0.1 to 1 Torr, and has a thermal conductivity of 0.01. The purpose is to provide an inexpensive heat insulator that is smaller than kcal/mh℃ and has an excellent insulation effect.This insulator is characterized by being filled with diatomaceous earth powder in a vacuum-maintained container. do. Diatomaceous earth consists of fragments of diatomaceous shells with a size of 1 to 100 μm and has countless pores that communicate with the inside and outside. Generally, many kinds of powders are produced by crushing naturally occurring diatomaceous earth ore. Commonly used as an adjuvant. In the present invention, as the diatomaceous earth powder, it is possible to use a dry powder obtained by crushing and drying diatomaceous earth ore, a calcined powder calcined at 600 to 1400°C, and a flux calcined powder to which an inorganic melting agent is added. Fine powder with a particle size of 20 μm or less or a specific surface area of 5 m 2 /
By using fine floating particles of g or more, a better heat insulating effect can be obtained. Since diatomaceous earth powder is a light and bulky powder with a bulk specific gravity of 0.05 to 0.5, it is difficult to pack it tightly into a container. On this point, when a deformable film-like plastic container is used, when the inside of the container is sealed in a vacuum state, the film is strongly attracted toward the inside due to the pressure difference between the inside and outside of the vacuum container, and the film is tightly sealed. do. As a result, the packing density of the powder increases, which has the effect of increasing mechanical strength. It also has the advantage of being easily sealed using a heat sealing machine. For film-like plastic containers, it is necessary to use a film with low gas permeability to prevent vacuum leaks, such as polyethylene, polyvinyl alcohol, polyester, polypropylene, polyvinylidene chloride, polyamide, aluminum vapor-deposited film, and aluminum foil. It is desirable to use a laminate film made by laminating several types of . FIG. 1 shows a sectional view showing the basic configuration of an embodiment of the present invention. In FIG. 1, 1 is diatomaceous earth powder, 2 is a container for storing the diatomaceous earth powder, and the space inside container 2 is maintained at a vacuum of 0.1 to 1 Torr. The present invention will be explained in more detail below using Examples. In this example, the thermal conductivity was measured using a K-Matech thermal conductivity measuring device manufactured by Dynatake Co., Ltd. in accordance with ASTM-C518.
The thermal conductivity was measured at a temperature difference between ℃ and 35℃. Example 1 Specific surface area as shown in Table 1 is 2,
5, 22, 95, and 175 m 2 /g of diatomaceous earth powder (sample numbers A, B, C, D, and E) were filled into kraft paper bags, and then coated with polyethylene, aluminum vapor-deposited stretched polyvinyl alcohol, and vinylidene chloride. Place it in a laminated film bag made of polypropylene, then place the film bag in a vacuum container (inner volume 50) equipped with a heat-sealing device, and then use an oil rotary pump (evacuation capacity 950/min).
The pressure inside the vacuum container is set to 0.05Torr using
0.1Torr, 0.3Torr, 1Torr, 3Torr, 10Torr,
It was evacuated to a vacuum degree of 30 Torr and 760 Torr. At this time, the inside of the film bag filled with diatomaceous earth has the same degree of vacuum as the vacuum container. In this way, while the vacuum container and the inside of the film bag filled with powder were kept in a vacuum state, the open part of the film bag was pressed and heated using a heat sealing device to seal the film bag. Next, outside air was introduced into the vacuum container to return it to atmospheric pressure (760 Torr), and then the film bag filled with diatomaceous earth powder was taken out and placed in a bag with a width of 30 cm and a height of 30 cm.
Each powder vacuum insulation body with a thickness of 3 cm was obtained. It was confirmed that the obtained film bag of each powder vacuum insulator was strongly attracted to the internally filled powder and adhered tightly to the powder to ensure complete vacuum sealing.
The time required to create a vacuum of 1 Torr, 0.1 Torr, and 0.5 Torr inside the container was 20 seconds, 40 seconds, and 40 seconds, respectively.
It was hot in 900 seconds. The results of measuring the thermal conductivity, density, etc. of each powder vacuum insulation material obtained are shown in Table 1 and Figure 2 . In the case of the heat insulators (sample numbers B, C, D, and E), the thermal conductivity at a vacuum of 1 Torr is 0.01 kcal/mh℃ or less, and as the specific surface area increases, the thermal conductivity decreases. It is clear that the heat insulation effect is excellent.

【表】【table】

【表】 実施例 2 平均粒子径が1μm、3μm、5μm、10μm、
19nm、32μmのそれぞれの珪藻土粉末を通気性の
あるクラフト紙袋に充填し、それをポリエチレ
ン、アルミ蒸着ポリエステル、アルミ箔およびポ
リエステルよりなる105μm厚の多層ラミネートフ
イルム袋の中に入れ、実施例1と同じ方法で横幅
30cm、縦幅30cm、厚さ3cmの形状のそれぞれの粉
末真空断熱体(試料番号F、G、H、I、J、
K)を試作した。 得られた粉末真空断熱体の外観はいずれも、フ
イルム袋は内部に充填粉末に強く吸い寄せられ粉
末に密着し、真空密封が完全であつた。 それぞれの平均粒子径の珪藻土粉末を使用した
場合について、得られた粉末真空断熱体の特性を
第2表および第3図に示した。 第2表と第3図から明らかのように、平均粒子
径が20μm以下の珪藻土粉末を使用した粉末真空
断熱体(試料番号F、G、H、I、J)の場合、
1Torrの真空度における熱伝導率は0.01kcal/mh
℃以下であり、平均粒子径が小さくなるにしたが
つて熱伝導率は小さくなり断熱効果が優れること
が明らかである。 比較例 これに対し粉末真空断熱体用として公知の平均
粒子径300μmの発泡パーライト粉末を使用して、
実施例2と同じ方法で試作した粉末真空断熱体の
性能を第2表と第3図に示したが、熱伝導率を
0.01kcal/mh℃以下にするためには真空度が
0.05Torr以下にする必要があることがわかる。
[Table] Example 2 Average particle diameters of 1 μm, 3 μm, 5 μm, 10 μm,
Each diatomaceous earth powder of 19 nm and 32 μm was filled in a breathable kraft paper bag, and then placed in a 105 μm thick multilayer laminate film bag made of polyethylene, aluminum-deposited polyester, aluminum foil, and polyester. Width by method
Each powder vacuum insulator (sample number F, G, H, I, J,
K) was prototyped. The appearance of the obtained powder vacuum insulators was such that the film bag was strongly attracted to the powder filled inside and adhered tightly to the powder, and the vacuum seal was perfect. Table 2 and FIG. 3 show the characteristics of the obtained powder vacuum insulators when diatomaceous earth powders having respective average particle diameters were used. As is clear from Table 2 and Figure 3, in the case of powder vacuum insulation (sample numbers F, G, H, I, J) using diatomaceous earth powder with an average particle diameter of 20 μm or less,
Thermal conductivity at 1Torr vacuum is 0.01kcal/mh
It is clear that as the average particle diameter decreases, the thermal conductivity decreases and the heat insulating effect is excellent. Comparative Example In contrast, using foamed pearlite powder with an average particle diameter of 300 μm, which is known for powder vacuum insulation,
Table 2 and Figure 3 show the performance of the powder vacuum insulation prototype fabricated using the same method as in Example 2, but the thermal conductivity was
In order to keep it below 0.01kcal/mh℃, the degree of vacuum must be
It can be seen that it needs to be 0.05Torr or less.

【表】 以上説明したように本発明は、真空に保たれた
容器に珪藻土粉末が充填されていることを特徴と
する断熱体を提供するものであり、特に平均粒子
径が20μm以下の粉末あるいは、比表面積が5m2/
g以上の粉末を使用することにより、高真空を必
要とすることなく、工業的に得やすい1Torr程度
の真空度における熱伝導率が0.01kcal/mh℃よ
り小さく断熱効果に優れ、またフイルム状のプラ
スチツク容器で構成することにより、密封装作が
非常に簡単であり、機械的強さの強い断熱体を得
ることができるなど工業的に価値が高い。
[Table] As explained above, the present invention provides a heat insulator characterized by filling a container kept in a vacuum with diatomaceous earth powder, and in particular powder with an average particle size of 20 μm or less or , specific surface area is 5m 2 /
By using powder with a weight of more than 1.5 g, there is no need for high vacuum, the thermal conductivity is less than 0.01 kcal/mh℃ at a vacuum degree of about 1 Torr, which is easy to obtain industrially, and it has an excellent heat insulation effect. By constructing the container with a plastic container, it is very easy to seal the container, and a heat insulator with strong mechanical strength can be obtained, which is of great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明断熱体の基本的構成を示す一実
施例の断面図、第2図および第3図は本発明の実
施例の断熱体の真空度と熱伝導率との関係を示す
曲線図である。 1……珪藻土粉末、2……容器。
FIG. 1 is a cross-sectional view of an embodiment showing the basic structure of the heat insulator of the present invention, and FIGS. 2 and 3 are curves showing the relationship between the degree of vacuum and thermal conductivity of the heat insulator of the embodiment of the present invention. It is a diagram. 1...Diatomaceous earth powder, 2...Container.

Claims (1)

【特許請求の範囲】[Claims] 1 0.1〜1Torrの真空に保たれたフイルム状プ
ラスチツク容器に、平均粒子径が20μm以下また
は比表面積が5m2/g以上の無数の細孔を有する
珪藻土粉末が充填されてなる断熱体。
1. A heat insulator made by filling a film-like plastic container kept in a vacuum of 0.1 to 1 Torr with diatomaceous earth powder having countless pores with an average particle diameter of 20 μm or less or a specific surface area of 5 m 2 /g or more.
JP57083424A 1982-05-17 1982-05-17 Heat insulating material Granted JPS58199953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57083424A JPS58199953A (en) 1982-05-17 1982-05-17 Heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57083424A JPS58199953A (en) 1982-05-17 1982-05-17 Heat insulating material

Publications (2)

Publication Number Publication Date
JPS58199953A JPS58199953A (en) 1983-11-21
JPH025958B2 true JPH025958B2 (en) 1990-02-06

Family

ID=13802049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57083424A Granted JPS58199953A (en) 1982-05-17 1982-05-17 Heat insulating material

Country Status (1)

Country Link
JP (1) JPS58199953A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996027754A1 (en) * 1995-03-07 1996-09-12 Matsushita Refrigeration Company Vacuum heat-insulator and heat-insulating box using the insulator
US6001450A (en) * 1995-03-07 1999-12-14 Matsushita Refrigeration Company Vacuum thermal insulating material and thermally insulating case using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613109B2 (en) * 1971-08-19 1981-03-26

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5480290U (en) * 1977-11-18 1979-06-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613109B2 (en) * 1971-08-19 1981-03-26

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996027754A1 (en) * 1995-03-07 1996-09-12 Matsushita Refrigeration Company Vacuum heat-insulator and heat-insulating box using the insulator
US6001450A (en) * 1995-03-07 1999-12-14 Matsushita Refrigeration Company Vacuum thermal insulating material and thermally insulating case using the same

Also Published As

Publication number Publication date
JPS58199953A (en) 1983-11-21

Similar Documents

Publication Publication Date Title
US4594279A (en) Heat insulator
JPS6117263B2 (en)
US20040180176A1 (en) Vaccum insulation article
EP0099574B1 (en) Composite thermal insulator
SI9110043B (en) Profiled bodies for heat isolation
JPH0254479B2 (en)
JPH025958B2 (en)
JPS6343669B2 (en)
JPH0563715B2 (en)
JPS6060396A (en) Heat-insulating structure
JPS58136434A (en) Heat-insulating structure and its manufacture
US3406857A (en) Insulated plastic vessel
JPS61144492A (en) Powder vacuum heat-insulating board
JP4443727B2 (en) Manufacturing method of vacuum insulation container
JPH06281089A (en) Vacuum heat-insulating material
JPS608399B2 (en) insulation board
JPH0625448B2 (en) Insulation structure
JPH08152258A (en) Vacuum heat insulator
JPH0233917B2 (en) DANNETSUBAN
JP2694356B2 (en) Insulation structure
JPS5917095A (en) Heat-insulating structure
JPS6210580A (en) Heat-insulating panel
JPS6335911B2 (en)
JPH0383637A (en) Heat insulating structure
JPS63113286A (en) Vacuum heat-insulating panel