JPH0259404A - Device for producing superconductor - Google Patents

Device for producing superconductor

Info

Publication number
JPH0259404A
JPH0259404A JP21096888A JP21096888A JPH0259404A JP H0259404 A JPH0259404 A JP H0259404A JP 21096888 A JP21096888 A JP 21096888A JP 21096888 A JP21096888 A JP 21096888A JP H0259404 A JPH0259404 A JP H0259404A
Authority
JP
Japan
Prior art keywords
raw material
supply means
vacuum chamber
chamber
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21096888A
Other languages
Japanese (ja)
Inventor
Takuo Takeshita
武下 拓夫
Sadaaki Hagino
萩野 貞明
Takeshi Sakurai
健 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP21096888A priority Critical patent/JPH0259404A/en
Publication of JPH0259404A publication Critical patent/JPH0259404A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Chemical Vapour Deposition (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To efficiently form a layered superconductor thin film on a substrate by connecting plural high-vacuum chambers in series, supplying a raw gas contg. one kind of element among different elements into each chamber, and simultaneously passing the substrate through each chamber. CONSTITUTION:Plural high-vacuum chambers 13 are connected with one another in series, and raw material supply means 20a, 20b, 20c, and 20d are connected to the respective chambers 13. The raw gas contg. one kind among the elements constituting a superconductor thin film is separately supplied to each chamber 13 respectively from the supply means 20a, 20b, 20c, and 20d. The substrate is simultaneously passed through each chamber 13 to successively deposit the elements supplied from the supply means 20a, 20b, 20c, and 20d on the substrate, and a layered superconductor thin film is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、CVD法により所望の元素からなる超伝導体
薄膜を形成する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for forming a superconductor thin film made of a desired element by a CVD method.

[従来の技術と発明が解決しようとする課題]薄膜を製
造する気相エピタキシャル法の一つにCVD法(Che
mical Vapor Deposition)があ
る。
[Prior art and problems to be solved by the invention] One of the vapor phase epitaxial methods for manufacturing thin films is the CVD method (Che
vapor deposition).

CVD法は薄膜を構成する元素を含んだ原料ガスを化学
反応させて基材上に所望の薄膜を形成する方法である。
The CVD method is a method in which a desired thin film is formed on a substrate by chemically reacting raw material gas containing elements constituting the thin film.

ここで近年、CVD法を用いて超伝導体を生成する技術
が研究されている。この研究によれば、超伝導体を構成
する元素を含む化合物のガス(原料ガス)を反応チャン
バ内に供給して化学反応させ、この反応生成物を基板上
に堆積させて薄膜を作り、これをアニールすることによ
り超伝導体薄膜を得んとするものである。
In recent years, research has been conducted into techniques for producing superconductors using the CVD method. According to this research, compound gas (raw material gas) containing elements constituting a superconductor is supplied into a reaction chamber to cause a chemical reaction, and the reaction products are deposited on a substrate to form a thin film. The aim is to obtain a superconductor thin film by annealing the .

超伝導性を得るためには薄膜の組成を高精度に管理する
必要があることから、CVD法による超伝導体製造にお
いては原料ガスの各元素毎の蒸気圧を高精度に管理する
必要がある。このため、従来のCVD装置においては、
所定の蒸気圧にある各元素の原料ガスをそれぞれ別個の
経路で反応チャンバに供給し、これら原料ガスを混合さ
せた状態で化学反応を起こさせることが考えられる。
In order to obtain superconductivity, it is necessary to control the composition of the thin film with high precision, so when manufacturing superconductors using the CVD method, it is necessary to control the vapor pressure of each element in the raw material gas with high precision. . For this reason, in conventional CVD equipment,
It is conceivable to supply raw material gases of each element at predetermined vapor pressures to the reaction chamber through separate routes, and to cause a chemical reaction in a state where these raw material gases are mixed.

しかしながら、所定の蒸気圧が得られる温度が各元素毎
に異なる等の事情から、各元素の原料ガスを反応チャン
バに別個に供給しても、これらガスの混合によって温度
条件が崩れ、その時点で原料化合物の析出等を生じて所
期の蒸気圧を達成できず、所望の超伝導体を得るのが困
難である。
However, due to circumstances such as the temperature at which a given vapor pressure is obtained differs for each element, even if the raw material gases for each element are supplied separately to the reaction chamber, the temperature conditions will collapse due to the mixing of these gases, and at that point The desired vapor pressure cannot be achieved due to precipitation of raw material compounds, making it difficult to obtain the desired superconductor.

また、近年の研究の結果、優れた超伝導性を示す超伝導
体はその構造が組成元素毎の層状構造を成していること
が解った。
Furthermore, as a result of recent research, it has been found that superconductors exhibiting excellent superconductivity have a layered structure with different constituent elements.

しかしながら、上記のようなCVD装置にあっては、各
元素の原料ガスを混合した状態で反応させているため、
このような層状構造の超伝導体を得ることが困難である
However, in the above-mentioned CVD apparatus, since the raw material gases of each element are reacted in a mixed state,
It is difficult to obtain a superconductor with such a layered structure.

本発明は上記従来の事情に鑑みなされたもので、CVD
法により所望の超伝導体薄膜を製造する装置を提供する
ことを目的とする。
The present invention was made in view of the above-mentioned conventional circumstances, and
The purpose of the present invention is to provide an apparatus for manufacturing a desired superconductor thin film by a method.

[課題を解決するための手段] 上記目的を達成する本発明に係る超伝導体の製造装置は
、複数の原料供給手段と、それぞれの原料供給手段に接
続され且つ互いに直列に接続された複数のチャンバと、
を備え、各原料供給手段は超伝導体薄膜を組成する元素
の内の1種類を含む原料ガスをチャンバ内にそれぞれ別
個に供給し、各チャンバは超伝導体薄膜を堆積させる基
材を収容して当該基材に各原料供給手段から供給される
元素を堆積させることを特徴とする。
[Means for Solving the Problems] A superconductor manufacturing apparatus according to the present invention that achieves the above object includes a plurality of raw material supply means and a plurality of raw material supply means connected to each raw material supply means and connected to each other in series. a chamber;
each source supply means separately supplies a source gas containing one of the elements constituting the superconductor thin film into the chamber, and each chamber accommodates a substrate on which the superconductor thin film is deposited. The method is characterized in that the elements supplied from each raw material supply means are deposited on the base material.

[作用コ 各原料供給手段は超伝導体薄膜を組成する元素の内の1
種類を含む原料ガスをチャンバ内にそれぞれ別個に供給
し、各チャンバは超伝導体薄膜を堆積させる基材を収容
して当該基材に各原料供給手段から供給される元素を堆
積させる。
[Effects] Each raw material supply means supplies one of the elements that compose the superconductor thin film.
Raw material gases containing different types of raw material gases are separately supplied into the chambers, each chamber housing a base material on which a superconductor thin film is to be deposited, and elements supplied from each raw material supply means are deposited on the base material.

従って、基材を各チャンバ毎に順次移動させることによ
り、異なる種類の原料元素を層状に堆積させた構造で所
定組成の超伝導体薄膜が得られる。
Therefore, by sequentially moving the base material from chamber to chamber, a superconductor thin film having a predetermined composition and a structure in which different types of raw material elements are deposited in layers can be obtained.

[効果] 本発明の超伝導体の製造装置によれば、各種の原料ガス
をそれぞれ別個に供給して各組成元素を基材上に堆積さ
せるようにしたため、各組成元素の蒸気圧管理が容易と
なって超伝導体の組成管理が非常に容易となり、所望す
る組成の超伝導体薄膜を容易に得ることができる。
[Effects] According to the superconductor manufacturing apparatus of the present invention, each constituent element is deposited on the base material by supplying various raw material gases separately, making it easy to manage the vapor pressure of each constituent element. Therefore, composition control of the superconductor becomes extremely easy, and a superconductor thin film having a desired composition can be easily obtained.

また、上記効果に加え、組成元素を層状に堆積させた構
造の超伝導体薄膜を得ることができ、優れた超伝導性を
得ることができる。
In addition to the above-mentioned effects, it is possible to obtain a superconductor thin film having a structure in which constituent elements are deposited in layers, and excellent superconductivity can be obtained.

[実施例コ 本発明を実施例に基づいて具体的に説明する。[Example code] The present invention will be specifically explained based on examples.

第1図及び第2図には本発明の一実施例に係る製造装置
を示しである。
1 and 2 show a manufacturing apparatus according to an embodiment of the present invention.

図示のように、供給管1の一端にはキャリアガス供給管
3が接続されており、このキャリアガス供給管3は図外
のキャリアガス供給源に接続されている。また、供給管
1の一端部にはヒータ5が設けられており、供給管1の
ヒータ5が設けられている部分には図外の原料ガス供給
源からの原料ガス供給管7が接続されている。
As illustrated, a carrier gas supply pipe 3 is connected to one end of the supply pipe 1, and this carrier gas supply pipe 3 is connected to a carrier gas supply source (not shown). Further, a heater 5 is provided at one end of the supply pipe 1, and a raw material gas supply pipe 7 from a raw material gas supply source (not shown) is connected to the portion of the supply pipe 1 where the heater 5 is provided. There is.

一方、供給管1の他端部には中真空チャンバ11と高真
空チャンバ13とが直列に接続されて設けられている。
On the other hand, the other end of the supply pipe 1 is provided with a medium vacuum chamber 11 and a high vacuum chamber 13 connected in series.

中真空チャンバ11と高真空チャンバ13はそれぞれ図
外の真空源に接続されており、供給管1の内圧が760
〜10torrであるのに対して、中真空チャンバ11
の内圧が10−1〜1O−3t。
The medium vacuum chamber 11 and the high vacuum chamber 13 are each connected to a vacuum source (not shown), and the internal pressure of the supply pipe 1 is 760°C.
~10 torr, whereas the medium vacuum chamber 11
The internal pressure is 10-1 to 1O-3t.

rr程度に減圧され、高真空チャンバ13の内圧が1O
−5torr程度に減圧されている。また、中真空チャ
ンバ11と高真空チャンバ13とにはそれぞれヒータ1
2.14が設けられており、これらチャンバ11.13
内を所定の温度に加熱できるようになっている。
The pressure is reduced to about rr, and the internal pressure of the high vacuum chamber 13 is 1O.
The pressure is reduced to about -5 torr. Additionally, heaters 1 are provided in the medium vacuum chamber 11 and the high vacuum chamber 13, respectively.
2.14 are provided and these chambers 11.13
The inside can be heated to a predetermined temperature.

供給管1と中真空チャンバ11との間及び中真空チャン
バ11と高真空チャンバ13との間にはそれぞれノズル
15a、17aを有した仕切り15.17が設けられて
おり、供給管1と中真空チャンバ11とはノズル15a
を通して連通し、中真空チャンバ11と高真空チャンバ
13とはノズル17aを通して連通している。
Partitions 15 and 17 having nozzles 15a and 17a are provided between the supply pipe 1 and the medium vacuum chamber 11 and between the medium vacuum chamber 11 and the high vacuum chamber 13, respectively. The chamber 11 is the nozzle 15a.
The medium vacuum chamber 11 and the high vacuum chamber 13 communicate through the nozzle 17a.

上記供給管1、キャリアガス供給管3、ヒータ5、原料
ガス供給管7、中真空チャンバ11、ヒータ12、仕切
り15.17は原料供給手段を構成している。B 1−
3r−Ca−Cu系の超伝導体を製造する本実施例では
、Biを含む原料ガスの供給用20a、Srを含む原料
ガスの供給用20b、Caを含む原料ガスの供給用20
c、Cuを含む原料ガスの供給用20dとして同一構造
の原料供給手段がそれぞれ1つづつ、すなわち装置全体
として4つ備えられている。
The supply pipe 1, carrier gas supply pipe 3, heater 5, raw material gas supply pipe 7, medium vacuum chamber 11, heater 12, and partitions 15 and 17 constitute a raw material supply means. B 1-
In this example for producing a 3r-Ca-Cu based superconductor, there are 20a for supplying a raw material gas containing Bi, 20b for supplying a raw material gas containing Sr, and 20 for supplying a raw material gas containing Ca.
One raw material supplying means of the same structure is provided as each of the raw material gas supplying means 20d containing c and Cu, that is, there are four in total in the apparatus.

また、中真空チャンバ11に接続された高真空チャンバ
13もそれぞれの原料供給手段20a、20b、20c
、20dに対して1つづつ設けられており、これら高真
空チャンバ13は原料供給手段20aから20dにかけ
て直列に配設されて隣合うもの同士が接続されている。
Furthermore, the high vacuum chamber 13 connected to the medium vacuum chamber 11 also has its own raw material supply means 20a, 20b, 20c.
, 20d, and these high vacuum chambers 13 are arranged in series from the raw material supply means 20a to 20d, and adjacent ones are connected to each other.

そして、互いに接続された高真空チャンバ130間には
ゲートバルブ23がそれぞれ設けられており、これらゲ
ートバルブ23の操作により高真空チャンバ13間を連
通させたり気密に隔絶させたりすることができる。
Gate valves 23 are provided between the high vacuum chambers 130 connected to each other, and by operating these gate valves 23, the high vacuum chambers 13 can be brought into communication or airtightly isolated.

また、原料供給手段20dに接続した高真空チャンバ1
3にはゲートバルブ25を介して前処理用のチャンバ2
7が接続されており、ゲートバルブ25の操作により高
真空チャンバ13と前処理用チ¥ンバ25との間を連通
させたり気密に隔絶させたりすることができる。この前
処理用チャンバ27は基材30に超伝導体原料を堆積さ
せるための前処理を施すものであり、この前処理手段の
他に、基材30を原料供給手段20dから20aにかけ
ての高真空チャンバ13に送給する手段をも備えている
。尚、各高真空チャンバ13内には前処理チャンバ27
側から送給されてくる基材を支持するサセプタ33が設
けられている。
In addition, a high vacuum chamber 1 connected to the raw material supply means 20d
3 is connected to the pretreatment chamber 2 via a gate valve 25.
7 is connected, and by operating the gate valve 25, the high vacuum chamber 13 and the pretreatment chamber 25 can be brought into communication or airtightly isolated. This pretreatment chamber 27 performs pretreatment for depositing the superconductor raw material on the base material 30. In addition to this pretreatment means, the base material 30 is placed in a high vacuum between the raw material supply means 20d and 20a. Means for feeding the chamber 13 is also provided. Note that a pretreatment chamber 27 is provided in each high vacuum chamber 13.
A susceptor 33 is provided to support the base material fed from the side.

また、原料供給手段20aに接続した高真空チャンバ1
3にはゲートバルブ35を介してアニール用真空炉37
が接続されており、ゲートバルブ35の操作により高真
空チャンバ13とアニール用真空炉37との間を連通さ
せたり気密に隔絶させたりすることができる。このアニ
ール用真空炉37は基材30に堆積した薄膜を酸素雰囲
気の下に加熱してこの薄膜に02を付与するものであり
、このアニールによって薄膜は超伝導体の組成となる。
Also, a high vacuum chamber 1 connected to the raw material supply means 20a
3 is connected to an annealing vacuum furnace 37 via a gate valve 35.
are connected to each other, and by operating the gate valve 35, the high vacuum chamber 13 and the annealing vacuum furnace 37 can be brought into communication or airtightly isolated. This annealing vacuum furnace 37 heats the thin film deposited on the base material 30 in an oxygen atmosphere to impart 02 to the thin film, and by this annealing, the thin film has a composition of a superconductor.

上記構成の製造装置によって基材30上にB1−5r−
Ca−Cu−0系の超伝導体薄膜を形成する一例を説明
する。
B1-5r-
An example of forming a Ca-Cu-0 based superconductor thin film will be described.

超伝導体薄膜の成膜速度を高めるため、原料ガスとして
B i  (OC2H3) 3.5r(HFA)2、C
a(HFA)2、Cu(HFA)2の金属錯体ガスを用
い、これら金属錯体ガスをそれぞれ原料供給手段から1
種類づつ余剰な配位子と共に供給する。また、キャリア
ガスとしてArガスを用いる。
In order to increase the deposition rate of the superconductor thin film, B i (OC2H3) 3.5r(HFA)2, C
Using metal complex gases of a(HFA)2 and Cu(HFA)2, 1 of each of these metal complex gases is supplied from the raw material supply means.
Each type is supplied with surplus ligands. Further, Ar gas is used as a carrier gas.

そして、超伝導体の製造を開始する前準備として、各中
真空チャンバ11及び高真空チャンバ13を所定の圧力
まで減圧し、また、各ヒータ5.12.14を作動させ
て加熱状態とする。ここで、供給管1から高真空チャン
バ13へ一気に減圧することなく、これらの間に中真空
チャンバ11を介在させであるため、真空ポンプの負担
が軽減してかなりの高真空を容易に得ることができる。
In preparation for starting the production of the superconductor, each medium vacuum chamber 11 and high vacuum chamber 13 is reduced to a predetermined pressure, and each heater 5, 12, 14 is activated to bring it into a heating state. Here, since the medium vacuum chamber 11 is interposed between the supply pipe 1 and the high vacuum chamber 13 without reducing the pressure all at once, the burden on the vacuum pump is reduced and a considerably high vacuum can be easily obtained. Can be done.

まず、前処理用チャンバ27で基材30に前処理を施し
、この基材30を原料供給手段20dに接続した高真空
チャンバ13に送給してサセプタ33に支持させる。こ
のように基材30が原料供給手段20dに接続した高真
空チャンバ13内に位置した状態においては、ゲートバ
ルブ23.25は閉じられて、この高真空チャンバ13
は他のチャンバ13.27と隔絶される。そして、原料
供給手段20dに原料供給管7を介して接続した原料供
給源から供給管1にCu(HFA)2ガスを供給し、こ
の原料ガスをノズル15a、17aを通して連通した高
真空チャンバ13内に導入して、1料ガスの熱分解によ
り生じた超伝導体原料であるCu分子を堆積させる。尚
、この原料ガスの高真空チャンバ13への導入に際して
、供給管1、中真空チャンバ11、高真空チャンバ13
と段階的に減圧されているため、差動排気の効果を受け
てCu分子が適当に加速された状態で基材30上に衝突
堆積することとなり、緻密な薄膜が形成される。
First, the base material 30 is pretreated in the pretreatment chamber 27, and the base material 30 is fed to the high vacuum chamber 13 connected to the raw material supply means 20d and supported by the susceptor 33. When the base material 30 is located in the high vacuum chamber 13 connected to the raw material supply means 20d, the gate valves 23.25 are closed and the high vacuum chamber 13 is closed.
is isolated from the other chambers 13.27. Then, Cu (HFA) 2 gas is supplied to the supply pipe 1 from the raw material supply source connected to the raw material supply means 20d via the raw material supply pipe 7, and this raw material gas is communicated with the high vacuum chamber 13 through the nozzles 15a and 17a. Cu molecules, which are the superconductor raw material produced by thermal decomposition of the primary gas, are deposited. In addition, when introducing this raw material gas into the high vacuum chamber 13, the supply pipe 1, the medium vacuum chamber 11, the high vacuum chamber 13
Since the pressure is reduced in stages, Cu molecules are appropriately accelerated and deposited on the base material 30 by collision due to the effect of differential pumping, thereby forming a dense thin film.

次いて、ゲートバルブ23を開けてCu元素が堆積した
基材30を原料供給手段20cに接続した高真空チャン
バ13に送給してサセプタ33に支持させ、ゲートバル
ブ23を閉じてこの高真空チャンバ13を他のチャンバ
13と隔絶する。そして、原料供給手段20cに原料供
給管7を介して接続した原料供給源から供給管1にCa
(HFA)2ガスを供給し、上記工程と同様に、この原
料ガスをノズル15a、17aを通して連通した高真空
チャンバ13内に導入して、原料ガスの熱分解により生
じた超伝導体原料であるCa分子を既にCu分子が堆積
している基材30上に堆積させる。
Next, the gate valve 23 is opened to feed the base material 30 on which the Cu element has been deposited to the high vacuum chamber 13 connected to the raw material supply means 20c and supported by the susceptor 33, and the gate valve 23 is closed to feed the base material 30 on which the Cu element has been deposited into the high vacuum chamber 13 connected to the raw material supply means 20c. 13 is isolated from other chambers 13. Then, Ca is supplied from the raw material supply source connected to the raw material supply means 20c via the raw material supply pipe 7 to the supply pipe
(HFA)2 gas is supplied, and similarly to the above process, this raw material gas is introduced into the high vacuum chamber 13 communicated through the nozzles 15a and 17a, and the superconductor raw material is produced by thermal decomposition of the raw material gas. Ca molecules are deposited on the base material 30 on which Cu molecules have already been deposited.

次いで、ゲートバルブ23を開げてCu及びCa元素が
層状に堆積した基材30を原料供給手段20bに接続し
た高真空チャンバ13に送給してサセプタ33に支持さ
せ、ゲートバルブ23を閉じてこの高真空チャンバ13
を他のチャンバ13と隔絶する。そして、原料供給手段
20bに原料供給管7を介して接続した原料供給源から
供給管1に5r(HFA)2ガスを供給し、上記工程と
同様に、この原料ガスをノズル15a、17aを通して
連通した高真空チャンバ13内に導入して、原料ガスの
熱分解により生じた超伝導体原料であるSr分子を既に
Cu及びCa分子が堆積している基材30上に堆積させ
る。
Next, the gate valve 23 is opened and the base material 30 on which Cu and Ca elements are deposited in layers is fed to the high vacuum chamber 13 connected to the raw material supply means 20b and supported on the susceptor 33, and the gate valve 23 is closed. This high vacuum chamber 13
is isolated from other chambers 13. Then, 5r (HFA)2 gas is supplied to the supply pipe 1 from the raw material supply source connected to the raw material supply means 20b via the raw material supply pipe 7, and similarly to the above process, this raw material gas is communicated through the nozzles 15a and 17a. Sr molecules, which are the superconductor raw material produced by thermal decomposition of the raw material gas, are deposited on the base material 30 on which Cu and Ca molecules have already been deposited.

次いで、ゲートバルブ23を開けてCuS Ca及びS
r元素が層状に堆積した基材3oを原料供給手段20a
に接続した高真空チャンバ13に送給してサセプタ33
に支持させ、ゲートバルブ23を閉じてこの高真空チャ
ンバ13を他のチャンバ13.37と隔絶する。そして
、原料供給手段20aに原料供給管7を介して接続した
原料供給源から供給管1にB i (OC2H5) 3
ガスを供給し・、上記工程と同様に、この原料ガスをノ
ズル15a、17aを通して連通した高真空チャンバ1
3内に導入して、原料ガスの熱分解により生じた超伝導
体原料であるBi分子を既にCu、Ca及びSr分子が
堆積している基材3o上に堆積させる。
Next, the gate valve 23 is opened and CuS Ca and S
The base material 3o on which the r element is deposited in a layered manner is supplied to the raw material supply means 20a.
The susceptor 33 is supplied to the high vacuum chamber 13 connected to the
The high vacuum chamber 13 is isolated from other chambers 13.37 by closing the gate valve 23. Then, B i (OC2H5) 3 is supplied to the supply pipe 1 from the raw material supply source connected to the raw material supply means 20a via the raw material supply pipe 7.
A high vacuum chamber 1 is supplied with gas and communicated with this raw material gas through the nozzles 15a and 17a in the same way as in the above process.
Bi molecules, which are the superconductor raw material produced by thermal decomposition of the raw material gas, are deposited on the base material 3o on which Cu, Ca, and Sr molecules have already been deposited.

上記のように超伝導体原料Cu、  Ca、、Sr、B
iが層状に堆積した基材3oをゲートバルブ35を開け
て真空炉37に送給し、酸素を付与して基材30上の薄
膜をB i −5r−Ca−Cu−0系の超伝導体とす
る。
As mentioned above, superconductor raw materials Cu, Ca, Sr, B
The base material 3o on which i has been deposited in a layered manner is sent to the vacuum furnace 37 by opening the gate valve 35, and oxygen is added to form a thin film on the base material 30 to form a B i -5r-Ca-Cu-0 based superconductor. Body.

上記の一連の工程において、各原料ガスは別個に供給さ
れ且つ原料ガスからの超伝導原料の生成は各原料ガス毎
に別個に行われるため、他の原料ガスの影響を受けるこ
となくその原料ガスに適した温度、蒸気圧を容易に維持
することができ、期待する組成の超伝導体を容易に得る
ことができる。
In the above series of steps, each raw material gas is supplied separately and the generation of superconducting raw material from the raw material gas is performed separately for each raw material gas, so the raw material gas is not affected by other raw material gases. The appropriate temperature and vapor pressure can be easily maintained, and a superconductor with the expected composition can be easily obtained.

尚、上記実施例から容易に理解されるように、原料供給
手段の数は超伝導体を構成する元素の数に応じて適宜設
定される。
Incidentally, as is easily understood from the above embodiments, the number of raw material supply means is appropriately set according to the number of elements constituting the superconductor.

また、超伝導体を形成する基材として長尺なリボン状の
ものを用いると共に、各原料供給手段に接続し且つ基材
を収容する複数のチャンバ(上記実施例では高真空チャ
ンバ13)を常に連通した状態(上記実施例ではゲート
バルブを開けた状態)として、このリボン材をその長手
方向へ移動させて長尺な超伝導体を連続的に形成するこ
ともできる。
In addition, a long ribbon-like material is used as the base material for forming the superconductor, and a plurality of chambers (high vacuum chamber 13 in the above embodiment) connected to each raw material supply means and accommodating the base material are always connected. It is also possible to continuously form a long superconductor by moving this ribbon material in its longitudinal direction while in a communicating state (in the above embodiment, the gate valve is open).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す平面図、第2図は第1
図中の■−■矢視断面図である。 7は原料ガス供給管、 13は高真空チャンバ、 20a、20b、20c、20dは原料供給手段、 30は基材である。
Fig. 1 is a plan view showing one embodiment of the present invention, and Fig. 2 is a plan view showing an embodiment of the present invention.
It is a sectional view taken along the line ■-■ in the figure. 7 is a raw material gas supply pipe; 13 is a high vacuum chamber; 20a, 20b, 20c, and 20d are raw material supply means; 30 is a base material.

Claims (1)

【特許請求の範囲】[Claims] 複数の原料供給手段と、それぞれの原料供給手段に接続
され且つ互いに直列に接続された複数のチャンバと、を
備え、各原料供給手段は超伝導体薄膜を組成する元素の
内の1種類を含む原料ガスをチャンバ内にそれぞれ別個
に供給し、各チャンバは超伝導体薄膜を堆積させる基材
を収容して当該基材に各原料供給手段から供給される元
素を堆積させることを特徴とする超伝導体の製造装置。
Comprising a plurality of raw material supply means and a plurality of chambers connected to each raw material supply means and connected to each other in series, each raw material supply means containing one type of elements constituting the superconductor thin film. A superconductor characterized in that raw material gases are separately supplied into chambers, each chamber accommodates a base material on which a superconductor thin film is deposited, and elements supplied from each raw material supply means are deposited on the base material. Conductor manufacturing equipment.
JP21096888A 1988-08-24 1988-08-24 Device for producing superconductor Pending JPH0259404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21096888A JPH0259404A (en) 1988-08-24 1988-08-24 Device for producing superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21096888A JPH0259404A (en) 1988-08-24 1988-08-24 Device for producing superconductor

Publications (1)

Publication Number Publication Date
JPH0259404A true JPH0259404A (en) 1990-02-28

Family

ID=16598105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21096888A Pending JPH0259404A (en) 1988-08-24 1988-08-24 Device for producing superconductor

Country Status (1)

Country Link
JP (1) JPH0259404A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220873A (en) * 1985-07-19 1987-01-29 Sumitomo Electric Ind Ltd Device and method for preparing optical cvd film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220873A (en) * 1985-07-19 1987-01-29 Sumitomo Electric Ind Ltd Device and method for preparing optical cvd film

Similar Documents

Publication Publication Date Title
US10370761B2 (en) Pulsed valve manifold for atomic layer deposition
CN107447204B (en) Manifold for uniform vapor deposition
US20020195056A1 (en) Versatile atomic layer deposition apparatus
JP4585692B2 (en) Thin film formation method
US20080096369A1 (en) Apparatus and method for high-throughput chemical vapor deposition
US20100221426A1 (en) Web Substrate Deposition System
TW201408810A (en) Methods for depositing oxygen deficient metal films
WO2010123666A2 (en) Method and apparatus for growing a thin film onto a substrate
US20120258863A1 (en) Metalorganic chemical vapor deposition (mocvd) process and apparatus to produce multi-layer high-temperature superconducting (hts) coated tape
JPH01202829A (en) Manufature of electronic device and reaction vessel used for it
US20040094093A1 (en) Method and apparatus for providing and integrating a general metal delivery source (GMDS) with atomic layer deposition (ALD)
US20040178175A1 (en) Atomic layer deposition for high temperature superconductor material synthesis
JPH0259404A (en) Device for producing superconductor
EP3696294B1 (en) Method for enabling optimized material deposition
CN100385035C (en) Method for forming organic thin film
JP3808250B2 (en) CVD reactor and oxide superconductor manufacturing method
JPH0543396A (en) Production of oxide superconductor and production device therefor
US5747099A (en) Two chamber reaction furnace
JPH0285370A (en) Manufacture of thin oxide film
JPH01290507A (en) Production of thin film of metal compound
US20230047633A1 (en) Apparatus and Methods for Roll-to-Roll (R2R) Plasma Enhanced/Activated Atomic Layer Deposition (PEALD/PAALD)
JP3285897B2 (en) Method and apparatus for vaporizing CVD raw material for producing oxide superconductor
US20210355580A1 (en) Systems and Methods for Depositing a Layer on a Substrate Using Atomic Oxygen
JPH01308804A (en) Production of filmy superconductor
KR20240146392A (en) Atmosphere roll-to-roll atomic layer depositing apparatus