JPH0259171B2 - - Google Patents

Info

Publication number
JPH0259171B2
JPH0259171B2 JP20172182A JP20172182A JPH0259171B2 JP H0259171 B2 JPH0259171 B2 JP H0259171B2 JP 20172182 A JP20172182 A JP 20172182A JP 20172182 A JP20172182 A JP 20172182A JP H0259171 B2 JPH0259171 B2 JP H0259171B2
Authority
JP
Japan
Prior art keywords
resin particles
particles
temperature
melting point
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20172182A
Other languages
Japanese (ja)
Other versions
JPS5991125A (en
Inventor
Shohei Yoshimura
Hideki Kuwabara
Tooru Yamaguchi
Yoshimi Sudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP20172182A priority Critical patent/JPS5991125A/en
Publication of JPS5991125A publication Critical patent/JPS5991125A/en
Publication of JPH0259171B2 publication Critical patent/JPH0259171B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は球状ポリオレフイン樹脂粒子の製造方
法に関する。 従来より発泡成型体は、ポリスチレン、架橋低
密度ポリエチレン等を材質として例えば予備発泡
粒子を用いるビーズ成型法等により製造されてい
る。一方、本出願人はポリオレフイン樹脂、特に
ポリプロピレン系樹脂、直鎖状低密度ポリエチレ
ンが機械的強度、耐熱性、耐薬品性、耐油性等が
優れていることから、その発泡成型体の開発の研
究を進めた結果、予備発泡粒子を得る方法および
その予備発泡粒子を用いて発泡成型体を得る方法
の開発に成功し、すでに提案している。 しかしながら、ポリスチレンが懸濁重合法によ
り、また低密度ポリエチレンが架橋工程によりそ
れぞれ球状の粒子を得ることができ、その樹脂粒
子を用いて得られる予備発泡粒子が球状となるの
に対し、ポリプロピレン系樹脂、直鎖状低密度ポ
リエチレンの場合には無架橋の樹脂粒子を用いて
予備発泡粒子が得られる反面、得られる予備発泡
粒子は均一な形状のものが得られ難く、その予備
発泡粒子は成型用金型に効率的に充填し難いため
均一な発泡成型体が得難かつた。 そこで本件特許出願人は、ポリプロピレン系樹
脂粒子を塩基性炭酸マグネシウム、タルクまたは
酸化アルミニウムあるいはそれらの混合物からな
る分散剤を用いて分散媒に分散した後、樹脂粒子
の融点+10℃以上の温度に加熱することによつて
球状のポリプロピレン系樹脂粒子が得られること
を見出し、すでに提案している。 本発明は上記従来技術をさらに改良した球状ポ
リオレフイン樹脂粒子の製造方法を提供すること
を目的とするものである。 すなわち、本発明はポリオレフイン樹脂粒子
を、揮発性可塑剤を含有した状態で上記樹脂粒子
間の融着防止能を有する分散剤と共に分散媒に分
散し、上記樹脂粒子の融点−5℃以上融点+10℃
未満の温度に加熱することを特徴とする球状ポリ
オレフイン樹脂粒子の製造方法を要旨とするもの
である。 本発明において、ポリオレフイン樹脂粒子の材
質としては、例えばポリプロピレン単独重合体、
エチレン−プロピレンランダム共重合体、エチレ
ン−プロピレンブロツク共重合体等のポリプロピ
レン系樹脂、エチレンとα−オレフインとの共重
合により得られる直鎖状低密度ポリエチレン(以
下LLDPEと称する)等が例示される。またポリ
オレフイン樹脂粒子は押出機によりペレツ化した
もの、粉砕機にて粉砕したもの、重合顆粒状粒子
等種々の形状の粒子を用いることができ、またそ
の重量は6mg/ケ以下、特に5mg/ケ以下が好ま
しい。 本発明において用られる揮発性可塑剤として
は、例えばプロパン、ブタン、ペンタン、ヘキサ
ン、ヘブタン等で例示される脂肪族炭化水素類、
シクロブタン、シクロペンタン等で例示される環
式脂肪族炭化水素類、トリクロロフロロメタン、
ジクロロジフロロメタン、ジクロロテトラフロロ
メタン、メチルクロライド、エチルクロライド、
メチレンクロライド等で例示されるハロゲン化炭
化水素類、イソブテンオリゴマー等の低重合オレ
フイン類等加熱処理後に容易に揮発作用により除
去され、高温時可塑性を有するものが好ましい。
この揮発性可塑剤の使用量は通常樹脂粒子100重
量部に対し5〜50重量部である。 揮発性可塑剤の量が5重量部未満の場合は可塑
化効果が充分に発揮されないおそれがある。ま
た、50重量部を超えても可塑化効果がさほど向上
しない為、これ以上使用することの積極的意味が
認められない。 本発明において、樹脂粒子間の融着防止能を有
する分散剤は、適正使用量において樹脂粒子間の
融着を防ぎ、かつ分散媒中で撹拌するとき球形化
を促進するものであり、その具体例としては酸化
アルミニウム微粉末、酸化マグネシウム、カーボ
ンブラツク、酸化チタン粉末等の不溶性無機微粉
末、界面活性剤等が挙げられる。上記界面活性剤
としては、陰イオン性界面活性剤、陽イオン性界
面活性剤、両性イオン界面活性剤等いずれも用い
ることができ、これらは混合して用いてもよい。
好ましい陰イオン性界面活性剤の具体例として
は、ステアリン酸カルシウム、ステアリン酸ナト
リウム、ステアリン酸アルミニウム、オレイン酸
ナトリウム、オレイン酸カルシウム、パルミチン
酸カルシウム、牛脂肪酸金属塩等の高級脂肪酸
塩、アルキルベンゼンスルホン酸ソーダ等のアル
キルベンゼンスルホン酸塩、その他アルキル硫酸
エステル塩、アルキルナフタレンスルホン酸塩等
が挙げられる。また好ましい陽イオン性界面活性
剤の具体例としては、アルキルアミン塩、第4級
アンモニウム塩等が挙げられ、好ましい両性イオ
ン界面活性剤の具体例としては、アルキルベタイ
ン等が挙げられる。上記の各種界面活性剤にはポ
リオキシエチレンアルキルエーテル、ポリオキシ
エチレン脂肪酸エステル等の非イオン性界面活性
剤を併用してもよい。本発明で用いる分散剤とし
て特に好ましいものは酸化アルミニウムと金属石
けんとの混合物、および酸化アルミニウム粉末と
陽イオン界面活性剤との混合物である。 分散剤の適正使用量は、分散剤の種類、ポリオ
レフイン系樹脂の種類および凝集処理条件等によ
つて異なるので実験的に確認することが必要であ
るが、概ねポリオレフイン系樹脂粒子100重量部
に対し、0.05〜5重量部の範囲にある。 また樹脂粒子が分散される分散媒としては、例
えば水、エチレングリコール、グリセリン、メタ
ノール、エタノール等のうちの1種またはそれら
の2種以上の混合物等が挙げられるが通常は水が
好ましい。分散媒の使用量は通常樹脂粒子100重
量部に対し100重量部以上である。 本発明において、樹脂粒子は前記樹脂粒子の融
点−5℃以上融点+10℃未満の温度に加熱され
る。加熱温度が融点−5℃未満の場合には球形化
が困難であり、本発明の目的を達成することがで
きない。また加熱温度が融点+10℃以上の場合に
は粒子間の融着防止能が低下し、またエネルギー
の損失を招く。また加熱温度が所望の温度に到達
した後一定時間以上保持することが好ましい。 このようにして球形化処理を行なつた後は、分
散媒と共に低温域へ取り出すか、所定温度、通常
100℃以下の温度にまで冷却した後系外へ取り出
して、球形化された粒子を得る。 本発明において、樹脂粒子の融点の測定は示差
走査熱量分析(DSC)によつて行なつた。この
測定法では、試料セツト後窒素雰囲気にて10℃/
分の速度で200℃まで昇温し、その後10℃/分で
50℃まで降温し、再度10℃/分で昇温したときの
融解ピークの頂点を融点とし、ピークが複数の場
合はその平均温度を融点とした。 本発明により得られる球状ポリオレフイン樹脂
粒子は、例えば当該樹脂の予備発泡粒子の製造に
有効に用いることができる。この予備発泡粒子の
製造方法は、例えば密閉容器内に樹脂粒子、揮発
性発泡剤、分散媒を入れ、撹拌下所定温度に昇温
し、容器内の圧力を揮発性発泡剤の蒸気圧以上ま
たは以下の圧力に保持しながら容器の一端を開放
し、樹脂粒子と分散媒とを同時に容器内より低圧
の雰囲気に放出することにより行なわれる。この
ようにして得られる予備発泡粒子は粒子形状のバ
ラツキが少なく、また気泡径(気泡数)のバラツ
キも少ないものである。 また上記のようにして得られた予備発泡粒子を
用いて発泡成型体を得ることができ、この予備発
泡粒子の形状は均一なので成型用金型に効率的に
充填でき、また気泡径のバラツキも少ないので均
一な優れた物性を有する発泡成型体を得ることが
できる。 以上説明したように、本発明の製造方法によれ
ば比較的低温で球状ポリオレフイン系樹脂粒子を
得ることができ、この球状樹脂粒子を例えば予備
発泡粒子の製造に用いた場合、形状、気泡径等が
均一な予備発泡粒子を得ることができ、さらには
この予備発泡粒子を用いて得られる発泡成型体は
優れた物性を有するものである等の利点を有する
ものである。 実施例1〜7および比較例1〜4 5のオートクレーブにポリオレフイン樹脂粒
子1000g、第1表に示す揮発性可塑剤、分散剤お
よび分散媒としての水を入れ、撹拌下、115〜175
℃の温度に加熱して1時間保持した後、室温まで
冷却し、オートクレーブ外へ取り出した。得られ
た樹脂粒子の形状を観察した。尚、本実施例およ
び比較例で使用するポリオレフイン樹脂の融点は
以下の通りである。 ポリオレフイン系樹脂 融点(℃) プロピレン単独重合体 165 エチレン−プロピレンランダム共重合体 145 エチレン−プロピレンブロツク共重合体 163 LLDPE樹脂 融点(℃) エチレン−ブテン1共重合体 124 また実施例2および比較例2で得られた樹脂粒
子をそれぞれ第1図および第2図に示す。
The present invention relates to a method for producing spherical polyolefin resin particles. BACKGROUND OF THE INVENTION Conventionally, foamed molded bodies have been manufactured using materials such as polystyrene and crosslinked low-density polyethylene, for example, by a bead molding method using pre-expanded particles. On the other hand, since polyolefin resins, especially polypropylene resins and linear low-density polyethylene, have excellent mechanical strength, heat resistance, chemical resistance, oil resistance, etc., the applicant has researched the development of foam molded products using polyolefin resins. As a result of our efforts, we succeeded in developing a method for obtaining pre-expanded particles and a method for obtaining foam molded articles using the pre-expanded particles, which we have already proposed. However, polystyrene can be obtained by suspension polymerization and low-density polyethylene can be obtained by cross-linking process to obtain spherical particles, and the pre-expanded particles obtained using these resin particles are spherical, whereas polypropylene resin In the case of linear low-density polyethylene, pre-expanded particles can be obtained using non-crosslinked resin particles, but on the other hand, it is difficult to obtain pre-expanded particles with a uniform shape, and the pre-expanded particles are not suitable for molding. Since it was difficult to fill the mold efficiently, it was difficult to obtain a uniform foam molded product. Therefore, the applicant of this patent dispersed polypropylene resin particles in a dispersion medium using a dispersant made of basic magnesium carbonate, talc, aluminum oxide, or a mixture thereof, and then heated the resin particles to a temperature of 10°C or more above the melting point of the resin particles. It has been found that spherical polypropylene resin particles can be obtained by this method, and has already been proposed. An object of the present invention is to provide a method for producing spherical polyolefin resin particles that is a further improvement over the above-mentioned conventional technique. That is, in the present invention, polyolefin resin particles are dispersed in a dispersion medium together with a dispersant having the ability to prevent fusion between the resin particles in a state containing a volatile plasticizer, and the melting point of the resin particles is -5°C or higher and the melting point is +10°C. ℃
The gist of the present invention is a method for producing spherical polyolefin resin particles, which is characterized by heating to a temperature below. In the present invention, the material of the polyolefin resin particles includes, for example, polypropylene homopolymer,
Examples include polypropylene resins such as ethylene-propylene random copolymers and ethylene-propylene block copolymers, and linear low-density polyethylene (hereinafter referred to as LLDPE) obtained by copolymerization of ethylene and α-olefin. . Furthermore, the polyolefin resin particles can be formed into pellets using an extruder, pulverized using a pulverizer, polymerized granules, etc., and have a weight of 6 mg/piece or less, especially 5 mg/piece. The following are preferred. Examples of volatile plasticizers used in the present invention include aliphatic hydrocarbons such as propane, butane, pentane, hexane, hebutane, etc.
Cycloaliphatic hydrocarbons such as cyclobutane and cyclopentane, trichlorofluoromethane,
Dichlorodifluoromethane, dichlorotetrafluoromethane, methyl chloride, ethyl chloride,
Preferred are halogenated hydrocarbons such as methylene chloride, low polymerized olefins such as isobutene oligomers, etc., which are easily removed by volatilization after heat treatment and have plasticity at high temperatures.
The amount of volatile plasticizer used is usually 5 to 50 parts by weight per 100 parts by weight of the resin particles. If the amount of volatile plasticizer is less than 5 parts by weight, the plasticizing effect may not be sufficiently exhibited. Furthermore, even if the amount exceeds 50 parts by weight, the plasticizing effect does not improve significantly, so there is no positive effect in using more than this amount. In the present invention, the dispersant having the ability to prevent fusion between resin particles is one that prevents fusion between resin particles when used in an appropriate amount and promotes spheroidization when stirred in a dispersion medium. Examples include insoluble inorganic fine powders such as aluminum oxide fine powder, magnesium oxide, carbon black, and titanium oxide powder, and surfactants. As the above-mentioned surfactant, any of anionic surfactants, cationic surfactants, amphoteric surfactants, etc. can be used, and these may be used in combination.
Specific examples of preferred anionic surfactants include calcium stearate, sodium stearate, aluminum stearate, sodium oleate, calcium oleate, calcium palmitate, higher fatty acid salts such as bovine fatty acid metal salts, and sodium alkylbenzenesulfonate. Examples include alkylbenzene sulfonates such as, other alkyl sulfate ester salts, alkylnaphthalene sulfonates, and the like. Further, specific examples of preferable cationic surfactants include alkylamine salts, quaternary ammonium salts, etc., and specific examples of preferable amphoteric surfactants include alkyl betaines. Nonionic surfactants such as polyoxyethylene alkyl ether and polyoxyethylene fatty acid ester may be used in combination with the above-mentioned various surfactants. Particularly preferred dispersants for use in the present invention are mixtures of aluminum oxide and metal soap, and mixtures of aluminum oxide powder and cationic surfactants. The appropriate amount of dispersant to be used varies depending on the type of dispersant, type of polyolefin resin, agglomeration treatment conditions, etc., so it must be confirmed experimentally, but in general, it should be confirmed experimentally for 100 parts by weight of polyolefin resin particles. , in the range of 0.05 to 5 parts by weight. Examples of the dispersion medium in which the resin particles are dispersed include water, ethylene glycol, glycerin, methanol, ethanol, etc., or a mixture of two or more thereof, but water is usually preferred. The amount of the dispersion medium used is usually 100 parts by weight or more per 100 parts by weight of the resin particles. In the present invention, the resin particles are heated to a temperature that is greater than or equal to the melting point of the resin particles -5°C and less than the melting point +10°C. If the heating temperature is lower than the melting point -5° C., it will be difficult to form spheres, making it impossible to achieve the object of the present invention. Furthermore, if the heating temperature is higher than the melting point +10°C, the ability to prevent fusion between particles will decrease, and energy loss will occur. Further, it is preferable to maintain the heating temperature for a certain period of time or more after reaching the desired temperature. After the spheroidization process is carried out in this way, it is either taken out to a low temperature region together with the dispersion medium, or it is kept at a predetermined temperature.
After cooling to a temperature of 100°C or less, the particles are taken out of the system to obtain spherical particles. In the present invention, the melting point of the resin particles was measured by differential scanning calorimetry (DSC). In this measurement method, the specimen is set at 10℃/10℃ in a nitrogen atmosphere.
Raise the temperature to 200℃ at a rate of 10℃/min, then increase the temperature to 200℃ at a rate of 10℃/min.
The apex of the melting peak when the temperature was lowered to 50°C and then raised again at a rate of 10°C/min was taken as the melting point, and when there were multiple peaks, the average temperature was taken as the melting point. The spherical polyolefin resin particles obtained by the present invention can be effectively used, for example, in the production of pre-expanded particles of the resin. In this method for producing pre-expanded particles, for example, resin particles, a volatile blowing agent, and a dispersion medium are placed in a closed container, the temperature is raised to a predetermined temperature while stirring, and the pressure inside the container is set to be equal to or higher than the vapor pressure of the volatile blowing agent. This is carried out by opening one end of the container while maintaining the pressure below, and simultaneously releasing the resin particles and dispersion medium from inside the container into a low-pressure atmosphere. The pre-expanded particles thus obtained have less variation in particle shape and also less variation in cell diameter (number of cells). In addition, a foamed molded article can be obtained using the pre-expanded particles obtained as described above, and since the shape of the pre-expanded particles is uniform, it can be efficiently filled into a mold for molding, and variations in cell diameter can be avoided. Since the amount is small, a foamed molded article having uniform and excellent physical properties can be obtained. As explained above, according to the production method of the present invention, spherical polyolefin resin particles can be obtained at relatively low temperatures, and when these spherical resin particles are used, for example, in the production of pre-expanded particles, the shape, cell diameter, etc. It has the advantage that it is possible to obtain pre-expanded particles with uniform properties, and furthermore, the foamed molded article obtained using the pre-expanded particles has excellent physical properties. Examples 1 to 7 and Comparative Examples 1 to 4 1000 g of polyolefin resin particles, the volatile plasticizer shown in Table 1, a dispersing agent, and water as a dispersion medium were placed in the autoclave of 5, and while stirring, the temperature was 115 to 175.
After heating to a temperature of .degree. C. and maintaining it for 1 hour, it was cooled to room temperature and taken out of the autoclave. The shape of the obtained resin particles was observed. The melting points of the polyolefin resins used in the present examples and comparative examples are as follows. Polyolefin resin Melting point (°C) Propylene homopolymer 165 Ethylene-propylene random copolymer 145 Ethylene-propylene block copolymer 163 LLDPE resin Melting point (°C) Ethylene-butene 1 copolymer 124 Also, Example 2 and Comparative Example 2 The resin particles obtained in the above are shown in FIGS. 1 and 2, respectively.

【表】【table】

【表】 実施例8および比較例5 5のオートクレーブに実施例2で得られた樹
脂粒子または熱処理していない樹脂粒子1000g、
ジクロロジフロロメタン200g、塩基性炭酸マグ
ネシウム15gおよび水3000gを入れ、容器の一端
を開放し、容器内の圧力を35Kg/cm2、温度を145
℃に保持しながら予備発泡を行なつた。得られた
予備発泡粒子の形状、気泡径、形状のバラツキを
測定し、またオートクレーブ中に残留する樹脂粒
子の量を測定した。結果を第2表に示す。 また得られた予備発泡粒子を成型用金型に充填
し、加熱、発泡させて発泡成型体を得た。成型時
の成型性を調べた。結果を第2表に併せて示す。 尚、実施例8で得られた予備発泡粒子を第3図
に並びに比較例5で得られた予備発泡粒子をそれ
ぞれ第4図に示す。
[Table] Example 8 and Comparative Example 5 1000 g of the resin particles obtained in Example 2 or non-heat-treated resin particles were placed in the autoclave of 5.
Add 200 g of dichlorodifluoromethane, 15 g of basic magnesium carbonate, and 3000 g of water, open one end of the container, and reduce the pressure inside the container to 35 Kg/cm 2 and the temperature to 145
Pre-foaming was carried out while maintaining the temperature at °C. The shape, cell diameter, and shape variations of the obtained pre-expanded particles were measured, and the amount of resin particles remaining in the autoclave was also measured. The results are shown in Table 2. Further, the obtained pre-expanded particles were filled into a mold for molding, heated and foamed to obtain a foamed molded article. The moldability during molding was investigated. The results are also shown in Table 2. The pre-expanded particles obtained in Example 8 are shown in FIG. 3, and the pre-expanded particles obtained in Comparative Example 5 are shown in FIG. 4.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明により得られた樹脂粒子を示す
斜視図、第2図は本発明以外の方法により得られ
た樹脂粒子を示す斜視図、第3図は本発明により
得られた樹脂粒子を用いて製造された予備発泡粒
子を示す斜視図、第4図は本発明以外の方法によ
り得られた樹脂粒子を用いて製造された予備発泡
粒子を示す斜視図である。
FIG. 1 is a perspective view showing resin particles obtained by the present invention, FIG. 2 is a perspective view showing resin particles obtained by a method other than the present invention, and FIG. 3 is a perspective view showing resin particles obtained by the present invention. FIG. 4 is a perspective view showing pre-expanded particles produced using resin particles obtained by a method other than the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリオレフイン樹脂粒子を、揮発性可塑剤を
含有した状態で、上記樹脂粒子間の融着防止能を
有する分散剤と共に分散媒に分散し、上記樹脂粒
子の融点−5℃以上融点+10℃未満の温度に加熱
することを特徴とする球状ポリオレフイン樹脂粒
子の製造方法。
1 Polyolefin resin particles are dispersed in a dispersion medium together with a dispersant having the ability to prevent fusion between the resin particles in a state containing a volatile plasticizer, and the melting point of the resin particles is -5°C or higher and the melting point is lower than +10°C. A method for producing spherical polyolefin resin particles, the method comprising heating to a certain temperature.
JP20172182A 1982-11-17 1982-11-17 Production of spherical polyolefin resin particle Granted JPS5991125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20172182A JPS5991125A (en) 1982-11-17 1982-11-17 Production of spherical polyolefin resin particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20172182A JPS5991125A (en) 1982-11-17 1982-11-17 Production of spherical polyolefin resin particle

Publications (2)

Publication Number Publication Date
JPS5991125A JPS5991125A (en) 1984-05-25
JPH0259171B2 true JPH0259171B2 (en) 1990-12-11

Family

ID=16445825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20172182A Granted JPS5991125A (en) 1982-11-17 1982-11-17 Production of spherical polyolefin resin particle

Country Status (1)

Country Link
JP (1) JPS5991125A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188435A (en) * 1984-03-09 1985-09-25 Badische Yuka Co Ltd Production of polyolefin resin foam particle
ES2570753T3 (en) 1999-08-17 2016-05-20 Dow Global Technologies Llc Fluid polymer composition
JP2009256477A (en) * 2008-04-17 2009-11-05 Kaneka Corp Polypropylene resin expanded particle
WO2018211626A1 (en) * 2017-05-17 2018-11-22 株式会社アドマテックス Composite particle material, and production method therefor

Also Published As

Publication number Publication date
JPS5991125A (en) 1984-05-25

Similar Documents

Publication Publication Date Title
EP0168954B2 (en) Process for the production of expanded particles of a polypropylene resin
EP0212204B1 (en) Pre-expanded particles of non-crosslinked linear low density polyethylene and process for producing cellular materials therefrom
KR960013071B1 (en) Process for production of expansion - molded article in a mold of linear low density polyethylene resins
US4278627A (en) Expandable styrene-maleic anhydride copolymer particles and a process for molding the same
JPH0386736A (en) Production of foamed polyolefin resin particle
EP0256489B2 (en) Process for preparing pre-expanded particles of thermoplastic resin
US4778829A (en) Process for preparing pre-expanded particles of thermoplastic resin
JPS593486B2 (en) The temperature of the styrene is very low.
EP0933389B1 (en) Polypropylene resin pre-expanded particles
WO2019009094A1 (en) Olefinic thermoplastic elastomer foamed particles
JPH0259171B2 (en)
JP3281412B2 (en) Process for producing expandable particles of styrenic polymer with improved processability and mechanical properties
JP3950557B2 (en) Polypropylene-based resin pre-expanded particles and method for producing in-mold expanded molded articles therefrom
US3351569A (en) Process for the preparation of expandable polymeric products
JPH05247252A (en) Polyolefin foam and preparation of the same
JPS59111823A (en) Manufacture of preliminarily expanded polymer particle
JPWO2019189662A1 (en) Foamable thermoplastic resin particles, thermoplastic resin pre-foamed particles and thermoplastic resin foam
JPH032890B2 (en)
JPH0561300B2 (en)
JPS60252639A (en) Improved foamable thermoplastic resin particle
JPH0437095B2 (en)
JPH0415235A (en) Crosslinked polyolefin resin foam
JPS5915128B2 (en) Method for producing thermoplastic resin particles
JPH0781029B2 (en) Pre-expanded polypropylene resin particles and method for producing the same
JPS6332816B2 (en)