JPH0561300B2 - - Google Patents

Info

Publication number
JPH0561300B2
JPH0561300B2 JP57082097A JP8209782A JPH0561300B2 JP H0561300 B2 JPH0561300 B2 JP H0561300B2 JP 57082097 A JP57082097 A JP 57082097A JP 8209782 A JP8209782 A JP 8209782A JP H0561300 B2 JPH0561300 B2 JP H0561300B2
Authority
JP
Japan
Prior art keywords
foaming
particles
resin particles
resin
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57082097A
Other languages
Japanese (ja)
Other versions
JPS58199125A (en
Inventor
Masao Ando
Kenichi Senda
Kyoichi Nakamura
Kyoshi Mori
Tatsuhiko Nishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP57082097A priority Critical patent/JPS58199125A/en
Priority to AU14271/83A priority patent/AU559244B2/en
Priority to CA000428024A priority patent/CA1213112A/en
Priority to US06/494,394 priority patent/US4448901A/en
Priority to DE8383104738T priority patent/DE3377628D1/en
Priority to EP83104738A priority patent/EP0095109B1/en
Priority to DE1983104738 priority patent/DE95109T1/en
Publication of JPS58199125A publication Critical patent/JPS58199125A/en
Publication of JPH0561300B2 publication Critical patent/JPH0561300B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3461Making or treating expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、無機造核剤としてタルクを含有する
発泡性ポリオレフイン系樹脂粒子(以下、樹脂粒
子と略す)の予備発泡方法に関するものであり、
更に詳しくは揮発性発泡剤を含有せしめた発泡性
の樹脂粒子を揮発性発泡剤の蒸気圧以上の加圧下
で樹脂の軟化温度以上に加熱した後、前記粒子を
低圧域に放出する樹脂粒子の予備発泡方法に於
て、樹脂に特定量の無機造核剤としてタルクを添
加してなる樹脂粒子を用いることを特徴とする発
泡性樹脂粒子の予備発泡方法に関するものであ
り、本発明によつて気泡が微細で且つ極めて均質
な予備発泡粒子が得られる。 型内発泡成形に使用する予備発泡粒子の気泡径
については、成形後の発泡体の柔軟性、緩衝性、
外観等から考えて、大きくとも500μmであり、
殊に300μm以下が好ましいといわれている。 従来、オートクレーブ等の加圧容器中に樹脂粒
子と発泡剤及び水とを分散させ、これを高温、高
圧の状態にもたらした後、低圧域に開放すること
により樹脂粒子を予備発泡する方法は公知であ
り、例えば西独公開特許公報No.2107683号、特公
昭56−1344号公報等に記載がある。これらの方法
例えば特公昭56−1344号公報の方法によつて予備
発泡を行なう場合、予備発泡粒子の気泡径は
500μm以上のものしか得られず、また気泡径が
粒子内、粒子間で不揃いのものしか得られず商品
価値の無いものであつた。 本発明者らは、従来から樹脂粒子の予備発泡に
於て、気泡径を均一微細化する目的に対して、い
わゆる造核剤として知られるエチレンビス脂肪酸
アミド、有機アミド等を樹脂に添加する方法を実
施したが、予備発泡粒子の気泡径は無添加の場合
と同等程度であり、気泡径を均一微細化する効果
はほとんどなかつた。 本発明者等はかかる問題を克服し、発泡剤の樹
脂粒子への含有と予備発泡とを一工程で成し遂げ
られるプロセスを工業的に利用する為に鋭意研究
を行ない、本発明を完成するに到つた。 即ち本発明は、水中に分散させた、揮発性発泡
剤を含有せしめた発泡性ポリオレフイン系樹脂粒
子を耐圧容器内で、揮発性発泡剤の蒸気圧以上の
加圧下で、樹脂の軟化温度以上に加熱した後、前
記粒子と水との混合物を低圧域に放出する樹脂粒
子の予備発泡方法に於て、樹脂100重量部に対し
無機造核剤としてタルクを0.01〜1重量部含有さ
せた樹脂粒子を用いることを特徴とする発泡性熱
可塑性樹脂粒子の予備発泡方法を提供するもので
ある。 本発明の方法によれば、気泡が微細で且つ極め
て均質な予備発泡粒子が得られ、容易に500μm
〜300μm以下、更には100μm以下の気泡径も達
成される。更に本発明の別の効果としては気泡の
微細化に伴なう発泡粒子の表面外観の美麗化、更
には発泡倍率の向上等、発泡技術上の大きな利点
を有するものである。 本発明で使用される無機造核剤はタルクであ
り、その添加量は、樹脂100重量部に対し0.01〜
1重量部、好ましくは0.01〜0.5重量部である。
低密度ポリエチレンとジクロルジフルオルメタン
の組み合わせで発泡倍率30倍の発泡粒子とする場
合、タルクの添加量は0.01〜0.1部であり、また
エチレン−プロピレンランダムコポリマーとブタ
ンの組み合わせで発泡倍率30倍の発泡粒子とする
場合、タルクの好ましい添加量は0.05〜1部であ
る。エチレン−プロピレンランダムコポリマーと
ジクロルジフルオルメタンの組み合わせで発泡倍
率40倍の発泡粒子とする場合、タルクの添加量は
0.01〜0.5部が好ましい。一般的に添加量が0.01重
量部未満では目的とする気泡の均一微細化効果が
得られ難く、また1重量部を超えて添加しても多
量添加による顕著な効果が得られないか、または
目的とする効果がかえつて失われる傾向となる。 本発明において無機造核剤の添加方法は、通常
行なわれているいずれの方法を用いても良いが、
例えばドライブレンド法やマスターバツチ法があ
る。本発明の無機造核剤が発泡以前に樹脂粒子中
に均一に添加されていればいずれの方法を用いて
も差しつかえない。 本発明において使用する樹脂粒子の種類は、揮
発性発泡剤を含有でき加熱によつて発泡に適正な
粘弾性状態を出現し得る熱可塑性樹脂であれば特
に制限はないが、低密度ポリエチレン、中密度ポ
リエチレン、高密度ポリエチレンが望ましく、殊
にエチレン−プロピレンランダムコポリマーが好
適でる。樹脂粒子の粒子径は300〜5000μmの範
囲にあるものが好適であるが、粒子径には特に制
限はない。 本発明に於いて使用される揮発性発泡剤として
は、大気圧下の沸点が−60〜120℃の範囲にある
もので、例えばプロパン、ブタン、ペンタン、ヘ
キサン、ヘプタン等の脂肪族炭化水素類;シクロ
ブタン、シクロペンタン等の脂肪族環式炭化水素
類、及びトリクロルモノフルオルメタン、ジクロ
ルモノフルオルメタン、ジクロルジフルオルメタ
ン、ジクロルテトラフルオルエタン、トリクロル
トリフルオルエタン、パーフルオルシクロブタ
ン、メチルクロライド、メチレンクロライド、エ
チルクロライド、トリクロルエチレン等のハロゲ
ン化炭化水素類などであり、これらの揮発性発泡
剤のうち1種又は2種以上の混合物として使用さ
れる。 本発明に於いて樹脂粒子を水に分散させる際に
は、少量の分散剤を使用し、加熱時の樹脂粒子同
志の凝集を防止することが望ましい。分散剤とし
ては、ポリビニルアルコール、カルボキシルメチ
ルセルロース、N−ポリビニルピロリドン等の水
溶性高分子;リン酸カルシウム、ピロリン酸マグ
ネシウム等の水に難溶性の無機物質、又はこれら
の無機物質と少量のドデシルベンゼンスルフオン
酸ナトリウム、α−オレフインスルフオン酸ナト
リウム等のアニオン界面活性剤を併用したものが
用いられる。 本発明の方法における加熱温度は、発泡剤を含
んだ状態での樹脂の軟化温度以上軟化温度+50℃
の範囲が適当であり、樹脂の種類、含有される揮
発性発泡剤の種類、量により、この範囲の中で適
宜選択される。例えば、エチレン−プロピレンラ
ンダムコポリマーとジクロルジフルオルメタンの
組み合わせでは120〜160℃の範囲で発泡が可能で
ある。 本発明の方法における発泡時の容器内の圧力
は、該発泡剤の蒸気圧ないし該蒸気圧+30Kg/cm2
Gに保持するのが適当である。ここで言う発泡剤
の蒸気圧とは樹脂粒子と発泡剤を水に分散させた
状態で加熱したときの系の圧力であり、この蒸気
圧以上の圧力を得たい時はN2等の不活性ガスで
系を加圧してやることも可能である。容器内の樹
脂粒子と水の混合物が放出されるに従い、容器内
の樹脂粒子と水の混合物が減少していくので容器
の上部空間には容器外から該発泡剤又はN2等の
不活性ガスを導入して耐圧容器内の圧力を保持し
てやることが好ましい。 又、本発明において放出弁の前又は(及び)後
に小孔オリフイスを介在させたり、放出弁からの
放出口を絞つたりして放出量をコントロールし容
器内の圧力を保ち易くしたり、放出粒子を単一粒
子として得やすくしたりできる。 本発明においていう低圧帯域とは加圧容器内よ
りも低圧の雰囲気であれば良いが通常は大気圧又
は減圧の状態が好ましい。 本発明において、予備発泡粒子はタルクを含有
することにより均一微細な気泡径を有する上、表
面外観良好で発泡倍率も向上したものが得られ
る。本発明で得られた予備発泡粒子は直接又は不
活性ガスを含有して再発泡したのち成形用金型に
充填し蒸気加熱等で粒子を融着せしめ発泡成形体
を製造する目的で使用されるが、この場合、本発
明の均一微細な気泡を有する予備発泡粒子を使用
すると、得られた成形体の特性、特に柔軟性、緩
衝性、表面外観等が極めて優れたものになり、従
つて商品価値が高くなる利点がある。 従来、熱可塑性樹脂予備発泡粒子の気泡径を小
さく、かつ均一なものとすることは技術的課題の
一つとされてきたものである。例えばポリスチレ
ン樹脂の場合は造核剤としてエチレンビス脂肪酸
アミド、有機アミド等の有機物を添加したり、発
泡剤含浸後の熟成等により発泡剤含浸後、蒸気発
泡によつて均一微細な気泡を有する予備発泡粒子
を得ている。又ポリエチレン樹脂の予備発泡にお
いては、樹脂の架橋、発泡剤含浸時の温度設定等
の方法によつて均一微細な気泡を有する予備発泡
粒子を得ている。更にポリプロピレン樹脂の予備
発泡においては、脂肪酸アミド、脂肪酸のグリセ
リンエステル等の化合物を添加することによつて
目的が達成されるが、これらはいずれも樹脂粒子
に発泡剤を含有させた後、該樹脂粒子を容器内で
例えば蒸気等の加熱媒体と接触させて発泡し、予
備発泡粒子とする方法に適用されるものである。
一方、合成樹脂の発泡方法として、押出機等の高
温、高圧下発泡剤を混合してダイスから低圧域へ
押出発泡を行なう押出発泡法が知られており、こ
の場合の気泡調節剤として無機物を使用すること
は公知である。 しかしながら本発明の発泡方法、即ち発泡剤を
含有する樹脂粒子を容器内で水に分散させ、高
温、高圧下から低圧帯域に該樹脂粒子と水の混合
物を放出する発泡方法によつて得られる予備発泡
粒子の気泡径を微細、均一化するという技術的課
題を解決する為に開示された方法は無く、本発明
はこの課題を初めて解決したものである。更に、
つけ加えれば押出発泡法に於いて発泡体の気泡径
を均一微細化する為に用いる気泡調節剤の添加量
は少なくとも0.5部以上であり、本発明の如き少
量添加では効果が得られない。又、押出発泡法に
於いては、上記の如く気泡調節剤によつて得られ
る気泡径は細かくとも300μm程度であり、本発
明の如き、300μm以下、更には100μm以下の気
泡径を達成することは困難である。 次に実施例、比較例を挙げて本発明を説明す
る。以下の実施例、比較例で表わす評価尺度を下
記の如く分類する。 予備発泡粒子の気泡径(JIS−K6402に準拠し
て測定) 符号 評価 A 平均気泡径が200μm未満 B 〃 200μm以上500μm未満 C 平均気泡径が500μm以上 なお実施例、比較例で用いた化合物を以下に記
す。 タルク(林化成(株)製;タルカンパウダーP・
K) エチレンビスステアリン酸アミド(花王石ケ
ン(株)製;ワツクスEB−P) ステアリン酸アミド(花王石ケン(株)製;アマ
イドT) 実施例1〜4,比較例1 エチレン−プロピレンランダムコポリマー(密
度0.90,MI=9,エチレン含有量4.5重量%)に
対して表−1に記載するタルクを添加し、ドライ
ブレンドし通常の条件で押出ペレツト化して得ら
れた粒径約2μmΦのペレツト100重量部を、分散
剤としてパウダー状塩基性第三リン酸カルシウム
0.5重量部とドデシルベンゼンスルホン酸ナトリ
ウム0.025重量部にて水300重量部に分散させ、攪
拌しながらジクロルジフルオルメタン55重量部を
加え、135℃まで昇温した。引続いて容器内の圧
力を30Kg/cm2GにN2で保持しながら放出バルブ
の後に取りつけた円筒状厚板にあけた口径3mmΦ
の孔を通してペレツトと水とを大気圧中に放出し
予備発泡粒子を得た。得られた予備発泡粒子を評
価した結果を表−1に示すが、実施例のものは気
泡が均一で気泡径が微細で美麗な発泡粒子であつ
た。一方、タルクを無添加の場合は比較例1に示
すように発泡粒子の気泡径が大きく、かつ不均一
であり、商品価値のないものであつた。
The present invention relates to a method for pre-foaming expandable polyolefin resin particles (hereinafter abbreviated as resin particles) containing talc as an inorganic nucleating agent.
More specifically, foamable resin particles containing a volatile foaming agent are heated to a temperature higher than the softening temperature of the resin under pressure higher than the vapor pressure of the volatile foaming agent, and then the resin particles are released into a low pressure region. The present invention relates to a method for pre-foaming expandable resin particles, characterized in that the pre-foaming method uses resin particles obtained by adding a specific amount of talc as an inorganic nucleating agent to a resin. Pre-expanded particles with fine bubbles and extremely uniformity are obtained. The cell diameter of the pre-expanded particles used in in-mold foam molding depends on the flexibility, cushioning properties, and
Considering the appearance etc., the maximum diameter is 500μm,
It is said that a thickness of 300 μm or less is particularly preferable. Conventionally, there is a known method of pre-foaming resin particles by dispersing resin particles, a blowing agent, and water in a pressurized container such as an autoclave, bringing the container to a high temperature and high pressure state, and then opening the container to a low pressure region. This is described, for example, in West German Published Patent Publication No. 2107683, Japanese Patent Publication No. 1344/1983, and the like. When pre-foaming is carried out by these methods, for example, the method disclosed in Japanese Patent Publication No. 1344/1983, the cell diameter of the pre-foamed particles is
Only those with a diameter of 500 μm or more could be obtained, and only those with irregular bubble diameters within and between particles were obtained, so they had no commercial value. The present inventors have conventionally proposed a method of adding ethylene bis fatty acid amide, organic amide, etc., known as a nucleating agent, to the resin for the purpose of uniformly making the cell diameter finer in the pre-foaming of resin particles. However, the cell diameter of the pre-expanded particles was about the same as that without additives, and there was almost no effect of making the cell diameter uniform and fine. The present inventors have conducted intensive research to overcome such problems and to industrially utilize a process that can accomplish the inclusion of a blowing agent into resin particles and pre-foaming in one step, and have finally completed the present invention. Ivy. That is, the present invention involves heating expandable polyolefin resin particles containing a volatile blowing agent dispersed in water in a pressure-resistant container to a temperature higher than the softening temperature of the resin under pressure higher than the vapor pressure of the volatile blowing agent. In a pre-foaming method for resin particles in which a mixture of the particles and water is released into a low pressure region after heating, resin particles containing 0.01 to 1 part by weight of talc as an inorganic nucleating agent per 100 parts by weight of resin. The present invention provides a method for pre-foaming expandable thermoplastic resin particles, which is characterized by using the following methods. According to the method of the present invention, pre-expanded particles with fine bubbles and extremely homogeneous cells can be obtained, and easily have a diameter of 500 μm.
Cell diameters of ~300 μm or less, even 100 μm or less, are achieved. Furthermore, the present invention has significant advantages in terms of foaming technology, such as making the surface appearance of the foamed particles more beautiful due to the miniaturization of the cells, and further improving the foaming ratio. The inorganic nucleating agent used in the present invention is talc, and the amount added is 0.01 to 100 parts by weight of the resin.
1 part by weight, preferably 0.01 to 0.5 part by weight.
When forming foamed particles with a foaming ratio of 30 times using a combination of low-density polyethylene and dichlorodifluoromethane, the amount of talc added is 0.01 to 0.1 part, and when a combination of ethylene-propylene random copolymer and butane is used, the foaming ratio is 30 times. When forming expanded particles, the preferred amount of talc added is 0.05 to 1 part. When forming foamed particles with a foaming ratio of 40 times using a combination of ethylene-propylene random copolymer and dichlorodifluoromethane, the amount of talc added is
0.01 to 0.5 part is preferred. In general, if the amount added is less than 0.01 part by weight, it is difficult to obtain the desired effect of making the bubbles uniform and fine, and even if it is added in excess of 1 part by weight, the remarkable effect of adding a large amount may not be obtained, or the desired effect may not be achieved. This tends to cause the effect to be lost. In the present invention, the inorganic nucleating agent may be added using any commonly used method, but
For example, there are the dry blend method and the master batch method. Any method may be used as long as the inorganic nucleating agent of the present invention is uniformly added to the resin particles before foaming. The type of resin particles used in the present invention is not particularly limited as long as it is a thermoplastic resin that can contain a volatile foaming agent and can exhibit a viscoelastic state suitable for foaming when heated, but may include low-density polyethylene, medium-density polyethylene, Density polyethylene and high-density polyethylene are preferred, and ethylene-propylene random copolymers are particularly preferred. The particle size of the resin particles is preferably in the range of 300 to 5000 μm, but there is no particular restriction on the particle size. Volatile blowing agents used in the present invention include those having a boiling point in the range of -60 to 120°C under atmospheric pressure, such as aliphatic hydrocarbons such as propane, butane, pentane, hexane, and heptane. ; Aliphatic cyclic hydrocarbons such as cyclobutane and cyclopentane, and trichloromonofluoromethane, dichloromonofluoromethane, dichlorodifluoromethane, dichlorotetrafluoroethane, trichlorotrifluoroethane, perfluorocyclobutane , methyl chloride, methylene chloride, ethyl chloride, halogenated hydrocarbons such as trichloroethylene, etc., and these volatile blowing agents are used singly or as a mixture of two or more. In the present invention, when dispersing resin particles in water, it is desirable to use a small amount of a dispersant to prevent agglomeration of the resin particles during heating. Dispersants include water-soluble polymers such as polyvinyl alcohol, carboxymethylcellulose, and N-polyvinylpyrrolidone; inorganic substances that are poorly soluble in water such as calcium phosphate and magnesium pyrophosphate, or these inorganic substances and a small amount of dodecylbenzenesulfonic acid. A combination of anionic surfactants such as sodium and sodium α-olefin sulfonate is used. The heating temperature in the method of the present invention is equal to or higher than the softening temperature of the resin containing the foaming agent, or the softening temperature + 50°C.
A suitable range is selected within this range depending on the type of resin and the type and amount of the volatile blowing agent contained. For example, a combination of ethylene-propylene random copolymer and dichlorodifluoromethane allows foaming in the range of 120 to 160°C. The pressure inside the container during foaming in the method of the present invention is the vapor pressure of the foaming agent to the vapor pressure + 30Kg/cm 2
It is appropriate to hold it at G. The vapor pressure of the blowing agent referred to here is the pressure of the system when resin particles and the blowing agent are dispersed in water and heated. If you want to obtain a pressure higher than this vapor pressure, use an inert gas such as N2 . It is also possible to pressurize the system with gas. As the mixture of resin particles and water inside the container is released, the mixture of resin particles and water inside the container decreases, so the blowing agent or an inert gas such as N 2 is added to the upper space of the container from outside the container. It is preferable to maintain the pressure inside the pressure vessel by introducing In addition, in the present invention, a small orifice is inserted before or after the discharge valve, or the discharge port from the discharge valve is throttled to control the discharge amount and make it easier to maintain the pressure inside the container. Particles can be easily obtained as single particles. The low-pressure zone in the present invention may be any atmosphere having a lower pressure than the inside of the pressurized container, but is usually preferably at atmospheric pressure or reduced pressure. In the present invention, by containing talc, the pre-expanded particles have a uniform and fine cell diameter, have a good surface appearance, and have an improved expansion ratio. The pre-expanded particles obtained in the present invention can be used directly or after being re-foamed with an inert gas, filled into a mold and fused by steam heating etc. to produce a foamed molded article. However, in this case, if the pre-expanded particles of the present invention having uniform fine cells are used, the properties of the obtained molded product, especially flexibility, cushioning properties, surface appearance, etc., will be extremely excellent, and therefore it will be a good product. It has the advantage of increasing in value. Conventionally, one of the technical challenges has been to make the cell diameter of pre-expanded thermoplastic resin particles small and uniform. For example, in the case of polystyrene resin, an organic substance such as ethylene bis fatty acid amide or organic amide is added as a nucleating agent, or a preform with uniform fine bubbles is formed by steam foaming after impregnation with a blowing agent and aging etc. after impregnation with a blowing agent. Foamed particles are obtained. In the pre-foaming of polyethylene resin, pre-foamed particles having uniform fine cells are obtained by cross-linking the resin, setting the temperature during impregnation with a blowing agent, etc. Furthermore, in the pre-foaming of polypropylene resin, the purpose is achieved by adding compounds such as fatty acid amides and glycerin esters of fatty acids; This method is applied to a method in which particles are foamed by contacting them with a heating medium such as steam in a container to form pre-expanded particles.
On the other hand, as a method for foaming synthetic resins, an extrusion foaming method is known, in which foaming is carried out under high temperature and high pressure using an extruder, etc., and the mixture is extruded from a die to a low pressure region. Its use is known. However, the reserve obtained by the foaming method of the present invention, that is, the foaming method in which resin particles containing a blowing agent are dispersed in water in a container and the mixture of resin particles and water is discharged from a high temperature and high pressure to a low pressure zone. There is no method disclosed for solving the technical problem of making the cell diameter of expanded particles fine and uniform, and the present invention is the first to solve this problem. Furthermore,
In addition, in the extrusion foaming method, the amount of the cell regulator used to make the cell size of the foam uniform and fine is at least 0.5 parts, and adding a small amount as in the present invention will not produce any effect. In addition, in the extrusion foaming method, as mentioned above, the cell diameter obtained by using a cell control agent is about 300 μm at the most, and it is difficult to achieve a cell size of 300 μm or less, or even 100 μm or less, as in the present invention. It is difficult. Next, the present invention will be explained with reference to Examples and Comparative Examples. The evaluation scales shown in the following Examples and Comparative Examples are classified as follows. Cell diameter of pre-expanded particles (measured in accordance with JIS-K6402) Code Evaluation A Average cell diameter is less than 200 μm B 〃 200 μm or more and less than 500 μm C Average cell diameter is 500 μm or more The compounds used in Examples and Comparative Examples are as follows. It is written in Talc (manufactured by Hayashi Kasei Co., Ltd.; Talcan Powder P.
K) Ethylene bisstearamide (manufactured by Kao Sekiken Co., Ltd.; Wax EB-P) Stearic acid amide (manufactured by Kao Sekiken Co., Ltd.; Amide T) Examples 1 to 4, Comparative Example 1 Ethylene-propylene random copolymer (density 0.90, MI = 9, ethylene content 4.5% by weight), talc listed in Table 1 was added, dry blended, and extruded under normal conditions to make pellets with a particle size of approximately 2 μm Φ. parts by weight of powdered basic tribasic calcium phosphate as a dispersant.
0.5 parts by weight and 0.025 parts by weight of sodium dodecylbenzenesulfonate were dispersed in 300 parts by weight of water, and while stirring, 55 parts by weight of dichlorodifluoromethane was added and the temperature was raised to 135°C. Subsequently, while maintaining the pressure inside the container at 30Kg/cm 2 G with N 2 , a hole with a diameter of 3 mm was made in a cylindrical plate attached after the release valve.
The pellets and water were released into atmospheric pressure through the holes to obtain pre-expanded particles. The results of evaluating the obtained pre-expanded particles are shown in Table 1, and the foamed particles of Examples were beautiful with uniform cells and fine cell diameters. On the other hand, when no talc was added, as shown in Comparative Example 1, the foamed particles had large cell diameters and were non-uniform, and had no commercial value.

【表】 比較例 2〜5 添加物としてエチレンビスステアリン酸アミ
ド、ステアリン酸アミドを用いた以外は実施例1
〜4と同様の方法で重合体予備発泡粒子を得た。
発泡結果及び評価結果を表−2に示すが、これら
従来の所謂重合体予備発泡粒子の気泡調節剤には
気泡を均一微細化する効果は全く認められなかつ
た。
[Table] Comparative Examples 2 to 5 Example 1 except that ethylene bisstearamide and stearamide were used as additives.
Polymer pre-expanded particles were obtained in the same manner as in 4.
The foaming results and evaluation results are shown in Table 2. These conventional foam control agents for so-called pre-expanded polymer particles were not found to have any effect of uniformly making the cells fine.

【表】【table】

【表】 実施例 5 樹脂密度0.92,MI 1.0の直鎖状低密度ポリエチ
レン(コモノマー:1−ブテン)に対し、タルク
0.02重量部を添加し、1粒重量4.5mgのペレツト
とし、容器内温度117℃、容器内圧力27Kg/cm2
とした以外は実施例1と同様の方法で予備発泡粒
子を得た。得られた予備発泡粒子の発泡倍率は26
倍で、平均気泡径は150μm(ランクA)で均一
なものであつた。比較例として、タルクを添加せ
ずに、実施例と同様にして予備発泡粒子を得た。
発泡倍率は13倍、平均気泡径はC〜Bで、気泡は
非常に不均一なものであつた。 実施例6〜8,比較例6 揮発性発泡剤としてn−ブタン40重量部を使用
し、加熱温度を115℃とした以外は実施例1〜4
と同一の条件で行なつた。発泡結果及び評価結果
を表−3に示すが、各実施例とも比較例に比べる
と気泡が均一微細で表面外観に優れていることが
判る。
[Table] Example 5 Talc was added to linear low-density polyethylene (comonomer: 1-butene) with a resin density of 0.92 and an MI of 1.0.
0.02 part by weight was added to make pellets with each grain weighing 4.5 mg, the temperature inside the container was 117℃, and the pressure inside the container was 27Kg/cm 2 G.
Pre-expanded particles were obtained in the same manner as in Example 1 except for the following. The expansion ratio of the obtained pre-expanded particles is 26
The average bubble diameter was 150 μm (rank A) and uniform. As a comparative example, pre-expanded particles were obtained in the same manner as in the example without adding talc.
The foaming ratio was 13 times, the average cell diameter was C to B, and the cells were very non-uniform. Examples 6 to 8, Comparative Example 6 Examples 1 to 4 except that 40 parts by weight of n-butane was used as the volatile blowing agent and the heating temperature was 115°C.
It was carried out under the same conditions. The foaming results and evaluation results are shown in Table 3, and it can be seen that the cells in each Example were more uniform and finer and the surface appearance was better than in the Comparative Example.

【表】 実施例9〜10,比較例7 エチレン−プロピレンランダムコポリマーとし
てMI=30、エチレン含有量3.5重量%のものを使
用し、加熱温度を141℃とした以外は実施例1〜
4と同一の条件で行なつた。発泡結果及び評価結
果を表−4に示すが、各実施例とも比較例に比べ
ると気泡が均一微細で表面外観に優れるものであ
つた。
[Table] Examples 9 to 10, Comparative Example 7 Examples 1 to 1 except that an ethylene-propylene random copolymer with MI = 30 and ethylene content of 3.5% by weight was used, and the heating temperature was 141°C.
It was carried out under the same conditions as in 4. The foaming results and evaluation results are shown in Table 4, and the bubbles in each example were more uniform and finer than in the comparative example, and the surface appearance was excellent.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は夫々実施例1、比較例1で得
られた発泡粒子の顕微鏡写真である。
FIG. 1 and FIG. 2 are microscopic photographs of expanded particles obtained in Example 1 and Comparative Example 1, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 水中に分散させた、揮発性発泡剤を含有せし
めた発泡性ポリオレフイン系樹脂粒子を耐圧容器
内で、揮発性発泡剤の蒸気圧以上の加圧下で、樹
脂の軟化温度以上に加熱した後、前記粒子と水と
の混合物を低圧域に放出する樹脂粒子の予備発泡
方法に於て、樹脂100重量部に対し無機造核剤と
してタルクを0.01〜1重量部含有させた樹脂粒子
を用いることを特徴とするビーズ型内成形用発泡
性熱可塑性樹脂粒子の予備発泡方法。
1. After heating expandable polyolefin resin particles containing a volatile blowing agent dispersed in water in a pressure-resistant container under pressure higher than the vapor pressure of the volatile blowing agent to a temperature higher than the softening temperature of the resin, In the pre-foaming method of resin particles in which the mixture of particles and water is discharged into a low pressure region, it is recommended to use resin particles containing 0.01 to 1 part by weight of talc as an inorganic nucleating agent per 100 parts by weight of resin. A method for pre-foaming expandable thermoplastic resin particles for molding in bead molds.
JP57082097A 1982-05-13 1982-05-14 Prefoaming of expandable thermoplastic resin particles Granted JPS58199125A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP57082097A JPS58199125A (en) 1982-05-14 1982-05-14 Prefoaming of expandable thermoplastic resin particles
AU14271/83A AU559244B2 (en) 1982-05-13 1983-05-05 Expanded polyolefin particles
CA000428024A CA1213112A (en) 1982-05-13 1983-05-12 Expanded particles of polyolefin resin and process for producing same
US06/494,394 US4448901A (en) 1982-05-13 1983-05-13 Expanded particles of polyolefin resin and process for producing same
DE8383104738T DE3377628D1 (en) 1982-05-13 1983-05-13 Process for producing expanded particles of a polyolefin resin
EP83104738A EP0095109B1 (en) 1982-05-13 1983-05-13 Process for producing expanded particles of a polyolefin resin
DE1983104738 DE95109T1 (en) 1982-05-13 1983-05-13 EXPANDED POLYOLEFIN RESIN GRAINS AND METHOD FOR THE PRODUCTION THEREOF.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57082097A JPS58199125A (en) 1982-05-14 1982-05-14 Prefoaming of expandable thermoplastic resin particles

Publications (2)

Publication Number Publication Date
JPS58199125A JPS58199125A (en) 1983-11-19
JPH0561300B2 true JPH0561300B2 (en) 1993-09-06

Family

ID=13764913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57082097A Granted JPS58199125A (en) 1982-05-13 1982-05-14 Prefoaming of expandable thermoplastic resin particles

Country Status (1)

Country Link
JP (1) JPS58199125A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210933A (en) * 1982-06-02 1983-12-08 Japan Styrene Paper Co Ltd Preparation of pre-expanded granule of ethylene-propylene copolymer
JPS612741A (en) * 1984-06-14 1986-01-08 Japan Styrene Paper Co Ltd Manufacture of polypropylene resin expanded beads
JPH075784B2 (en) 1986-08-12 1995-01-25 鐘淵化学工業株式会社 Method for producing pre-expanded thermoplastic resin particles
US4778829A (en) * 1985-07-12 1988-10-18 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Process for preparing pre-expanded particles of thermoplastic resin
JPS6377947A (en) * 1986-09-19 1988-04-08 Mitsubishi Yuka Badische Co Ltd Production of expanded particle of styrene-acrylonitrile-butadiene copolymer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725336A (en) * 1980-07-21 1982-02-10 Japan Styrene Paper Co Ltd Preparation of polyolefinic resin foam particle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725336A (en) * 1980-07-21 1982-02-10 Japan Styrene Paper Co Ltd Preparation of polyolefinic resin foam particle

Also Published As

Publication number Publication date
JPS58199125A (en) 1983-11-19

Similar Documents

Publication Publication Date Title
US4704239A (en) Process for the production of expanded particles of a polymeric material
US4399087A (en) Process for producing foamed polyolefin articles from aged pre-foamed particles of polyolefin resins
US4436840A (en) Process for producing pre-foamed particles of polyolefin resin
US4968723A (en) Pre-expanded particles of non-crosslinked linear low density polyethylene
US4761431A (en) Pre-expanded particles of propylene resin
JPS5923731B2 (en) Polypropylene resin pre-expanded particles
KR960013071B1 (en) Process for production of expansion - molded article in a mold of linear low density polyethylene resins
US3972843A (en) Expandable styrene polymers suitable for the production of quickly moldable cellular bodies
JPS6343935A (en) Production of pre-expanded particle of thermo-plastic resin
US6166096A (en) Pre-expanded particles of polypropylene resin, process for producing the same and process for producing in-mold foamed articles therefrom
US4810440A (en) Process for pre-expanding thermoplastic resin particles
JPH0561300B2 (en)
JP5664238B2 (en) Styrene-modified polyethylene resin pre-expanded particles and foam-molded article comprising the styrene-modified polyethylene resin pre-expanded particles
JPH0446977B2 (en)
JPS6310181B2 (en)
JPH11172034A (en) Non-crosslinked, straight-chain, low-density polyethylene resin expanded particle and production thereof
US4748191A (en) Process for preparing pre-expanded particles of thermoplastic resin
JPS58215326A (en) Manufacture of polyolefin resin molding foamed in force
JPH0812798A (en) Polyolefin resin prefoamed particle with antistatic property and its manufacture
KR19990009818A (en) Method for producing expanded styrene resin particles
JPH05255531A (en) Production of molded polymer foam
KR940010349B1 (en) Preexpanded polyolefin resin particles and process for their preparation
JPS62115042A (en) Pre-expanded polyolefin resin particle and production thereof
CA1290094C (en) Pre-expanded particles of polyolefin resin and process for preparing the same
JPS6234334B2 (en)