JPH02590B2 - - Google Patents
Info
- Publication number
- JPH02590B2 JPH02590B2 JP10027883A JP10027883A JPH02590B2 JP H02590 B2 JPH02590 B2 JP H02590B2 JP 10027883 A JP10027883 A JP 10027883A JP 10027883 A JP10027883 A JP 10027883A JP H02590 B2 JPH02590 B2 JP H02590B2
- Authority
- JP
- Japan
- Prior art keywords
- valve
- flow path
- fluid
- valve body
- solenoid valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012530 fluid Substances 0.000 claims description 39
- 238000011144 upstream manufacturing Methods 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/02—Actuating devices; Operating means; Releasing devices electric; magnetic
- F16K31/06—Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
- F16K31/0686—Braking, pressure equilibration, shock absorbing
- F16K31/0693—Pressure equilibration of the armature
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Magnetically Actuated Valves (AREA)
Description
本発明は比較的大口径で弁体が流体の流れによ
つて弁座に対して閉方向に押圧付勢されているい
わゆる閉り勝手型の電磁弁、特に電磁コイル通電
時にコイルに発生する磁力によつて直接弁体を開
作動する直動型の通電時開型電磁弁に関する。
一般に弁座が比較的大口径のものでは、弁体を
閉じるように働く流体の力が比較的大きく、従つ
て弁を開作動するためには大きな電磁コイルの磁
力(吸引力)を必要とする。従つて大口径の電磁
弁になる程、消費電力は急激に増大し、コイルは
大型化する。
しかしながら、一般的に電磁コイルの吸引力と
消費電力の関係は第1図に示すような放物曲線と
なり、電磁コイルの大型化すなわち消費電力の増
大に対してコイル吸引力の上昇カーブは頭打ち傾
向となる。この理由は、電磁コイル周囲の磁気回
路中の鉄損による電気エネルギーの損失が上昇す
るためである。
本発明の目的は大口径の直動型電磁弁の電磁コ
イルを大きくすることなく弁上流側の流体圧力を
弁開力として利用し、電磁コイルの小型化、消費
電力低減化を計ることができる電磁弁を得るにあ
る。
本発明の電磁弁は、弁筐体内の流体流路に配置
した弁座に対向してこれを塞ぐよう流体流路の上
流側に弁体を配置し、この弁体を電磁コイルに発
生する磁力によつて駆動し前記流体流路を開通す
るようにした電磁弁において、前記弁体の下流側
流体流路より側流路を分岐して設け、この側流路
へ流入する流体を前記弁体の下流側端面へ向けて
ノズルを介して噴出せしめるようにし、更に前記
側流路を開く補助電磁弁を設け、前記流体流路を
開通する際前記電磁コイルと補助電磁弁のコイル
を同時に付勢することを特徴とする。
以下図面によつて本発明の実施例を説明する。
本発明においては第2図に示すように弁筐体1
の流体流路2に弁座3を配置し、この弁座3に対
向してこれを塞ぐよう流体流路2の上流側に配置
した弁体4を第1の電磁コイル5に発生する磁力
によつて駆動し、もつて流体流路2を開通できる
ようにすると共に、弁体4の上流側流体流路より
側流路6を分岐して設け、この側流路6へ流入す
る流体を前記弁体4の下流側端面7(第2図にお
いては弁体4の下面)へ向けてノズル8を介して
噴出せしめるようにし、さらに前記側流路6から
ノズル8への流体流路を開く第2の電磁弁9を設
け、この第2の電磁弁9のコイル10と前記第1
の電磁コイル5とを電源11に対してスイツチ1
2を介して並列に接続せしめる。
本発明電磁弁は上記のような構成であるから電
磁弁の弁閉止力はP1×π/4D2(ここでP1は流体流
路2内の流体圧、Dは弁座3の開口直径)であ
り、又弁開力はF2+F3(ここでF3=P2π/4d2、F2
は第1の電磁コイル5の吸引力、P2はノズル8
から弁体4に加えられる噴出圧力、dはノズル8
の内径)となる。
第1図の特性曲線から明らかな様に力F3を流
体力として与えるための第2の電磁弁9の消費電
力はW3の微少ですむ。これは、力F3が放物線カ
ーブの下の方即ち急激な上昇カーブの部分に当た
るためである。
即ち従来のように弁開力を全て単一の電磁コイ
ルの力F1で得ようとすると消費電力は第1図に
示すようにW1となるから本発明によれば(W1−
W4)分の消費電力低減となる(ここでW4は前記
消費電力W3と力F2に対応する消費電力W2との
和)。
以下これを表に示す。
The present invention relates to a so-called closing-hand type solenoid valve, which has a relatively large diameter and whose valve body is biased toward the valve seat in the closing direction by the flow of fluid, and in particular, the magnetic force generated in the coil when the solenoid coil is energized. This invention relates to a direct-acting type electromagnetic valve that opens when energized and directly opens a valve body. Generally, when the valve seat has a relatively large diameter, the force of the fluid that acts to close the valve body is relatively large, and therefore a large magnetic force (attractive force) from the electromagnetic coil is required to open the valve. . Therefore, the larger the diameter of the electromagnetic valve, the sharper the power consumption and the larger the coil. However, in general, the relationship between the attraction force and power consumption of an electromagnetic coil is a parabolic curve as shown in Figure 1, and the increasing curve of the coil attraction force tends to plateau as the electromagnetic coil becomes larger, which means the power consumption increases. becomes. The reason for this is that the loss of electrical energy due to iron loss in the magnetic circuit around the electromagnetic coil increases. The purpose of the present invention is to use the fluid pressure upstream of the valve as the valve opening force without increasing the size of the electromagnetic coil of a large-diameter direct-acting electromagnetic valve, thereby reducing the size of the electromagnetic coil and reducing power consumption. There is to get a solenoid valve. The solenoid valve of the present invention has a valve body disposed on the upstream side of the fluid flow path so as to face and block a valve seat disposed in a fluid flow path in a valve housing, and the valve body is moved by a magnetic force generated in an electromagnetic coil. In the electromagnetic valve, the solenoid valve is driven by a fluid flow path to open the fluid flow path, and a side flow path is branched from the fluid flow path downstream of the valve body, and the fluid flowing into this side flow path is directed to the valve body. The fluid is ejected through a nozzle toward the downstream end face of the fluid, and further an auxiliary solenoid valve is provided for opening the side flow path, and when opening the fluid flow path, the solenoid coil and the coil of the auxiliary solenoid valve are simultaneously energized. It is characterized by Embodiments of the present invention will be described below with reference to the drawings. In the present invention, as shown in FIG.
A valve seat 3 is disposed in the fluid passage 2 of the valve seat 3, and a valve body 4 disposed on the upstream side of the fluid passage 2 so as to face and block the valve seat 3 is applied to the magnetic force generated in the first electromagnetic coil 5. In addition, a side flow path 6 is branched from the fluid flow path on the upstream side of the valve body 4, and the fluid flowing into this side flow path 6 is driven to open the fluid flow path 2. The fluid is ejected toward the downstream end surface 7 of the valve body 4 (the lower surface of the valve body 4 in FIG. 2) through the nozzle 8, and furthermore, the fluid flow path from the side flow path 6 to the nozzle 8 is opened. A second solenoid valve 9 is provided, and a coil 10 of the second solenoid valve 9 and the first solenoid valve 9 are provided.
The electromagnetic coil 5 and the switch 1 are connected to the power source 11.
2 in parallel. Since the solenoid valve of the present invention has the above configuration, the valve closing force of the solenoid valve is P 1 ×π/4D 2 (where P 1 is the fluid pressure in the fluid flow path 2, and D is the opening diameter of the valve seat 3. ), and the valve opening force is F 2 + F 3 (here, F 3 = P 2 π/4d 2 , F 2 is the attraction force of the first electromagnetic coil 5, and P 2 is the attraction force of the nozzle 8
The ejection pressure applied to the valve body 4 from the nozzle 8, d is
). As is clear from the characteristic curve of FIG. 1, the power consumption of the second electromagnetic valve 9 for applying the force F 3 as a fluid force is only a small amount of W 3 . This is because the force F 3 hits the lower part of the parabolic curve, ie the part of the steeply rising curve. That is, if the valve opening force were to be obtained entirely by the force F 1 of a single electromagnetic coil as in the past, the power consumption would be W 1 as shown in FIG. 1, so according to the present invention, (W 1 −
W 4 ) (here, W 4 is the sum of the power consumption W 3 and the power consumption W 2 corresponding to the force F 2 ). This is shown in the table below.
【表】
なお本発明においては弁体4が弁座3に着座し
ている際のノズル8の先端と弁体4の下流側端面
7との距離HはH<d/4とするのが好ましい。
すなわち、ノズルより噴出する流体流量は断面
積×流速であるから、流速を一定として断面積比
で
πdH<π/4d2
∴H<1/4d
とすれば弁体に作用する流体圧力を確保すること
ができる。
また本発明においては側流路6及び第2の電磁
弁9は弁筐体1内に形成しても良く、また側流路
6と第2の電磁弁の両方、又は側流路6のみをそ
の外部に配置しても良い。
さらに電磁弁は交流用又は直流用の何れでも良
く、流体も圧縮性流体および非圧縮性流体の何れ
でも良い。
上記のように本発明電磁弁によれば流体流路の
流体圧力によつて弁体駆動用電磁コイルの消費電
力を大幅に低減でき電磁コイルを小型化できると
共に、その信頼性も向上できる大きな利益があ
る。[Table] In the present invention, the distance H between the tip of the nozzle 8 and the downstream end surface 7 of the valve body 4 when the valve body 4 is seated on the valve seat 3 is preferably H<d/4. . In other words, the flow rate of fluid ejected from the nozzle is the cross-sectional area x flow velocity, so if the flow velocity is kept constant and the cross-sectional area ratio is πdH<π/4d 2 ∴H<1/4d, the fluid pressure acting on the valve body is ensured. be able to. Further, in the present invention, the side flow passage 6 and the second solenoid valve 9 may be formed inside the valve housing 1, and both the side flow passage 6 and the second solenoid valve, or only the side flow passage 6 may be formed inside the valve housing 1. It may be placed outside. Furthermore, the electromagnetic valve may be for either alternating current or direct current, and the fluid may be either compressible fluid or incompressible fluid. As mentioned above, according to the solenoid valve of the present invention, the power consumption of the electromagnetic coil for driving the valve body can be significantly reduced by the fluid pressure in the fluid flow path, the electromagnetic coil can be made smaller, and its reliability can also be improved. There is.
第1図は電磁弁の吸引力と消費電力の関係を示
す特性曲線図、第2図は本発明電磁弁の断面図で
ある。
1……弁筐体、2……流体流路、3……弁座、
4……弁体、5……電磁コイル、6……側流路、
7……下流側端面、8……ノズル、9……電磁
弁、10……コイル、11……電源、12……ス
イツチ。
FIG. 1 is a characteristic curve diagram showing the relationship between attraction force and power consumption of a solenoid valve, and FIG. 2 is a sectional view of the solenoid valve of the present invention. 1... Valve housing, 2... Fluid flow path, 3... Valve seat,
4... Valve body, 5... Electromagnetic coil, 6... Side flow path,
7... Downstream end face, 8... Nozzle, 9... Solenoid valve, 10... Coil, 11... Power source, 12... Switch.
Claims (1)
てこれを塞ぐよう流体流路の上流側に弁体を配置
し、この弁体を電磁コイルに発生する磁力によつ
て駆動し前記流体流路を開通するようにした電磁
弁において、前記弁体の上流側流体流路より側流
路を分岐して設け、この側流路へ流入する流体を
前記弁体の下流側端面へ向けてノズルを介して噴
出せしめるようにし、更に前記側流路を開く補助
電磁弁を設け、前記流体流路を開通する際前記電
磁コイルと補助電磁弁のコイルを同時に付勢する
ことを特徴とする電磁弁。 2 前記ノズルの内径をdとし、前記弁体が弁座
に着座している際のノズル開口端面と弁体の下流
側端面との距離をHとした時に、 H<d/4 である特許請求の範囲第1項記載の電磁弁。 3 前記側流路と補助電磁弁の両方が前記弁筐体
内に配置されている特許請求の範囲第1項記載の
電磁弁。 4 前記側流路と補助電磁弁の両方又は何れか一
方が前記弁筐体外に配置されている特許請求の範
囲第1項記載の電磁弁。[Claims] 1. A valve body is disposed on the upstream side of a fluid flow path so as to face and block a valve seat disposed in a fluid flow path in a valve housing, and this valve body is moved by a magnetic force generated in an electromagnetic coil. In the electromagnetic valve, the solenoid valve is driven by a fluid flow path to open the fluid flow path, and a side flow path is branched from the fluid flow path upstream of the valve body, and the fluid flowing into this side flow path is directed to the valve body. The fluid is ejected through a nozzle toward the downstream end face of the fluid, and further an auxiliary solenoid valve is provided for opening the side flow path, and when opening the fluid flow path, the solenoid coil and the coil of the auxiliary solenoid valve are simultaneously energized. A solenoid valve characterized by: 2. A patent claim in which H<d/4, where d is the inner diameter of the nozzle, and H is the distance between the nozzle opening end face and the downstream end face of the valve body when the valve body is seated on the valve seat. The solenoid valve described in item 1. 3. The electromagnetic valve according to claim 1, wherein both the side flow path and the auxiliary electromagnetic valve are disposed within the valve housing. 4. The solenoid valve according to claim 1, wherein either or both of the side flow path and the auxiliary solenoid valve are arranged outside the valve housing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10027883A JPS59226782A (en) | 1983-06-07 | 1983-06-07 | Electromagnetic valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10027883A JPS59226782A (en) | 1983-06-07 | 1983-06-07 | Electromagnetic valve |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59226782A JPS59226782A (en) | 1984-12-19 |
JPH02590B2 true JPH02590B2 (en) | 1990-01-08 |
Family
ID=14269730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10027883A Granted JPS59226782A (en) | 1983-06-07 | 1983-06-07 | Electromagnetic valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59226782A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104976406B (en) * | 2014-04-01 | 2018-09-07 | 浙江三花制冷集团有限公司 | A kind of solenoid valve |
-
1983
- 1983-06-07 JP JP10027883A patent/JPS59226782A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59226782A (en) | 1984-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2742792B2 (en) | Electromagnetic control device | |
KR950703697A (en) | Improved low noise injector amateur (MODIFIED ARMATURE FOR LOW NOISE INJECTOR) | |
CA2106326A1 (en) | On/Off Valve Capable of Drawing Back Fluid When Closed | |
JPH02590B2 (en) | ||
US2382664A (en) | Electromagnetic operator | |
JPS5673278A (en) | Electromagnetic valve | |
JPS60132186A (en) | Diaphragm valve having pilot valve | |
JPH03624Y2 (en) | ||
JP3038643B2 (en) | Three-way valve seat structure | |
JPH01320383A (en) | Solenoid valve | |
JPH0226380A (en) | Pinch valve | |
JPH041425Y2 (en) | ||
JPS6229735Y2 (en) | ||
JPS5918214Y2 (en) | proportional control valve | |
JPH0117738Y2 (en) | ||
SU1196593A1 (en) | Electro-pneumatic valve | |
JPH03609Y2 (en) | ||
JPS63198880U (en) | ||
JPS58132275U (en) | solenoid proportional valve | |
JPS60110780U (en) | solenoid valve | |
JPS592366Y2 (en) | Direct-acting 3-way solenoid switching valve | |
JPH04331881A (en) | Three-way solenoid valve | |
EP0370667A3 (en) | Current to pressure transducer with enhanced performance features | |
JPS59105663U (en) | solenoid valve | |
JPH02132182U (en) |