JPH0258877A - Semiconductor photo detector - Google Patents

Semiconductor photo detector

Info

Publication number
JPH0258877A
JPH0258877A JP63211143A JP21114388A JPH0258877A JP H0258877 A JPH0258877 A JP H0258877A JP 63211143 A JP63211143 A JP 63211143A JP 21114388 A JP21114388 A JP 21114388A JP H0258877 A JPH0258877 A JP H0258877A
Authority
JP
Japan
Prior art keywords
semiconductor
light
light absorbing
layer
absorbing layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63211143A
Other languages
Japanese (ja)
Inventor
Toshitaka Torikai
俊敬 鳥飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63211143A priority Critical patent/JPH0258877A/en
Publication of JPH0258877A publication Critical patent/JPH0258877A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To shorten the transit time of electron, and enable high speed response by arranging a plurality of intermediate layers whose forbidden bandwidths are mutually different, between a semiconductor substrate and a light absorbing layer. CONSTITUTION:By hydride vapor growth method, intermediate layers composed of In0.92Ga0.08As0.16P0.84 (forbidden bandwidth-1.23eV) 2a, and In0.77Ga0.23As0.64P0.36 (forbidden band width-0.96eV) 2c are grown in order on an N<+>-InP substrate 1. Next, an In0.53Ga0.47As light absorbing layer 3 and an InP cap layer 4 are laminated. Each carrier concentration is about 5X10<15>cm<-3>. A P-type conducting region 5 is formed by thermal diffusion of Zn, and a PN junction front is positioned in the vicinity of the interface between the light absorbing layer 3 and the cap layer 4. Thereby, a semiconductor photo detector wherein transit time of electron carrier is short and the cut off frequency is high can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分gF> 本発明は高速半導体受光素子に関する。[Detailed description of the invention] (Industrial usage gF> The present invention relates to a high-speed semiconductor light-receiving device.

(従来の技術) 光通信の高速・大容量化に伴い、高速応答を示す受光素
子の開発が進められている。現在の光通信波長である1
、3u+n帯、域いは1.5μm帯における受光素子と
してInP基板を用い、InPに格子整合するI n 
O,S3G a 0.47A Sを光吸収層とした構造
が広く用いられている。第2図(a)にその−例の構造
を断面図で示す0本図の半導体受光素子はフォトタイオ
ードである。n型導電性InP基板1の上にn−−In
Pバッファ層2、n−I nGaAs光吸収層3、n−
InPキャップ層4でエピタキシャル層ウェーハが構成
され、このエピタキシャル層ウェーハに選択的にp型導
電領域5を形成し、さらに表面保護膜6、電′lf!7
.8を形成してフォトダイオードが構成されている。
(Prior Art) As the speed and capacity of optical communication increases, the development of light receiving elements that exhibit high-speed response is progressing. The current optical communication wavelength is 1
, an InP substrate is used as a light-receiving element in the 3u+n band, or the 1.5 μm band, and InP is lattice-matched to InP.
A structure in which O,S3G a 0.47A S is used as a light absorption layer is widely used. The structure of an example is shown in cross section in FIG. 2(a). The semiconductor light receiving element shown in the figure is a photodiode. n--In on the n-type conductive InP substrate 1
P buffer layer 2, n-I nGaAs light absorption layer 3, n-
An epitaxial layer wafer is constituted by the InP cap layer 4, a p-type conductive region 5 is selectively formed on this epitaxial layer wafer, and a surface protection film 6 and an electric 'lf! 7
.. 8 to form a photodiode.

(発明が解決しようとする課題) フォトダイオードの高速化を図るには、接合容量を減ら
す事と、光励起によって発生したキャリヤの走行時間を
短縮する事が有効である。前者については、接合面積を
減らす事で解決される。ここでは、キャリヤの走行時間
を短縮するための改良について述べる。第2図(b)は
従来のフォトダイオード第2図(a)のA−A′間にお
ける動作時のバンドダイアダラムを示している。光照射
によって光吸収層3で発生した電子・正孔キャリヤ対の
うち正札はA側へ、電子はA′側へ走行する。しかるに
電子キャリアは、バッファ層2へ注入されるとき、伝導
帯端子連続による障壁9によって走行が防げられる。こ
のため、フォトダイオードの高速化に著しい支障をきた
していた。
(Problems to be Solved by the Invention) In order to increase the speed of a photodiode, it is effective to reduce the junction capacitance and shorten the travel time of carriers generated by optical excitation. The former problem can be solved by reducing the bonding area. Here, we will discuss improvements to reduce the travel time of carriers. FIG. 2(b) shows a band diadem of a conventional photodiode during operation between A and A' in FIG. 2(a). Of the electron/hole carrier pairs generated in the light absorption layer 3 by the light irradiation, the correct tag travels to the A side, and the electron travels to the A' side. However, when electron carriers are injected into the buffer layer 2, they are prevented from traveling by the barrier 9 formed by the conduction band terminal continuity. This has caused a significant problem in increasing the speed of photodiodes.

(課題を解決するための手Pi) 本発明は半導体基板上に複数の半導体層が積層されてな
っており、該複数の半導体層には光吸収層および光を透
過する広い禁制帯幅を有するキャップ層が含まれている
半導体受光素子であって、該半導体基板と光吸収層との
間に互いに禁制帯幅の異なる複数の中間層がもうけられ
ていることを特徴としている。
(Measures Pi for Solving the Problems) The present invention includes a plurality of semiconductor layers stacked on a semiconductor substrate, and the plurality of semiconductor layers have a light absorption layer and a wide forbidden band width that transmits light. A semiconductor light-receiving device including a cap layer, characterized in that a plurality of intermediate layers having mutually different forbidden band widths are provided between the semiconductor substrate and the light absorption layer.

(作用) 本発明は上述の方法により、従来の欠点を解決した。従
来例との比較のためInP/InGaAs系へテロ接合
フォトダイオードについて説明するが、池の半導体材料
系についても全く同様である。第1図(b)に示すよう
に、本発明による半導体受光素子では、禁制帯幅の異な
る複数の中間層2a、2b、2cが導入しであるから、
光励起により発生した電子キャリヤに対する障g9は従
来に比べて小さくなる。したがって、本発明の素子にお
いては、電子の走行時間が短縮され、高速応答が可能と
なる。
(Function) The present invention solves the conventional drawbacks by the method described above. For comparison with conventional examples, an InP/InGaAs heterojunction photodiode will be described, but the same applies to Ike's semiconductor material system. As shown in FIG. 1(b), the semiconductor light-receiving device according to the present invention includes a plurality of intermediate layers 2a, 2b, and 2c having different forbidden band widths.
Obstacle g9 to electron carriers generated by photoexcitation is smaller than in the past. Therefore, in the device of the present invention, the transit time of electrons is shortened and high-speed response is possible.

(実施例〉 第1図は本発明の一実施例の構造を示す断面図である。(Example> FIG. 1 is a sectional view showing the structure of an embodiment of the present invention.

この実施例は以下の工程に従って作製された。n”−I
nP基板1の上にハイドライド気相成長法により、I 
n 0.92G a o、 oaA S o、 +bP
0.84(禁制帯幅〜1.23e V ) 2 aI 
n 0.77G a 0.23A S O,64P O
,s6(禁制帯幅〜0.96e V)2 cからなる中
間層を順次に成長した後、I n 0.53G a 0
.47A S光吸収層3−1nPキャップ層4を積層し
た。各々のキャリヤ濃度は5 x 10 ”cn−3程
度である。p型導電領域5はZn熱拡散によって形成さ
れ、pn接合フロントは光吸収層3とキャップ層4との
界面近傍に位置させた。プラズマCVD法により、Si
Nx表面保護膜6を堆積させ、p型導電領域5の表面の
一部を窓あけしてAuZnPIPI電極7を形成した。
This example was produced according to the following steps. n”-I
I was deposited on the nP substrate 1 by hydride vapor phase epitaxy.
n 0.92G ao, oaA So, +bP
0.84 (forbidden band width ~ 1.23e V) 2 aI
n 0.77G a 0.23A S O,64P O
, s6 (gap band width ~ 0.96e V) 2c After sequentially growing the intermediate layer consisting of I n 0.53G a 0
.. 47A S light absorption layer 3-1nP cap layer 4 was laminated. The carrier concentration of each layer was about 5 x 10''cn-3. The p-type conductive region 5 was formed by Zn thermal diffusion, and the pn junction front was located near the interface between the light absorption layer 3 and the cap layer 4. By plasma CVD method, Si
An Nx surface protective film 6 was deposited, and a window was opened in a part of the surface of the p-type conductive region 5 to form an AuZnPIPI electrode 7.

n側電極8はA u G e / N i金属膜でなる
The n-side electrode 8 is made of an AuGe/Ni metal film.

第1図の実施例のフォトダイオードにおいては電子キャ
リヤの走行時間を短縮できるので、カットオフ周波数を
高くできる。第3図はフォトダイオードの周波数特性を
示している0図中の実線は実施例で作製した本発明のフ
ォトダイオードの特性を示していて、点線は従来例の周
波数特性を示している。従来では、伝導帯不連続の障壁
のため電子キャリヤがトラップされ、周波数応答劣化が
生じていたが、本発明では20GHz程度まで平坦な応
答特性が得られた。尚、本発明はPIN型フォトダイオ
ードについてのみ説明したが、例えばアバランシェ・フ
ォトダイオードのような曲のフォトダイオードについて
ら同じ効果が得られる。
In the photodiode of the embodiment shown in FIG. 1, the transit time of electron carriers can be shortened, so the cutoff frequency can be increased. FIG. 3 shows the frequency characteristics of a photodiode. The solid line in FIG. 3 shows the characteristics of the photodiode of the present invention manufactured in the example, and the dotted line shows the frequency characteristics of the conventional example. In the past, electron carriers were trapped due to the discontinuous conduction band barrier, resulting in deterioration of frequency response, but in the present invention, flat response characteristics were obtained up to about 20 GHz. Although the present invention has been described only with respect to a PIN type photodiode, the same effect can be obtained with a song photodiode such as an avalanche photodiode, for example.

(発明の効果) 以上に詳しく述べたように、本発明によれば、電子キャ
リヤの走行時間が短かく、カットオフ周波数が高い半導
体受光素子が得られる。そこで本発明の半導体受光素子
に高速に作動することができる。
(Effects of the Invention) As described above in detail, according to the present invention, a semiconductor light-receiving element can be obtained in which the travel time of electron carriers is short and the cutoff frequency is high. Therefore, the semiconductor light receiving element of the present invention can operate at high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明による半導体受光素子の一実施例
を示す断面図、第1図(b)はその実施例のバンドダイ
ヤグラム、第2図(a)は従来の受光素子を示す断面図
、第2図(b)はその従来の受光素子のバンドダイヤグ
ラム、第3図は第1図実施例および第2図の従来の受光
素子の周波数応答特性を示す図である。 1・・・半導体基板、2a、2b、2c・・・中間層、
3・・・光吸収層、4・・・広い禁制帯幅のキャップ層
、5・・・p1型導電領域、6・・・表面保護膜、7・
・・p側電極、 8・・・n側電極、 9・・・伝導帯不連続による障 壁。
FIG. 1(a) is a cross-sectional view showing an embodiment of a semiconductor light-receiving element according to the present invention, FIG. 1(b) is a band diagram of the embodiment, and FIG. 2(a) is a cross-sectional view showing a conventional light-receiving element. 2(b) are band diagrams of the conventional light receiving element, and FIG. 3 is a diagram showing the frequency response characteristics of the embodiment of FIG. 1 and the conventional light receiving element of FIG. 2. 1... Semiconductor substrate, 2a, 2b, 2c... Intermediate layer,
3... Light absorption layer, 4... Cap layer with wide forbidden band width, 5... P1 type conductive region, 6... Surface protective film, 7...
...p-side electrode, 8...n-side electrode, 9...barrier due to conduction band discontinuity.

Claims (1)

【特許請求の範囲】 1、半導体基板上に複数の半導体層が積層されてなって
おり、該複数の半導体層には光吸収層および光を透過す
る広い禁制帯幅を有する半導体キャップ層が含まれてい
る半導体受光素子において、該半導体基板と光吸収層と
の間に、互いに禁制帯幅が異なる複数の中間層が設けら
れていることを特徴とする半導体受光素子。 2、前記複数の中間層の禁制帯幅が前記半導体基板から
前記光吸収層に向って狭くなっていることを特徴とする
請求項1記載の半導体受光素子。
[Claims] 1. A plurality of semiconductor layers are stacked on a semiconductor substrate, and the plurality of semiconductor layers include a light absorption layer and a semiconductor cap layer that transmits light and has a wide forbidden band width. 1. A semiconductor light-receiving device characterized in that a plurality of intermediate layers having mutually different forbidden band widths are provided between the semiconductor substrate and the light absorption layer. 2. The semiconductor light-receiving device according to claim 1, wherein the forbidden band width of the plurality of intermediate layers becomes narrower from the semiconductor substrate toward the light absorption layer.
JP63211143A 1988-08-25 1988-08-25 Semiconductor photo detector Pending JPH0258877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63211143A JPH0258877A (en) 1988-08-25 1988-08-25 Semiconductor photo detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63211143A JPH0258877A (en) 1988-08-25 1988-08-25 Semiconductor photo detector

Publications (1)

Publication Number Publication Date
JPH0258877A true JPH0258877A (en) 1990-02-28

Family

ID=16601093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63211143A Pending JPH0258877A (en) 1988-08-25 1988-08-25 Semiconductor photo detector

Country Status (1)

Country Link
JP (1) JPH0258877A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016535A (en) * 2006-07-04 2008-01-24 Opnext Japan Inc Surface-incident light receiving element and light-receiving module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016535A (en) * 2006-07-04 2008-01-24 Opnext Japan Inc Surface-incident light receiving element and light-receiving module

Similar Documents

Publication Publication Date Title
JP2937404B2 (en) Semiconductor light receiving element
JP2934294B2 (en) Avalanche photodiode
JPH06350123A (en) Composition-modulated avalanche photodiode
JP2002231992A (en) Semiconductor light receiving element
US6078602A (en) Separate confinement heterostructured semiconductor laser device having high speed characteristics
JP3183931B2 (en) Semiconductor light receiving element
JPH0493088A (en) Avalanche photodiode
JPH0258877A (en) Semiconductor photo detector
JP2730472B2 (en) Semiconductor light receiving element
JPH0265279A (en) Semiconductor photodetecting element
JPH08162663A (en) Semiconductor photodetector
JPH051629B2 (en)
JP2962069B2 (en) Waveguide structure semiconductor photodetector
JP2739824B2 (en) Semiconductor light receiving element
JP2776228B2 (en) Manufacturing method of semiconductor light receiving element
JP2995751B2 (en) Semiconductor light receiving element
JPH03291978A (en) Avalanche photodiode
JPH01144687A (en) Semiconductor photodetector
JPH0712103B2 (en) Semiconductor laser device
JP2671555B2 (en) Superlattice avalanche photodiode
JPS59232470A (en) Semiconductor light receiving element
JP2754652B2 (en) Avalanche photodiode
JP2893092B2 (en) Avalanche photodiode
JP2669040B2 (en) Avalanche photodiode
JPH06244450A (en) Avalanche photodiode