JPH025848B2 - - Google Patents

Info

Publication number
JPH025848B2
JPH025848B2 JP59150497A JP15049784A JPH025848B2 JP H025848 B2 JPH025848 B2 JP H025848B2 JP 59150497 A JP59150497 A JP 59150497A JP 15049784 A JP15049784 A JP 15049784A JP H025848 B2 JPH025848 B2 JP H025848B2
Authority
JP
Japan
Prior art keywords
bucket
tapered
excavation hole
opening
excavation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59150497A
Other languages
Japanese (ja)
Other versions
JPS6131527A (en
Inventor
Sumio Hatsutori
Yukihide Mabuchi
Ichiro Matsushita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15049784A priority Critical patent/JPS6131527A/en
Publication of JPS6131527A publication Critical patent/JPS6131527A/en
Publication of JPH025848B2 publication Critical patent/JPH025848B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D15/00Handling building or like materials for hydraulic engineering or foundations

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • Underground Or Underwater Handling Of Building Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、土木建築の分野で、主として地業
土留め等に用いられている場所打ち鉄筋コンクリ
ート抗・場所打ち鉄筋コンクリート連続地中壁等
の築造にあたり、地盤削除に伴い発生する掘削く
ず、スライム等の沈澱物を除去するための装置に
関するものである。 〔従来の技術〕 場所打ち鉄筋コンクリート抗・場所打ち鉄筋コ
ンクリート連続地中壁等は、地盤を掘削した後、
掘削くず、スライム等の沈澱物を底浚えにより除
去し、掘削部分に鉄筋コンクリート構造体を築造
することにより建造される。 ここで図面を用いて従来の底浚えによる前記沈
澱物の除去技術について説明する。 第4図は、場所打ち鉄筋コンクリート抗の築造
に使用される従来の底浚え用バケツトを示してい
る。バケツト7′は上部が開口する底付き円筒形
に形成され、底部8に凸部9及び開口部10が設
けられている。11はバケツト7′を吊るすため
のワイヤである。このバケツト7′を用いた底浚
え工程について説明する。 先ず、バケツト7′を掘削孔内にワイヤ11に
より吊り下げ、掘削孔底近傍まで挿入する。次い
で、ワイヤ11をねじることによりバケツト7′
を回転させると、バケツト7′の底部8に形成さ
れた凸部9により掘削孔の底浚えを行うことにな
る。底浚えした前記沈澱物は開口部10からバケ
ツト7′の内側に流入し、底部8に蓄積されるこ
とになる。しかしながら、このような構成のバケ
ツト7′を用いた底浚えでは、前記沈澱物の除去
を効率よく十分に行うことができない。前記沈澱
物の除去を行わずに築造した抗又は壁等の荷重支
持能力は信頼性に欠けるものとなる。 したがつて、底浚え工程の他に前記沈澱物の除
去工程を行う必要が生じる。該2つの工程におけ
る従来の技術としては、「宮沢政、山元公夫共著、
アースドリル工法」初版(昭56−5−16)理工図
書P.47−51」(以下文献1)という、「日本基礎建
設協会、「場所打ちコンクリートぐいの設計と施
工」(昭55−6−1)P.131−134」(以下文献2と
いう)に記載されたものがある。 前記文献1又は文献2に記載されたエアリフト
工法を第5図に示す。同図aに示すように、掘削
孔内には排出ホース12及び排出ホース12内に
挿通されるエアパイプ13が挿入され、排出ホー
ス12の底部は掘削孔底との間で僅かにすきまを
持たせてある。また、掘削孔内には安定液14を
注入する。エアパイプ13から排出ホース12内
に空気を導入すると、エアポンプリフトの原理に
より、排出ホース12内の安定液14は同図bに
示すように掘削孔外に排出される。それについ
て、排出ホース12の底部から孔内沈澱物を含ん
だ安定液が排出ホース12内に流入し、同様にし
て掘削孔外に排出されることになる。安定液14
の量が少なくなつた場合は、同図cに示すよう
に、パイプ18により安定液14が供給される。 また、文献2に記載されたジエツト工法を第6
図に示す。同図aの掘削完了後、同図bに示すよ
うに掘削孔内に鉄筋19を挿入し、更に、同図c
に示すように先端にジエツト噴射装置を有するト
レミー管15を挿入する。コンクリート打設直前
に同図dに示すようにトレミー管15より安定液
14としての清水を高圧にてジエツト噴射し、掘
削孔底に堆積した前記沈澱物を安定液14中に浮
遊させ、噴射を停止すると同時にコンクリート7
を打設し、掘削孔底に密着させるというものであ
る。前記沈澱物を含んだ安定液14は同図e及び
fに示すようにコンクリート7の注入と共に上部
に浮上し除去される。尚、同図d〜fにおいて
は、説明上、鉄筋19は除いた構成にしてある。 また、同じく文献2に記載された清水置換工法
(サクシヨン工法)を第7図に示す。掘削孔全域
に渡り、ケーシング16を使用する工法におい
て、揚水管17を掘削孔内に挿入し、孔口より安
定液14としての清水を送水すると共に、揚水管
17から安定液と一緒に前記沈澱物を排出するも
のである。 〔発明が解決しようとする課題〕 しかしながら、第5図に示す説明図において
は、その実施にあたつて、送気条件(圧力・吐出
量)、エアパイプ13の位置、排出ホース12の
抵抗、安定液等を十分に管理しないと、巧く稼動
しない。また、掘削孔の深さが浅い場合には効果
はあがらず、深い場合には沈澱物の排出にかなり
の時間が必要になるという欠点がある。 また、第6図に示す説明図においては、ジエツ
ト噴射により掘削孔の内面を損傷させる恐れが多
分にあると共に、浮遊させた沈澱物が未硬化コン
クリート中に巻き込まれる可能性がある。これら
の現象を制御したり管理したりすることは事実上
困難であるという欠点があつた。 さらに、第7図に示す説明図においては、掘削
孔全域にケーシング16を使用しない工法には適
用できないという欠点があつた。 このように、従来の技術においては、前記沈澱
物を除去する工法はそれぞれ欠点を有していると
いう問題があつた。 この発明は、上記問題点に鑑み、前記沈澱物の
除去を容易かつ確実に行える沈澱物除去用バケツ
トを提供することを目的としている。 〔問題点を解決するための手段〕 本願発明は、上記の目的を解決するために、 (1) 掘削孔に挿入する手段を設けた外筒部を有す
るバケツトであり、該外筒部は前記掘削孔に遊
合する外径を有するとともに、該外筒部の底面
に設けられた開口部の縁より連続して設けられ
前記外筒部の内側に先細り状に延出されるテー
パー筒部とからなることを特徴とする沈澱物除
去用バケツトである。 (2) 矩形状の掘削溝に挿入する手段を設けた外側
部を有するバケツトであり、該外側部は前記掘
削溝に遊合する大きさを有するとともに該外側
部の矩形状の底面内側全長にわたつて設けた矩
形状開口部の縁より連続して設けられ、前記開
口部の短辺長が連続して狭くなるように延出さ
れるテーパー部とからなることを特徴とする沈
澱物除去用バケツトとしたものである。 〔作 用〕 本発明のバケツトを掘削孔または掘削溝内にワ
イヤ等により掘削底面近傍まで挿入し、当該バケ
ツトをワイヤ等により上方へ引き上げると、当該
バケツト以深は負圧となり、掘削壁と当該バケツ
トの隙間から、当該バケツト以浅の安定液が流入
し、その水流により掘削底面に溜まつた前記沈澱
物を撹拌するため、前記沈澱物は安定液中に浮遊
する。次に、当該バケツトを自重により掘削部分
に落下させると、当該バケツト以深は加圧される
ため前記沈澱物を含んだ安定液が当該バケツトの
テーパ部分を通り、上方へ噴出する。この動作を
数度繰り返すことにより前記沈澱物を容易かつ確
実に当該バケツト内に収容することができる。 また、掘削部分のケーシングの有無及び掘削部
分の深さを問わず適用することができるという効
果もある。 以下、図面を用いて詳細に説明する。 〔実施例〕 第1図は、場所打ち鉄筋コンクリート抗の築造
に用いる本発明の沈澱物除去用バケツトに関する
一実施例を示すもので、同図bは全体の斜視図、
aは縦断面図である。 第1図に示すように、この実施例のバケツト
は、円筒部2が掘削孔径より若干小なる径となる
ように形成されている。テーパ筒部3が円筒部2
の下方の開口部2aの辺より連設されると共に、
テーパ筒部3は円筒部2の内側に先細り状に延出
されている。また、テーパ筒部3の先細り側の開
口部3aには弁部材4が付設されている。また、
テーパ筒部3の開口部3a近傍の外側面3b及び
円筒部2の内側面2b間には架部5が架設されて
おり、架部5にはバケツトを吊り下げるための
ワイヤ6が取着されている。 次にこの実施例の動作を、第2図を用いて説明
する。 このバケツトを掘削孔内にワイヤ6を用いて
掘削孔底近傍まで挿入し、上下方向に往復運動さ
せることで簡単に前記沈澱物を除去することがで
きる。即ち、バケツトをワイヤ6により上方へ
引き上げると、バケツトより以深は負圧とな
り、掘削孔壁とバケツトの隙間から、バケツト
1より以浅の安定液が流入し、その水流により掘
削孔底に溜まつた前記沈澱物は撹拌され安定液中
に浮遊する。次に、バケツトを自重により掘削
孔内に落下させるとバケツトより以深は加圧さ
れるため、前記沈澱物を含んだ安定液はバケツト
1の下部の開口部2aよりテーパ筒部3内に流入
してテーパ筒部3を通り、弁部材4を押上げ、上
方へ噴出し、バケツトの上部に流入する。この
ように先細り状に延出されているテーパ筒部3
は、下方から上昇する水流を抵抗少なく加速する
効果がある。この動作を数度繰り返すことによ
り、掘削孔底に溜まつていた前記沈澱物はバケツ
の上方を浮遊することになる。上下方向の往
復運動の後、掘削孔底にバケツトを静止させ、
この浮遊した前記沈澱物の沈降を待つ。沈降した
前記沈澱物はバケツトの内部1b(前記円筒部
2の内側面2bとテーパ筒部3の外側面3bとで
形成される空間)に収容されることになる。最後
に、バケツトをワイヤ6により掘削孔の外に回
収する。これ等の動作により容易かつ確実に前記
沈澱物の除去が行えるものである。 この実施例においては、場所打ち鉄筋コンクリ
ート杭における適用例を示したが、この発明の他
の実施例として、第3図を用いて場所打ち鉄筋コ
ンクリート連続地中壁の築造における適用例を説
明する。 第3図に示すように、この実施例のバケツト
1′は1′a,1′b,1′cの3室からなる断面長
方形状となつており、且つ、その幅は掘削溝より
若干小となるように形成されている。テーパ部
3′が外側部2′の下方の開口部2′aの辺より連
設されると共に、テーパ部3′は外側部2′の内側
に先細り状に延出されている。また、テーパ部
3′の先細り側の開口部3′aには弁部材4′が付
設されている。また、テーパ部3′の開口部3′a
近傍の外側面3′b及び外側部2′の内側面2′b
間には架部5′が架設されており、架部5′にはバ
ケツト′を吊り下げるためのワイヤ6′が取着さ
れている。 この実施例は、第1図に示した実施例と同様の
動作により掘削溝底面に堆積した前記沈澱物を含
んだ安定液14をテーパ状になつている室1′c
を介して室1′a及び1′bに収容して除去するも
のであり、詳細な説明は省略する。 なお、これら実施例は、弁部材4,4′を備え
た態様を記載したが、弁部材4,4′を備えてい
ない態様も可能なことは言うまでもない。 〔発明の効果〕 この発明は、以上説明したように、バケツトを
上下に往復運動させるだけで、掘削孔底に堆積し
た沈澱物を除去できるので、容易かつ確実に前記
沈澱物の除去を行えるという効果がある。 また、掘削孔のケーシングの有無を問わず、及
び掘削孔の深さを問わず適用することができると
いう効果がある。
[Detailed Description of the Invention] (Industrial Application Field) This invention is used in the field of civil engineering and construction for the construction of cast-in-place reinforced concrete columns and cast-in-place reinforced concrete continuous underground walls, etc., which are mainly used for earth retaining, etc. The present invention relates to equipment for removing precipitates such as excavation debris and slime that are generated during ground removal. [Conventional technology] Cast-in-place reinforced concrete shafts, cast-in-place reinforced concrete continuous underground walls, etc. are constructed by excavating the ground, then
It is constructed by removing sediments such as excavation debris and slime by dredging the bottom and constructing a reinforced concrete structure in the excavated area. Here, a conventional technique for removing the sediment by bottom dredging will be described with reference to the drawings. FIG. 4 shows a conventional bottom dredging bucket used for constructing cast-in-place reinforced concrete shafts. The bucket bag 7' is formed into a cylindrical shape with an open top and a bottom, and a convex portion 9 and an opening 10 are provided at the bottom portion 8. 11 is a wire for hanging the bucket 7'. The bottom dredging process using this bucket 7' will be explained. First, the bucket 7' is suspended in an excavation hole by a wire 11 and inserted to near the bottom of the excavation hole. Then, by twisting the wire 11, the bucket 7'
When the bucket 7' is rotated, the bottom of the excavation hole is dredged by the protrusion 9 formed on the bottom 8 of the bucket 7'. The dredged sediment flows into the bucket 7' through the opening 10 and is accumulated in the bottom 8. However, bottom dredging using the bucket 7' having such a configuration cannot remove the sediment efficiently and sufficiently. The load-bearing capacity of columns, walls, etc. constructed without removing the deposits becomes unreliable. Therefore, it becomes necessary to perform the sediment removal step in addition to the bottom dredging step. The conventional technology for these two processes is "Masa Miyazawa and Kimio Yamamoto co-authored,
"Earth Drill Construction Method" First Edition (May 16, 1980) Science and Engineering Book P. 47-51" (hereinafter referred to as Document 1), "Japan Foundation Construction Association, "Design and Construction of Cast-in-place Concrete Piles" (June 1, 1982) ) P.131-134” (hereinafter referred to as Document 2). The air lift construction method described in Document 1 or Document 2 is shown in FIG. As shown in Figure a, a discharge hose 12 and an air pipe 13 inserted into the discharge hose 12 are inserted into the excavation hole, and the bottom of the discharge hose 12 is left with a slight clearance from the bottom of the excavation hole. There is. Further, a stabilizing liquid 14 is injected into the excavated hole. When air is introduced into the discharge hose 12 from the air pipe 13, the stabilizing liquid 14 in the discharge hose 12 is discharged out of the excavation hole as shown in FIG. In this regard, the stable liquid containing the in-hole sediment flows into the discharge hose 12 from the bottom of the discharge hose 12, and is similarly discharged out of the borehole. Stabilizer 14
When the amount of stabilizer 14 decreases, the stabilizing liquid 14 is supplied through the pipe 18, as shown in FIG. In addition, the jet construction method described in Document 2 was
As shown in the figure. After completing the excavation shown in Figure a, reinforcing bars 19 are inserted into the excavated hole as shown in Figure b, and then
A tremie tube 15 having a jet injection device at its tip is inserted as shown in FIG. Immediately before concrete pouring, as shown in Figure d, fresh water as a stabilizing liquid 14 is jet-injected at high pressure from the tremie pipe 15, and the precipitates accumulated at the bottom of the excavation hole are suspended in the stabilizing liquid 14, and the injection is continued. Concrete 7 at the same time as stopping
The concrete is placed in close contact with the bottom of the borehole. The stabilizer 14 containing the precipitate floats to the top and is removed as the concrete 7 is poured, as shown in Figures e and f. In addition, in FIGS. d to d, the reinforcing bars 19 are omitted for the sake of explanation. Further, FIG. 7 shows the fresh water replacement method (suction method) also described in Document 2. In a construction method that uses a casing 16 throughout the entire area of the borehole, a lift pipe 17 is inserted into the borehole, and fresh water as the stabilizing liquid 14 is sent from the borehole, and the precipitate is removed from the lift pipe 17 together with the stabilizing liquid. It is something that excretes things. [Problems to be Solved by the Invention] However, in the explanatory diagram shown in FIG. If you do not manage the liquid etc. properly, it will not work properly. Furthermore, if the depth of the excavation hole is shallow, the effect will not be high, and if the depth of the excavation hole is deep, it will take a considerable amount of time to drain the deposits, which is a disadvantage. In addition, in the explanatory diagram shown in FIG. 6, there is a high risk of damaging the inner surface of the excavation hole due to jet injection, and there is also a possibility that suspended sediments will be caught in the uncured concrete. The disadvantage is that it is virtually difficult to control or manage these phenomena. Furthermore, the explanatory diagram shown in FIG. 7 has the disadvantage that it cannot be applied to a construction method that does not use the casing 16 throughout the excavation hole. As described above, in the conventional technology, each method for removing the precipitate has its own drawbacks. SUMMARY OF THE INVENTION In view of the above-mentioned problems, it is an object of the present invention to provide a bucket for removing deposits that can easily and reliably remove the deposits. [Means for Solving the Problems] In order to solve the above-mentioned objects, the present invention provides: (1) a bucket bag having an outer cylindrical portion provided with a means for inserting into an excavated hole; a tapered cylindrical portion having an outer diameter that fits in the excavation hole, and a tapered cylindrical portion that is provided continuously from the edge of the opening provided on the bottom surface of the outer cylindrical portion and extends in a tapered shape inside the outer cylindrical portion; This is a bucket for removing sediment. (2) A bucket bag having an outer part provided with a means for inserting into a rectangular excavated groove, the outer part having a size to fit into the excavated groove, and having a width extending along the entire inner length of the rectangular bottom surface of the outer part. A bucket for sediment removal, characterized in that it comprises a tapered part that is provided continuously from the edge of a rectangular opening and extends so that the length of the short side of the opening becomes continuously narrower. That is. [Function] When the bucket of the present invention is inserted into an excavation hole or an excavation trench using a wire or the like up to the vicinity of the bottom of the excavation, and the bucket is pulled upwards using a wire or the like, a negative pressure is created below the bucket and the excavation wall and the bucket are pulled up. Stabilizing liquid shallower than the bucket flows in through the gap, and the water flow stirs the precipitates accumulated on the bottom of the excavation, so that the precipitates are suspended in the stabilizing liquid. Next, when the bucket is dropped into the excavation part by its own weight, the area below the bucket is pressurized, so the stabilizing liquid containing the precipitate passes through the tapered part of the bucket and squirts upward. By repeating this operation several times, the precipitate can be easily and reliably accommodated in the bucket. Another advantage is that it can be applied regardless of the presence or absence of a casing in the excavated portion and regardless of the depth of the excavated portion. Hereinafter, it will be explained in detail using the drawings. [Example] Fig. 1 shows an example of the bucket for removing sediment of the present invention used for constructing cast-in-place reinforced concrete shafts, and Fig. 1b shows an overall perspective view;
a is a longitudinal cross-sectional view. As shown in FIG. 1, the bucket 1 of this embodiment
The cylindrical portion 2 is formed to have a diameter slightly smaller than the diameter of the excavation hole. The tapered cylindrical part 3 is the cylindrical part 2
is connected from the side of the lower opening 2a, and
The tapered cylindrical portion 3 extends inside the cylindrical portion 2 in a tapered shape. Further, a valve member 4 is attached to the opening 3a on the tapered side of the tapered cylinder portion 3. Also,
A frame 5 is installed between the outer surface 3b of the tapered cylindrical portion 3 near the opening 3a and the inner surface 2b of the cylindrical portion 2, and a wire 6 for suspending the bucket 1 is attached to the frame 5. has been done. Next, the operation of this embodiment will be explained using FIG. 2. The deposits can be easily removed by inserting the bucket 1 into an excavation hole using a wire 6 to near the bottom of the excavation hole and reciprocating it in the vertical direction. That is, when the bucket 1 is pulled upward by the wire 6, the pressure deeper than the bucket 1 becomes negative, and the stable liquid shallower than the bucket 1 flows through the gap between the borehole wall and the bucket 1, and the water flow reaches the bottom of the borehole. The accumulated precipitate is stirred and suspended in the stabilizing liquid. Next, when the bucket 1 is dropped into the excavation hole by its own weight, the depth below the bucket 1 is pressurized, so the stabilizing liquid containing the precipitate flows into the tapered cylindrical part 3 through the opening 2a at the bottom of the bucket 1. It flows in, passes through the tapered cylindrical portion 3, pushes up the valve member 4, is ejected upward, and flows into the upper part of the bucket 1 . The tapered cylinder portion 3 extends in a tapered manner as described above.
has the effect of accelerating the water flow rising from below with less resistance. By repeating this operation several times, the sediment accumulated at the bottom of the excavation hole will float above the bucket 1 . After reciprocating in the vertical direction, the bucket 1 is stopped at the bottom of the excavation hole,
Wait for the floating precipitate to settle. The settled sediment is accommodated in the interior 1b of the bucket 1 (the space formed by the inner surface 2b of the cylindrical portion 2 and the outer surface 3b of the tapered cylindrical portion 3). Finally, the bucket 1 is recovered outside the excavation hole using the wire 6. These operations allow the precipitate to be removed easily and reliably. In this embodiment, an example of application to cast-in-place reinforced concrete piles has been shown, but as another embodiment of the present invention, an example of application to construction of a cast-in-place reinforced concrete continuous underground wall will be described using FIG. As shown in Fig. 3, the bucket 1' of this embodiment has a rectangular cross section consisting of three chambers 1'a, 1'b, and 1'c, and its width is slightly smaller than the excavation groove. It is formed so that. The tapered portion 3' is continuous from the side of the opening 2'a below the outer portion 2', and the tapered portion 3' extends inside the outer portion 2' in a tapered shape. Further, a valve member 4' is attached to the opening 3'a on the tapered side of the tapered portion 3'. Moreover, the opening 3'a of the tapered part 3'
Nearby outer surface 3'b and inner surface 2'b of outer part 2'
A frame 5' is installed between them, and a wire 6' for suspending the bucket 1 ' is attached to the frame 5'. In this embodiment, a stabilizing liquid 14 containing the precipitate deposited on the bottom of an excavation trench is collected in a tapered chamber 1'c by the same operation as in the embodiment shown in FIG.
It is accommodated in the chambers 1'a and 1'b and removed through the chambers 1'a and 1'b, and a detailed explanation will be omitted. In addition, although these embodiments have described embodiments including the valve members 4, 4', it goes without saying that embodiments without the valve members 4, 4' are also possible. [Effects of the Invention] As explained above, the present invention is capable of removing the precipitates accumulated at the bottom of the borehole simply by reciprocating the bucket up and down, so that the precipitates can be easily and reliably removed. effective. Another advantage is that it can be applied regardless of the presence or absence of a casing in the borehole and regardless of the depth of the borehole.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは本発明の実施例の縦断面図、同bは
全体の斜視図、第2図は本発明の実施例の動作を
示す説明図、第3図は本発明の他の実施例を示す
斜視図、第4図乃至第7図は従来の技術を示す斜
視図、説明図である。 ′,7′:バケツト、1b:内部、2:円
筒部、2′:外側部、2b,2′b:内側面、3:
テーパ筒部、3′:テーパ部、3b,3′b:外側
面、4,4′:弁部材、5,5′:架部、6,6′,
11:ワイヤ、7:コンクリート、8:底部、
9:凸部、2a,3a,2′a,3′a,10:開
口部、12:排出ホース、13:エアパイプ、1
4:安定液、15:トレミー管、16:ケーシン
グ、17:揚水管、18:パイプ、19:鉄筋。
Fig. 1a is a longitudinal sectional view of an embodiment of the present invention, Fig. 1b is a perspective view of the whole, Fig. 2 is an explanatory diagram showing the operation of the embodiment of the invention, and Fig. 3 is another embodiment of the invention. FIGS. 4 to 7 are perspective views and explanatory views showing conventional techniques. 1 , 1 ', 7': Bucket, 1b: Inside, 2: Cylindrical part, 2': Outside part, 2b, 2'b: Inside surface, 3:
Tapered cylinder part, 3': Tapered part, 3b, 3'b: Outer surface, 4, 4': Valve member, 5, 5': Frame part, 6, 6',
11: wire, 7: concrete, 8: bottom,
9: Convex portion, 2a, 3a, 2'a, 3'a, 10: Opening, 12: Discharge hose, 13: Air pipe, 1
4: Stabilizing liquid, 15: Tremy pipe, 16: Casing, 17: Lifting pipe, 18: Pipe, 19: Rebar.

Claims (1)

【特許請求の範囲】 1 掘削孔に挿入する手段を設けた外筒部を有す
るバケツトであり、該外筒部は前記掘削孔に遊合
する外径を有するとともに、該外筒部の底面に設
けられた開口部の縁より連続して設けられ前記外
筒部の内側に先細り状に延出されるテーパー筒部
とからなることを特徴とする沈澱物除去用バケツ
ト。 2 矩形状の掘削溝に挿入する手段を設けた外側
部を有するバケツトであり、該外側部は前記掘削
溝に遊合する大きさを有するとともに該外側部の
矩形状の底面内側全長にわたつて設けた矩形状開
口部の縁より連続して設けられ前記開口部の短辺
長が連続して狭くなるように延出されるテーパー
部とからなることを特徴とする沈澱物除去用バケ
ツト。
[Scope of Claims] 1. A bucket bag having an outer cylindrical part provided with means for inserting into an excavation hole, the outer cylindrical part having an outer diameter that fits into the excavation hole, and a bottom surface of the outer cylindrical part. 1. A bucket for removing sediment, comprising: a tapered cylindrical portion that is provided continuously from the edge of the provided opening and extends in a tapered shape inside the outer cylindrical portion. 2. A bucket bag having an outer part provided with a means for inserting into a rectangular excavated groove, the outer part having a size to fit into the excavated groove, and extending over the entire inner length of the rectangular bottom surface of the outer part. A bucket for removing sediment, comprising a tapered part that is continuously provided from the edge of a rectangular opening and extends so that the length of the short side of the opening becomes continuously narrower.
JP15049784A 1984-07-21 1984-07-21 Bucket for removing sediment Granted JPS6131527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15049784A JPS6131527A (en) 1984-07-21 1984-07-21 Bucket for removing sediment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15049784A JPS6131527A (en) 1984-07-21 1984-07-21 Bucket for removing sediment

Publications (2)

Publication Number Publication Date
JPS6131527A JPS6131527A (en) 1986-02-14
JPH025848B2 true JPH025848B2 (en) 1990-02-06

Family

ID=15498153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15049784A Granted JPS6131527A (en) 1984-07-21 1984-07-21 Bucket for removing sediment

Country Status (1)

Country Link
JP (1) JPS6131527A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4687875A (en) * 1985-04-17 1987-08-18 The Standard Oil Company Metal coordination complexes of heteropolyacids as catalysts for alcohol conversion

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247244A (en) * 1975-10-08 1977-04-14 Hitachi Ltd Elevator cage
JPS5416644A (en) * 1977-07-07 1979-02-07 Mitsubishi Electric Corp Protective device for on-load tap changer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247244A (en) * 1975-10-08 1977-04-14 Hitachi Ltd Elevator cage
JPS5416644A (en) * 1977-07-07 1979-02-07 Mitsubishi Electric Corp Protective device for on-load tap changer

Also Published As

Publication number Publication date
JPS6131527A (en) 1986-02-14

Similar Documents

Publication Publication Date Title
KR100880439B1 (en) Apparatus and method for removing slime in a cast-in place pile construstion
US6164873A (en) Double-wing deformable stop-end pipe for forming the joining surfaces of concrete-cast wall elements
JPH025848B2 (en)
JP2640841B2 (en) Slime treatment method in cast-in-place pile method
JPS6119771B2 (en)
JPS59195925A (en) Construction of on-site concrete pile
JP2809105B2 (en) How to build an underground tank
JP2001032271A (en) Work execution method of cast-in-place concrete pile having long steel frame therein
JP3446186B2 (en) Pollution control caisson for dredging and dredging method
JPH0776845A (en) Method of settling open caisson
JPH0442498B2 (en)
JPH0417661Y2 (en)
JP2526333B2 (en) How to build a vertical shaft
JPH059945A (en) Underground skeleton constructing method
JPH01121414A (en) Excavation work of ground
JP3854577B2 (en) Reinforcing method for existing underground structure and reinforcing structure
JP3103286B2 (en) Construction method of cast-in-place concrete pile
JP2003074076A (en) Construction method of building having underground part
JP3375634B2 (en) Caisson laying method and caisson
JPH0558088B2 (en)
JP3119233U (en) bucket
CN115419048A (en) Inclined underground continuous wall structure and construction method thereof
JPS58153895A (en) Hole inserting steel pipe and construction of steel pipe inserting hole
JPS5843523B2 (en) Method for reducing pile head excess concrete of cast-in-place piles
JPH02311617A (en) Construction of foundation pile