JPH0258384A - Laminated type piezoelectric element - Google Patents

Laminated type piezoelectric element

Info

Publication number
JPH0258384A
JPH0258384A JP63209841A JP20984188A JPH0258384A JP H0258384 A JPH0258384 A JP H0258384A JP 63209841 A JP63209841 A JP 63209841A JP 20984188 A JP20984188 A JP 20984188A JP H0258384 A JPH0258384 A JP H0258384A
Authority
JP
Japan
Prior art keywords
internal electrode
electrode layers
piezoelectric material
material layer
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63209841A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawanami
博 河南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63209841A priority Critical patent/JPH0258384A/en
Publication of JPH0258384A publication Critical patent/JPH0258384A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To radiate heat generated by high speed driving to the outside so as to restrain the temperature rise of an element, and to decrease the lowering of displacement amounts attendant upon the temperature rise of the element by jutting out an internal electrode layer from the periphery of a piezoelectric material layer so as to put it in structure that an element itself has a radiation plate. CONSTITUTION:Cylindrical internal electrode layers 2A and 28 which are made in diameters larger than that of a piezoelectric material layer 1 so that they may jut out from the periphery of the piezoelectric material layer 1 are laminated alternately so as to constitute a laminated type piezoelectric element. External electrode layers 3A and 3B are connected to the internal electrode layers 2A and 2B, respectively, on alternate layers through holes which are opened alternately right and left in the internal electrode layers 2A and 2B. Voltage is applied to between the internal electrode layers 2A and 2B through the external electrode layers 3A and 3B. By making the internal electrode layers 2A and 2B of metallic foils, the heat generated in the piezoelectric material layer is transmitted efficiently to the internal electrode layer, and further by jutting out this internal electrode layer from the periphery of the piezoelectric material layer, it is made to effect the role of a radiation plate so as fo radiate the heat positively to the outside.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、アクチュエータとして用いられる積層型圧
電素子に関する。
The present invention relates to a laminated piezoelectric element used as an actuator.

【従来の技術】[Conventional technology]

メカトロニクス機器の急速な発展に伴い、この分野で使
用されるアクチュエータが注目されてきている。 現在、過半のアクチュエータは電磁力で駆動されている
ため、消費電力が大きい上に発熱や電磁ノイズの発生が
あり、これに代わるアクチュエータの開発が望まれてい
る。これに対し、固体の圧電効果を利用したアクチュエ
ータは、本質的に電磁式のアクチュエータの有する欠点
を克服できるばかりか、小型軽量でかつ振動、衝撃に対
して強いという利点がある。 この圧電アクチュエ°−夕として、多数の圧電板を層状
に積み重ねた圧!縦効果駆動の積層型圧電素子がある。 この積層型圧電素子は、圧電縦効果を直接的に利用して
いるため応答速度が速く、発生力が大きいなどの優れた
特長を有し、刻印などの加工を高速で行うなどの利用方
法が提案されている。 第3図は、このような積層型圧電素子の従来の一般的な
構成を示すものである。第3図において、11は圧電セ
ラミックスからなる圧電材料層、12A、12Bは内部
電極層、13A、13Bは外部電極層である。このよう
な積層型圧電素子において、外部電極jiJ13A、1
3Bを介して各圧電材料Jilllの内部電極層12A
、12B間に電圧を印加すると、各圧電材料層11は圧
電縦効果により伸縮し、その総和として積層型圧電素子
が縫方向に変位する。
With the rapid development of mechatronic equipment, actuators used in this field are attracting attention. Currently, the majority of actuators are driven by electromagnetic force, which not only consumes a large amount of power but also generates heat and electromagnetic noise.Therefore, there is a desire to develop actuators that can replace this. On the other hand, actuators that utilize the piezoelectric effect of a solid state not only can overcome the drawbacks of actuators that are essentially electromagnetic, but also have the advantage of being small, lightweight, and resistant to vibrations and shocks. This piezoelectric actuator consists of a large number of piezoelectric plates stacked in layers. There is a stacked piezoelectric element driven by longitudinal effect. This multilayer piezoelectric element directly utilizes the piezoelectric longitudinal effect, so it has excellent features such as fast response speed and large generated force, and can be used for high-speed processing such as engraving. Proposed. FIG. 3 shows a conventional general configuration of such a laminated piezoelectric element. In FIG. 3, 11 is a piezoelectric material layer made of piezoelectric ceramics, 12A and 12B are internal electrode layers, and 13A and 13B are external electrode layers. In such a laminated piezoelectric element, the external electrode jiJ13A, 1
Internal electrode layer 12A of each piezoelectric material Jill through 3B
, 12B, each piezoelectric material layer 11 expands and contracts due to the piezoelectric longitudinal effect, and the laminated piezoelectric element is displaced in the sewing direction as a sum total.

【発明が解決しようとする課題】[Problem to be solved by the invention]

ところで、このような構成の積層型圧電素子では、変位
量をできるだけ大きくするために、電圧印加時の変位量
に直接関係するパラメータとしての誘電率の大きなセラ
ミックス材料が選択される。 その結果、圧電性を示さなくなる温度、いわゆるキュリ
ー温度の低いセラミックス材料が用いられることになる
。 一方、誘電率が大きいと、高速で駆動した場合に発熱が
大きくなるが、圧電セラミックスは一般に結晶格子が柔
らかいため熱伝導性が悪く、発生熱は内部に蓄積されて
素子自体の温度上昇を招き易い。ところが、積層型圧電
素子は上述した通りキュリー温度の低いセラミックス材
料を用いて構成されているため、素子の温度上昇は変位
量の低下につながるという問題がある。 第4図はこのような状況を示すもので、第3図の積層型
圧電素子を、例えば50セ程度の周波数で駆動した場合
、わずか20秒程度で素子温度が上昇し、変位量が初期
値X0から大きく低下することを示している。 この発明は、積層型圧電素子の温度上昇を抑え、高速で
駆動した場合にも安定した変位量の得られる積層型圧電
素子を提供することを目的とするものである。
By the way, in a laminated piezoelectric element having such a configuration, in order to increase the amount of displacement as much as possible, a ceramic material having a large dielectric constant, which is a parameter directly related to the amount of displacement when voltage is applied, is selected. As a result, ceramic materials are used that have a low temperature at which they no longer exhibit piezoelectricity, the so-called Curie temperature. On the other hand, if the dielectric constant is large, heat will be generated when driven at high speed, but piezoelectric ceramics generally have a soft crystal lattice, so they have poor thermal conductivity, and the generated heat is accumulated internally, causing a rise in the temperature of the element itself. easy. However, since the laminated piezoelectric element is constructed using a ceramic material with a low Curie temperature as described above, there is a problem in that an increase in the temperature of the element leads to a decrease in displacement. Figure 4 shows this situation. When the multilayer piezoelectric element shown in Figure 3 is driven at a frequency of, for example, 50 seconds, the element temperature rises in just about 20 seconds, and the amount of displacement returns to its initial value. This shows a significant decrease from X0. It is an object of the present invention to provide a multilayer piezoelectric element that suppresses the temperature rise of the multilayer piezoelectric element and provides a stable displacement amount even when driven at high speed.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するために、この発明は、圧電材料層と
内部電極層とが交互に積層され、前記内部電極層間に外
部電極層を介して電圧が印加されることにより前記圧電
材料層が伸縮する積層型圧電素子において、内部電極層
を金属箔で形成するとともに、この内部電極層を圧電材
料層の外周面から張り出させるものとする。
In order to achieve the above object, the present invention has piezoelectric material layers and internal electrode layers stacked alternately, and a voltage is applied between the internal electrode layers via an external electrode layer to cause the piezoelectric material layers to expand and contract. In the laminated piezoelectric element, the internal electrode layer is formed of metal foil, and the internal electrode layer is made to protrude from the outer peripheral surface of the piezoelectric material layer.

【作 用】[For use]

内部電極層を金属箔で形成することにより、圧電材料層
で発生した熱を効率よく内部電極層に伝え、さらにこの
内部電極層を圧電材料層の外周面から張り出させことに
より放熱板の役割をさせて熱を積極的に外部に放散させ
ることができる。
By forming the internal electrode layer with metal foil, the heat generated in the piezoelectric material layer is efficiently transferred to the internal electrode layer, and by making the internal electrode layer protrude from the outer peripheral surface of the piezoelectric material layer, it can function as a heat sink. This allows heat to be actively dissipated to the outside.

【実施例】【Example】

第1図はこの発明の実施例を示す模式断面図である。第
1図において、1は圧電セラミックスからなる円板状の
圧電材料層、また2A及び2Bは金属箔からなり、圧電
材料N1の外周面から張り出すように圧電材料層1より
も大径に形成された円板状の内部電極層で、これらは図
示の通り交互に積層されて積層型圧電素子を構成してい
る。3A及び3Bは外部電極層で、内部電極N2A、2
Bに左右交互に開けられた穴を通して一層おきに、内部
電極層2A及び2Bにそれぞれ接続されている。内部電
極層2A、2B間には外部電極層3A。 3Bを介して電圧が印加される。 このような積層型圧電素子は次のようにして形成される
。まず、キュリー温度を130°C付近に持ち、室温で
の変位量が1kV/mmの電界強度に対して0.1%で
あるチタン酸ジルコン酸鉛系圧電セラミックスの原料粉
末をポリビニルアルコールなどのバインダを含む溶液に
よく分散させ、次にこれをスプレドライ法で乾燥し、約
100μmの粒径のプレス用粉体を得る。そこで、この
プレス用粉体を用いてプレス成型し、直径40m、厚さ
2mmの圧電セラミックス成形体を得る。 この成形体を温度1200°Cで2時間焼成し、次に研
磨して直径30mm、厚さ1胴の圧電セラミンクス板を
得る。そこで、圧電セラミックス板の表裏両面に銀電極
ペーストを塗布して焼き付け、圧電材料層1とする。次
に、内部電極層2A、2Bとなる直径50mm、厚さ0
.2mmで一部に穴の開いた金属箔の円板を用意し、圧
電セラミックス板と交互に積層する。その際、外部電極
層3A、3Bを通すために金属箔に開いている穴は一層
おきに向きを反対にして揃える。最後に、外部電極層3
A、3Bとなる導体で金属箔を一層おきに連結する。 このように構成された積層型圧電素子は、圧電材料層1
を100枚積層したものに、1kVの電圧を印加した場
合、約100μmの変位を発生する。ここで、電圧を5
0Hzの正弦波とした場合の時間に対する素子の温度変
化と変位量の関係を第2図に示す。 第2図によれば、内部電極N2A、2Bの放熱効果によ
り、素子の温度上昇が抑えられ、変位量の変動が少なく
なっていることがわかる。
FIG. 1 is a schematic sectional view showing an embodiment of the invention. In FIG. 1, 1 is a disc-shaped piezoelectric material layer made of piezoelectric ceramics, and 2A and 2B are made of metal foil, which are formed to have a larger diameter than the piezoelectric material layer 1 so as to protrude from the outer peripheral surface of the piezoelectric material N1. These disc-shaped internal electrode layers are stacked alternately as shown in the figure to constitute a stacked piezoelectric element. 3A and 3B are external electrode layers, and internal electrodes N2A, 2
Every other layer is connected to the internal electrode layers 2A and 2B through holes formed alternately on the left and right sides of B. An external electrode layer 3A is provided between the internal electrode layers 2A and 2B. A voltage is applied through 3B. Such a laminated piezoelectric element is formed as follows. First, a raw material powder of lead zirconate titanate piezoelectric ceramics having a Curie temperature of around 130°C and a displacement of 0.1% at room temperature with respect to an electric field strength of 1 kV/mm is mixed with a binder such as polyvinyl alcohol. This is then dried by a spray drying method to obtain a powder for pressing having a particle size of about 100 μm. Therefore, press molding is performed using this press powder to obtain a piezoelectric ceramic molded body having a diameter of 40 m and a thickness of 2 mm. This molded body is fired at a temperature of 1200° C. for 2 hours, and then polished to obtain a piezoelectric ceramic plate having a diameter of 30 mm and a thickness of 1 cylinder. Therefore, silver electrode paste is applied to both the front and back surfaces of the piezoelectric ceramic plate and baked to form the piezoelectric material layer 1. Next, the internal electrode layers 2A and 2B are made with a diameter of 50 mm and a thickness of 0.
.. Disks of metal foil with holes of 2 mm in diameter are prepared and laminated alternately with piezoelectric ceramic plates. At this time, the holes made in the metal foil for passing the external electrode layers 3A and 3B are aligned in opposite directions every other layer. Finally, external electrode layer 3
Connect the metal foils every other layer using conductors A and 3B. The laminated piezoelectric element configured in this way has a piezoelectric material layer 1
When a voltage of 1 kV is applied to a stack of 100 sheets, a displacement of about 100 μm occurs. Here, set the voltage to 5
FIG. 2 shows the relationship between temperature change and displacement of the element with respect to time when a 0 Hz sine wave is used. According to FIG. 2, it can be seen that due to the heat dissipation effect of the internal electrodes N2A and 2B, the temperature rise of the element is suppressed and the fluctuation in the amount of displacement is reduced.

【発明の効果】【Effect of the invention】

この発明によれば、内部電極層を金gI4箔で形成する
とともに、この内部電極層を圧電材料層の外周面から張
り出させて素子自体に放熱板を持たせる構造とすること
により、積層型圧電素子の高速駆動により発生する熱を
容易に外部に放散させて素子の温度上昇を抑え、素子の
温度上昇に伴う変位量の低下を小さくすることができる
According to this invention, the internal electrode layer is formed of gold gI4 foil, and the internal electrode layer is made to protrude from the outer peripheral surface of the piezoelectric material layer so that the element itself has a heat dissipation plate. It is possible to easily dissipate heat generated by high-speed driving of the piezoelectric element to the outside, thereby suppressing a rise in the temperature of the element, and reducing a decrease in the amount of displacement due to a rise in the temperature of the element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す模式的断面図、第2図
は第1図の積層型圧電素子における時間と温度及び変位
量との関係を説明する線図、第3図は従来例の模式的断
面図、第4図は従来例における時間と温度及び変位量と
の関係を説明する線図である。 ■・・・圧電材料層、2A、2B・・・内部電極層、3
A、3B・・・外部電極層。 第1図 第 3eT11(抄) 吟 (抄) 第 2 図 第
FIG. 1 is a schematic cross-sectional view showing an embodiment of the present invention, FIG. 2 is a diagram illustrating the relationship between time, temperature, and displacement in the laminated piezoelectric element shown in FIG. 1, and FIG. 3 is a conventional example. FIG. 4 is a diagram illustrating the relationship between time, temperature, and displacement in a conventional example. ■... Piezoelectric material layer, 2A, 2B... Internal electrode layer, 3
A, 3B...external electrode layer. Figure 1 Figure 3eT11 (excerpt) Gin (excerpt) Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1)圧電材料層と内部電極層とが交互に積層され、前記
内部電極層間に外部電極層を介して電圧が印加されるこ
とにより前記圧電材料層が伸縮する積層型圧電素子にお
いて、内部電極層を金属箔で形成するとともに、この内
部電極層を圧電材料層の外周面から張り出させたことを
特徴とする積層型圧電素子。
1) In a laminated piezoelectric element in which piezoelectric material layers and internal electrode layers are alternately laminated, and the piezoelectric material layers expand and contract by applying a voltage between the internal electrode layers via an external electrode layer, the internal electrode layers What is claimed is: 1. A laminated piezoelectric element characterized in that the internal electrode layer is made of metal foil and that the internal electrode layer protrudes from the outer peripheral surface of the piezoelectric material layer.
JP63209841A 1988-08-24 1988-08-24 Laminated type piezoelectric element Pending JPH0258384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63209841A JPH0258384A (en) 1988-08-24 1988-08-24 Laminated type piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63209841A JPH0258384A (en) 1988-08-24 1988-08-24 Laminated type piezoelectric element

Publications (1)

Publication Number Publication Date
JPH0258384A true JPH0258384A (en) 1990-02-27

Family

ID=16579509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63209841A Pending JPH0258384A (en) 1988-08-24 1988-08-24 Laminated type piezoelectric element

Country Status (1)

Country Link
JP (1) JPH0258384A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545942A (en) * 1994-11-21 1996-08-13 General Electric Company Method and apparatus for dissipating heat from a transducer element array of an ultrasound probe
DE19626671C1 (en) * 1996-07-03 1997-10-16 Fraunhofer Ges Forschung High-frequency piezoelectric power actuator apparatus with heat dissipation
DE19648545A1 (en) * 1996-11-25 1998-05-28 Ceramtec Ag External electrode for a monolithic multilayer actuator
JP2002261345A (en) * 2000-12-28 2002-09-13 Denso Corp Laminated one-body baked type electromechanical conversion element
WO2003009401A2 (en) * 2001-07-21 2003-01-30 Ffr Intelp Limited Of Regency House Piezoelectric transducers
JP2008311700A (en) * 2007-06-12 2008-12-25 Fujifilm Corp Composite piezoelectric material, ultrasonic probe, ultrasonic endoscope and ultrasonographic device
US7505283B2 (en) 2005-03-28 2009-03-17 The Furukawa Electric Co., Ltd. Reinforcing structure for metal core board and electric connection box

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545942A (en) * 1994-11-21 1996-08-13 General Electric Company Method and apparatus for dissipating heat from a transducer element array of an ultrasound probe
DE19626671C1 (en) * 1996-07-03 1997-10-16 Fraunhofer Ges Forschung High-frequency piezoelectric power actuator apparatus with heat dissipation
DE19648545A1 (en) * 1996-11-25 1998-05-28 Ceramtec Ag External electrode for a monolithic multilayer actuator
DE19648545B4 (en) * 1996-11-25 2009-05-07 Ceramtec Ag Monolithic multilayer actuator with external electrodes
JP2002261345A (en) * 2000-12-28 2002-09-13 Denso Corp Laminated one-body baked type electromechanical conversion element
WO2003009401A2 (en) * 2001-07-21 2003-01-30 Ffr Intelp Limited Of Regency House Piezoelectric transducers
WO2003009401A3 (en) * 2001-07-21 2003-10-16 Intelp Limited Of Regency Ffr Piezoelectric transducers
US7505283B2 (en) 2005-03-28 2009-03-17 The Furukawa Electric Co., Ltd. Reinforcing structure for metal core board and electric connection box
JP2008311700A (en) * 2007-06-12 2008-12-25 Fujifilm Corp Composite piezoelectric material, ultrasonic probe, ultrasonic endoscope and ultrasonographic device

Similar Documents

Publication Publication Date Title
US5276657A (en) Metal-electroactive ceramic composite actuators
JP4109717B2 (en) Electroactive device
JP2738706B2 (en) Manufacturing method of laminated piezoelectric element
TW503131B (en) Piezo-ceramic bending-converter
JP3139452B2 (en) Piezoelectric transformer and method of manufacturing the same
JP2009124791A (en) Vibrator and vibration wave actuator
TW201810744A (en) Electricity generator comprising a magnetoelectric converter and method for manufacturing same
JPH0258384A (en) Laminated type piezoelectric element
JPH04253382A (en) Electrostrictive effect element
JP2001094164A (en) Laminated type piezoelectric actuator
JP2000294847A (en) Piezoelectric transformer
JPH04352481A (en) Manufacture of electrostrictive effect element
JP2010199271A (en) Multilayer piezoelectric element, manufacturing method thereof, and vibrator
JPH0555659A (en) Multilayered piezoelectric element
JP2010171360A (en) Laminated piezoelectric element, method of manufacturing the same, and vibrator
JPH0476969A (en) Electrostrictive effect element
JP2000277822A (en) Piezoelectric actuator device
JPH0132759Y2 (en)
JP2907153B2 (en) Piezoelectric transformer and method of manufacturing the same
JPH01226187A (en) Method of driving laminated piezoelectric element
JPH04337682A (en) Piezoelectric effect element and electrostrictive effect element
JP3080033B2 (en) Multilayer piezoelectric transformer
JPS60128682A (en) Manufacture of laminating type piezoelectric actuator
JPS63294975A (en) Laminating type piezoelectric element
JP2011049352A (en) Vibrator