JPH0258285A - Manufacture of diffraction grating - Google Patents

Manufacture of diffraction grating

Info

Publication number
JPH0258285A
JPH0258285A JP63208198A JP20819888A JPH0258285A JP H0258285 A JPH0258285 A JP H0258285A JP 63208198 A JP63208198 A JP 63208198A JP 20819888 A JP20819888 A JP 20819888A JP H0258285 A JPH0258285 A JP H0258285A
Authority
JP
Japan
Prior art keywords
grating
diffraction grating
substrate
laser
photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63208198A
Other languages
Japanese (ja)
Inventor
Yasuo Kimura
靖夫 木村
Yuzo Ono
小野 雄三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63208198A priority Critical patent/JPH0258285A/en
Publication of JPH0258285A publication Critical patent/JPH0258285A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Optical Integrated Circuits (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a manufacturing method of a diffraction grating for DFB laser, lambda/4 shift DFB laser, etc., which are stable, excellent in mass-productivity, and does not require much manhour by making the grating by coherent transfer method using a grating pattern composed of photo-setting resin made by using a grating pattern formed by charged beam drawing method, as an original plate. CONSTITUTION:A grating is made by the following manner; by charged beam drawing method, a grating pattern is formed on a resist layer 20 on a substrate 19; this grating pattern is used as an original plate, and a duplicate of the above grating pattern is made by using photo-setting resin 21; the grating is made by coherent transfer method using the grating pattern composed of the photo-setting resin 21. For example, by charged beam drawing method, a diffraction grating having a desired pitch is formed on the photoresist layer 20 on the substrate 19; by using the pattern on the substrate 19 as an original plate, a replica is made from the photo-setting resin; by using the grating transferred to the photo-setting resin 21 as a basic diffraction grating, coherent transfer on a semiconductor laser substrate, on which photoresist is applied, is performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、回折格子、特に分布帰還(DFB: Di
stributed Feed Back 、以下DF
Bと略記する)形半導体レーザ、λ/4シフトDFBレ
ーザに用いられる回折格子の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a diffraction grating, particularly a distributed feedback (DFB).
distributed feed back, hereinafter DF
The present invention relates to a method for manufacturing a diffraction grating used in a (abbreviated as B) type semiconductor laser and a λ/4 shift DFB laser.

〔従来の技術〕[Conventional technology]

高速、大容量な光ケーブル通信用の光源として、DFB
形半導体レーザ、λ/4シフトDFBレーザの開発が進
められている。これらのレーザは、高速変調時にも単一
軸モード発振することから、シングルモードファイバと
組み合わせることにより、光ケーブル通信のもつ高速、
大容量性を実現できる。
DFB as a light source for high-speed, large-capacity optical cable communication
Development of a type semiconductor laser and a λ/4 shift DFB laser is progressing. Since these lasers oscillate in a single axis mode even during high-speed modulation, they can be combined with single-mode fibers to achieve the high-speed,
Large capacity can be achieved.

通常の半導体レーザは、共振器として、活性層の両端を
臂関し両方の襞間面でファブリペロ−共振器を構成して
いる。活性層内の光は襞間面で反射され、活性層内を往
復しレーザ発振に到達する。
In a typical semiconductor laser, a Fabry-Perot resonator is formed between both ends of the active layer as a resonator, and between both folds. Light within the active layer is reflected by the inter-fold surfaces, travels back and forth within the active layer, and reaches laser oscillation.

一方DFBレーザの場合は、活性層の近傍に回折格子を
配置し、回折格子のブラッグ反射を利用して共振器を構
成している。活性層内の光は回折格子のブラッグ反射に
より徐々に反射されることにより活性層内を往復しレー
ザ発振に到達する。
On the other hand, in the case of a DFB laser, a diffraction grating is placed near the active layer, and a resonator is constructed using Bragg reflection of the diffraction grating. The light within the active layer is gradually reflected by the Bragg reflection of the diffraction grating, travels back and forth within the active layer, and reaches laser oscillation.

DFBレーザに用いられる回折格子のピッチpと発振波
長λとの間には次のような関係がある。
There is the following relationship between the pitch p of a diffraction grating used in a DFB laser and the oscillation wavelength λ.

λ     λ。λ    λ.

ここで、mは回折格子の次数、λは発振波長、noは素
子内の等価屈折率、λ、は素子内を伝播する光の波長で
ある。回折格子の次数mは、通常、lまたは2のものが
用いられる。次数が低いほど、格子ピンチは小さくなる
ので回折格子の製作が困難になるが、光波と回折格子の
結合係数が大きくなるので望ましい。格子ピンチについ
て一例を上げると、InPを用いた1、3μm帯のDF
Bレーザでは、1次の回折格子の場合、約0.2μmと
なる。従って、格子の凹凸はそれぞれ0.1μm幅にな
る。
Here, m is the order of the diffraction grating, λ is the oscillation wavelength, no is the equivalent refractive index within the element, and λ is the wavelength of light propagating within the element. The order m of the diffraction grating is usually l or 2. The lower the order, the smaller the grating pinch, making it more difficult to manufacture the diffraction grating, but it is desirable because the coupling coefficient between the light wave and the diffraction grating becomes larger. To give an example of lattice pinch, DF in the 1 and 3 μm band using InP
In the case of a B laser, it is approximately 0.2 μm for a first-order diffraction grating. Therefore, each of the concave and convex portions of the grating has a width of 0.1 μm.

このようなサブミクロンピンチの格子を精度よく作成す
る方法として、レーザビームの2光束干渉法がある。第
2図はこの方法を説明するための図である。レーザ発振
器1から出た光はミラー7により反射されビームスプリ
ッタ2により2つに分離され、ビームエクスパンダ3,
4により拡大され、ミラー5,6により反射されて、基
板8上で2つの光束が重ね合わされ干渉し、基板上のフ
ォトレジスト9を露光する。ここで、基板8に入射する
光束の角度を適当に設定することにより、任意のピッチ
を持つフォトレジスト格子の作成が可能である。この方
法では、用いるレーザビームの波長のおよそ1/2程度
までのピッチを持つ格子を精度よく作成することができ
る。作成されたフォトレジスト格子をマスクとして基板
である半導体をエツチングすることによりDFBレーザ
用の回折格子が得られる。
A two-beam interferometry method using laser beams is a method for producing such submicron-pinch gratings with high precision. FIG. 2 is a diagram for explaining this method. The light emitted from the laser oscillator 1 is reflected by a mirror 7, separated into two by a beam splitter 2, and then sent to a beam expander 3,
4 and reflected by mirrors 5 and 6, the two light beams overlap and interfere on the substrate 8, exposing the photoresist 9 on the substrate. Here, by appropriately setting the angle of the light beam incident on the substrate 8, it is possible to create a photoresist grating with an arbitrary pitch. With this method, a grating having a pitch up to about 1/2 of the wavelength of the laser beam used can be created with high precision. A diffraction grating for a DFB laser is obtained by etching the semiconductor substrate using the created photoresist grating as a mask.

λ/4シフトDFBレーザは、通常のDFBレーザより
もさらに単一軸モード発振の歩留まりを向上させる目的
で開発されているもので、1次の回折格子を用いた場合
では、レーザ素子の中央付近で回折格子の位相が反転し
ているものである。
The λ/4 shift DFB laser has been developed with the aim of further improving the yield of single-axis mode oscillation than normal DFB lasers, and when using a first-order diffraction grating, the λ/4 shift DFB laser The phase of the diffraction grating is inverted.

λ/4シフ)DFBレーザ用の回折格子の作成方法には
種々の方法が提案され、実験されているが、基本的には
さきに説明した2光束干渉法を基本とし、光路内に設け
られた位相シフト部を用い、あるいはネガレジストとポ
ジレジストを使い分けている。第3図は、ネガレジスト
とポジレジストを用いた代表的なλ/4シフトDFBレ
ーザ用回折格子の作成方法を説明するための図で、基板
の断面を示している。なおこの図では説明を簡単にする
ために2光束干渉露光の光学系部分を省略している。こ
の方法では、基iio上のネガレジスト11はレーザビ
ームが照射された部分が現像液に不溶となり、ポジレジ
スト12では可溶となるために同位相のレーザビームを
照射した場合、現像後に残るレジストの凹凸が各々反転
することを用いている。
(λ/4 shift) Various methods have been proposed and experimented with to create diffraction gratings for DFB lasers, but basically they are based on the two-beam interferometry method explained earlier. A different phase shift section is used, or a negative resist and a positive resist are used. FIG. 3 is a diagram for explaining a typical method of creating a diffraction grating for a λ/4 shift DFB laser using a negative resist and a positive resist, and shows a cross section of the substrate. Note that in this figure, the optical system portion for two-beam interference exposure is omitted to simplify the explanation. In this method, the portion of the negative resist 11 on the substrate III that is irradiated with the laser beam becomes insoluble in the developer, while the positive resist 12 becomes soluble, so when the laser beam of the same phase is irradiated, the resist that remains after development It uses the fact that the concavities and convexities are each reversed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上述べたDFBレーザ用の回折格子作成方法は基本的
に2光束の干渉を用いているため、干渉計を形成する必
要があり、装置が大型になるという欠点を有していた。
Since the above-described method for producing a diffraction grating for a DFB laser basically uses interference of two light beams, it is necessary to form an interferometer, which has the drawback of increasing the size of the apparatus.

更に、サブミクロンの格子を形成するためには、干渉計
内の振動を極力排除する必要があった。またレーザ出射
ビームを2光束に分離するために、片側のビームに対し
て空気のゆらぎがあると格子が形成されないため、干渉
計内の空気の移動を抑制しなければならなかった。
Furthermore, in order to form a submicron grating, it was necessary to eliminate vibrations within the interferometer as much as possible. Furthermore, in order to separate the laser emitted beam into two beams, if there is air fluctuation in one beam, a grating will not be formed, so it is necessary to suppress the movement of air within the interferometer.

従って、DFBレーザの量産に当たっては、干渉計の維
持、制御に多くの工数が必要であった。更に、λ/4シ
フトDFBレーザ用の回折格子作成については、前記問
題点に加えて、複雑なレジストプロセスを必要とし、膨
大な工数と厳重な工程管理が必要とされていた。
Therefore, in mass production of DFB lasers, many man-hours are required to maintain and control the interferometer. Furthermore, in addition to the above-mentioned problems, fabrication of a diffraction grating for a λ/4 shift DFB laser requires a complicated resist process, requiring a huge number of man-hours and strict process control.

本発明の目的は上記問題点を解決し、安定で、量産性に
冨み、かつ工数をあまり必要としないDFBレーザ用、
およびλ/4シフトDFBレーザ用の回折格子の製作方
法を提供することにある。
The purpose of the present invention is to solve the above-mentioned problems, and to provide a DFB laser which is stable, suitable for mass production, and does not require much man-hours.
Another object of the present invention is to provide a method for manufacturing a diffraction grating for a λ/4 shift DFB laser.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の回折格子の製造方法は、 基板上のレジスト層に荷電ビーム描画法により形成され
た格子パターンを原盤として光硬化性樹脂により前記格
子パターンの複製を作成し、この光硬化性樹脂からなる
格子パターンを用いてコヒーレント転写法により格子を
作成することを特徴としている。
The method for manufacturing a diffraction grating of the present invention includes using a grating pattern formed on a resist layer on a substrate by a charged beam drawing method as a master, creating a copy of the grating pattern using a photocurable resin, and making a copy of the grating pattern using a photocurable resin. It is characterized by creating a lattice using a coherent transfer method using a lattice pattern.

〔作用〕[Effect]

以下、図面を参照しながら本発明の作用を述べる。本発
明ではレーザ発振器から出射したビームをビームスプリ
フタで2つに分割することなく回折格子を作成するため
に、コヒーレント転写法を用いる。第4図はコヒーレン
ト転写法を説明するだめの図である。回折格子14にレ
ーザビーム13を照射するとO次回折光とともに、±1
次回折光が生じる。ここで、回折格子14のブラッグ角
θ6で光を入射させると、+1次回折光15と一1次回
折光16は回折格子14の法線に対して等しい角度(ブ
ラッグ角θ、)で出射する。つまり、回折格子の出射側
平面のごく近傍では、回折格子法線に対して等しい角度
で交わる2つの光束による干渉がみられる。従って、第
5図に示すように、この領域内にフォトレジスト17を
塗布した基板18を配置すれば、この干渉縞がフォトレ
ジストに記録されることになる。以下、この2つの回折
光を発生させるために用いる格子を基本回折格子と呼ぶ
ことにする。
The operation of the present invention will be described below with reference to the drawings. In the present invention, a coherent transfer method is used to create a diffraction grating without dividing the beam emitted from a laser oscillator into two by a beam splitter. FIG. 4 is a diagram for explaining the coherent transfer method. When the laser beam 13 is irradiated onto the diffraction grating 14, along with the O-order diffracted light, ±1
A second diffracted light is generated. Here, when light is incident on the diffraction grating 14 at a Bragg angle θ6, the +1st-order diffracted light 15 and the 11st-order diffracted light 16 are emitted at the same angle (Bragg angle θ,) with respect to the normal to the diffraction grating 14. That is, in the very vicinity of the exit side plane of the diffraction grating, interference is observed between two light beams that intersect at equal angles to the normal line of the diffraction grating. Therefore, as shown in FIG. 5, if a substrate 18 coated with a photoresist 17 is placed within this area, this interference pattern will be recorded on the photoresist. Hereinafter, the grating used to generate these two diffracted lights will be referred to as a basic diffraction grating.

本発明では、格子パターンを電子ビームあるいはイオン
ビーム等の荷電ビームを用いてフォトレジストに描画し
、このレジストからなる格子のレプリカを作成して基本
回折格子として用いる。荷電ビームにより描画したパタ
ーンを原盤として用いることにより、格子深さや格子ピ
ッチ等の基本回折格子のパラメータを任意にコントロー
ルできるため、所望の特性を持つ基本回折格子が容易に
作成できる。
In the present invention, a grating pattern is drawn on a photoresist using a charged beam such as an electron beam or an ion beam, and a replica of the grating made of this resist is created and used as a basic diffraction grating. By using a pattern drawn with a charged beam as a master, parameters of the basic diffraction grating such as grating depth and grating pitch can be controlled arbitrarily, making it easy to create a basic diffraction grating with desired characteristics.

〔実施例〕〔Example〕

以下、図面を参照しながら、本発明の実施例について説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第6図は本発明における基本回折格子の製造手順を説明
するためのものである。まず、第6図(a)に示すよう
に、荷電ビームm画法により基板I9上のフォトレジス
ト層20に所望のピンチを持つ回折格子を形成する。こ
こで作成する回折格子の断面形状はほぼ矩形であるが、
回折効率等の要求により、三角断面形状等を得たい場合
は、基板に半導体結晶を用いて、ここで作成した格子パ
ターンをマスクとして湿式エツチングを施し、エツチン
グレートの異方性を利用することにより、可能である。
FIG. 6 is for explaining the manufacturing procedure of the basic diffraction grating in the present invention. First, as shown in FIG. 6(a), a diffraction grating having a desired pinch is formed on the photoresist layer 20 on the substrate I9 by the charged beam m-painting method. The cross-sectional shape of the diffraction grating created here is almost rectangular, but
If you want to obtain a triangular cross-sectional shape due to demands for diffraction efficiency, etc., use a semiconductor crystal as the substrate, perform wet etching using the lattice pattern created here as a mask, and take advantage of the anisotropy of the etching rate. , is possible.

次に、第6図(b)に示すように、この基板上のパター
ンを原盤として、光硬化性樹脂21によりレプリカを作
成する。この光硬化性樹脂に転写された格子を基本回折
格子として用いる。
Next, as shown in FIG. 6(b), a replica is created using a photocurable resin 21 using the pattern on this substrate as a master. The grating transferred to this photocurable resin is used as a basic diffraction grating.

以上述べた基本回折格子の製作手順において、基板上の
格子パターンの電鋳金型を作成し、この金型を原盤とし
て光硬化性樹脂にパターンを転写することももちろん可
能である。前述の手法では一度光硬化性樹脂によりレプ
リカを作成すると原盤は破壊されてしまうが、電鋳金型
を利用する方法では原盤が保存されているため、レプリ
カの量産、すなわち基本回折格子の安定供給が可能とな
り、従って、回折格子の製造が安定に行えるという利点
を備えている。
In the basic diffraction grating manufacturing procedure described above, it is of course possible to create an electroforming mold of the grating pattern on the substrate and use this mold as a master to transfer the pattern to the photocurable resin. In the above-mentioned method, once a replica is created using photocurable resin, the master is destroyed, but in the method using electroforming molds, the master is preserved, making it possible to mass produce replicas, or in other words, to provide a stable supply of basic diffraction gratings. This has the advantage that the diffraction grating can be manufactured stably.

第1図は、本発明にお・けるコヒーレント露光の光学系
を示すものである。
FIG. 1 shows an optical system for coherent exposure in the present invention.

レーザ発振器22から出射した光は露光時間制御用のシ
ャッタ23、レーザ光強度調整用のNDフィルタ(ne
utral density filter)24を通
過し、対物レンズ25.スペーシャルフィルタ26.コ
リメートレンズ27からなるビームエクスパンダ29に
より拡大され平行光となり、上述の手順により作成され
た基本回折格子30に入射する。基本回折格子は、入射
平行光がブラッグ角となるよう配置される。
The light emitted from the laser oscillator 22 is passed through a shutter 23 for controlling exposure time and an ND filter (ne
utral density filter) 24, and an objective lens 25. Spatial filter 26. The beam is expanded by a beam expander 29 consisting of a collimating lens 27 to become parallel light, which is incident on the basic diffraction grating 30 created by the above-described procedure. The basic diffraction grating is arranged so that the incident parallel light has a Bragg angle.

基本回折格子30の後方ごく近傍に、フォトレジスト3
1を塗布した半導体レーザ基板32が基本回折格子31
と平行になるように配置される。この光学系を用いて、
露光時間、レーザ光強度を適当に調整することにより、
半導体基板上のフォトレジスト層に所望の回折格子を作
成することができる。
A photoresist 3 is placed very close to the rear of the basic diffraction grating 30.
The semiconductor laser substrate 32 coated with 1 is the basic diffraction grating 31.
is placed parallel to. Using this optical system,
By appropriately adjusting the exposure time and laser light intensity,
A desired diffraction grating can be created in a photoresist layer on a semiconductor substrate.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、DFBレーザ、λ/4シフトDFBレ
ーザ用の回折格子を非常に簡単な製作手順で、安定に製
作することができるため、回折格子の製作に要していた
工数が大幅に削減でき、これらのレーザの低価格化に寄
与する。
According to the present invention, diffraction gratings for DFB lasers and λ/4 shift DFB lasers can be stably manufactured using a very simple manufacturing procedure, so the man-hours required for manufacturing diffraction gratings can be significantly reduced. This contributes to lowering the cost of these lasers.

また、本発明による回折格子の製造方法は、上述のレー
ザへの応用だけでな〈従来2光束干渉法で作成していた
回折格子の製造へも応用が可能である。
Further, the method for manufacturing a diffraction grating according to the present invention can be applied not only to the above-mentioned laser, but also to the manufacture of a diffraction grating that was conventionally manufactured by two-beam interferometry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第6図は本発明の詳細な説明するための図、 第2図、第3図は従来の技術を説明するための図、 第4図、第5図は本発明の詳細な説明するための図であ
る。 ■、22・・・・・レーザ発振器 2・・・・・・・ビームスプリッタ 3.4.29・・・ビームエクスパンダ5.6.7・・
・ミラー 8、10.18.19・・・基板 9、17.31・・・フォトレジスト 11・・・・・・・ネガレジスト 12・・・・・・・ポジレジスト 13・・・・・・・レーザビーム 14・・・・・・・回折格子 15・・・・・・・+1次回折格子 16・・・・・・・−1次回折格子 20・・・・・・・フォトレジスト層 21・・・・・・・光硬化性樹脂 23・・・・・・・シャッタ 24・ ・ ・ ・ ・ ・・NDフィルタ25・・・
・・・・対物レンズ 26・ 27・ 30・ 32・ ・スペーシャルホルダ ・コリメートレンズ ・基本回折格子 ・半導体レーザ基板
1 and 6 are diagrams for explaining the present invention in detail, Figures 2 and 3 are diagrams for explaining the conventional technology, and Figures 4 and 5 are diagrams for explaining the present invention in detail. It is a figure for explaining. ■, 22...Laser oscillator 2...Beam splitter 3.4.29...Beam expander 5.6.7...
・Mirror 8, 10.18.19...Substrate 9, 17.31...Photoresist 11...Negative resist 12...Positive resist 13...・Laser beam 14...Diffraction grating 15...+1st order diffraction grating 16...-1st order diffraction grating 20...Photoresist layer 21 ......Photocurable resin 23...Shutter 24...ND filter 25...
...Objective lens 26, 27, 30, 32, Spatial holder, Collimating lens, Basic diffraction grating, Semiconductor laser substrate

Claims (1)

【特許請求の範囲】[Claims] (1)基板上のレジスト層に荷電ビーム描画法により形
成された格子パターンを原盤として光硬化性樹脂により
前記格子パターンの複製を作成し、この光硬化性樹脂か
らなる格子パターンを用いてコヒーレント転写法により
格子を作成することを特徴とする回折格子の製造方法。
(1) Using a lattice pattern formed on a resist layer on a substrate by a charged beam drawing method as a master, a copy of the lattice pattern is created using a photocurable resin, and the lattice pattern made of this photocurable resin is used for coherent transfer. 1. A method for manufacturing a diffraction grating, which comprises creating a grating by a method.
JP63208198A 1988-08-24 1988-08-24 Manufacture of diffraction grating Pending JPH0258285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63208198A JPH0258285A (en) 1988-08-24 1988-08-24 Manufacture of diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63208198A JPH0258285A (en) 1988-08-24 1988-08-24 Manufacture of diffraction grating

Publications (1)

Publication Number Publication Date
JPH0258285A true JPH0258285A (en) 1990-02-27

Family

ID=16552286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63208198A Pending JPH0258285A (en) 1988-08-24 1988-08-24 Manufacture of diffraction grating

Country Status (1)

Country Link
JP (1) JPH0258285A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342877A (en) * 1992-07-06 1994-08-30 Eastman Chemical Company Blends of polyesters and alkylhydroxy (meth)acrylate compounds
JP2005331564A (en) * 2004-05-18 2005-12-02 Seiko Epson Corp Method for forming thin film pattern, and device
JP2006013449A (en) * 2004-05-26 2006-01-12 Ricoh Co Ltd Interference exposure device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342877A (en) * 1992-07-06 1994-08-30 Eastman Chemical Company Blends of polyesters and alkylhydroxy (meth)acrylate compounds
US5492959A (en) * 1992-07-06 1996-02-20 Clark; Mark D. Blends of polyesters and alkylhydroxy (meth)acrylate compounds
JP2005331564A (en) * 2004-05-18 2005-12-02 Seiko Epson Corp Method for forming thin film pattern, and device
JP2006013449A (en) * 2004-05-26 2006-01-12 Ricoh Co Ltd Interference exposure device
JP4658670B2 (en) * 2004-05-26 2011-03-23 株式会社リコー Interference exposure apparatus and image forming apparatus

Similar Documents

Publication Publication Date Title
EP0188919B1 (en) A method for the formation of a diffraction grating
US5340637A (en) Optical device diffraction gratings and a photomask for use in the same
CN102147492B (en) Micro-structure quasi-phase-matching based method for preparing multidimensional target waveguide grating and bulk grating
CA2111808C (en) Method for forming a bragg grating in an optical medium
CA1102593A (en) Method of forming focusing diffraction gratings for integrated optics
JPH09508713A (en) Light grating
US5054884A (en) Beam splitter including a diffraction grating and one of step shaped, inclined, or curved transparent surface
CN107453204A (en) A kind of Distributed Feedback Laser and preparation method based on double-exposure technique
JPS61190368A (en) Formation of fine pattern
JPH0422481B2 (en)
JPH06201909A (en) Production of diffraction grating
JPH0258285A (en) Manufacture of diffraction grating
JP2629671B2 (en) Holographic exposure method
JPH0258284A (en) Manufacture of diffraction grating
US4392709A (en) Method of manufacturing holographic elements for fiber and integrated optic systems
JPH041703A (en) Production of phase shift type diffraction grating
JP3487492B2 (en) Method of manufacturing phase mask for producing diffraction grating
JP2000089014A (en) Phase mask for processing optical fiber and manufacture thereof
JP2000019316A (en) Period measuring method of diffraction grating
JP2761899B2 (en) Diffraction grating exposure system
JPS62297722A (en) Manufacture of diffraction grating
JPS62297879A (en) Producing device for phase shifted diffraction grating
JPS62164001A (en) Production of diffraction grating
JPH02154204A (en) Manufacture of diffraction grating
JPS62212606A (en) Manufacture of phase shifting diffraction grating