JPH0258214A - Manufacture of semiconductor - Google Patents

Manufacture of semiconductor

Info

Publication number
JPH0258214A
JPH0258214A JP20896388A JP20896388A JPH0258214A JP H0258214 A JPH0258214 A JP H0258214A JP 20896388 A JP20896388 A JP 20896388A JP 20896388 A JP20896388 A JP 20896388A JP H0258214 A JPH0258214 A JP H0258214A
Authority
JP
Japan
Prior art keywords
substrate
gas
silicon
entrance window
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20896388A
Other languages
Japanese (ja)
Other versions
JPH0713950B2 (en
Inventor
Hiromi Ito
博巳 伊藤
Masanobu Iwasaki
岩崎 正修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20896388A priority Critical patent/JPH0713950B2/en
Publication of JPH0258214A publication Critical patent/JPH0258214A/en
Publication of JPH0713950B2 publication Critical patent/JPH0713950B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the deposition of a harmful material on an optical-pumping entrance window when an silicon film is deposited through an optical CVD method by independently heating the optical-pumping entrance window at a temperature higher than a substrate heating temperature while forming a thin- film onto a substrate by using a specific mixed gas. CONSTITUTION:In an optical CVD method in which an silicon thin-film is deposited onto a substrate 1 in a reaction vessel 3 through a photochemical reaction, an optical-pumping entrance window 4a of the reaction vessel 3 is heated independently at a temperature higher than the heater temperature of the substrate 1 while the mixed gas of a gas being photochemical-pumped only under the heated state of the entrance window 4a and function as the etching gas of silicon and an silicon supply gas photochemical-pumped without heating as a reaction gas is introduced into the reaction vessel 3 and the silicon thin-film is deposited onto the substrate 1. A low-pressure mercury lamp is used as a light source 2. The optical-pumping entrance window 4a is heated at the high temperature by an entrance window heater 12 while the substrate 1 is heated by a substrate heater 6, and the silicon film is deposited through the optical CVD method by employing the mixed gas of Si2H6 and HCl.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体製造方法に係り、特に反応気体の光
化学反応により基板上にシリコン薄膜を堆積させろ光C
VDR法に関するものである。。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor manufacturing method, and in particular to a method for manufacturing a semiconductor, in which a silicon thin film is deposited on a substrate by a photochemical reaction of a reactive gas.
This relates to the VDR method. .

〔従来の技術] 第3図および第4図は従来の光CVD装置の最も基本的
な構成を示す図である。第3図は紫外線ランプのような
インコヒーレン)・な光源を用いた装置の例である すなわち、第3図において、1はシリコン薄膜が形成さ
れる基板、2は紫外線ランプ等の光源、3は反応容器で
、光源2からの励起光を入射する励起光入射窓4aが設
けられ、内部に基板1が基板支持f=35上に載置され
て収容され、基板支持台5には、基板1を加熱する基板
加熱ヒータ6が備えられている。7は前記光源2からの
励起光を反射する反射鏡、1oば反応気体導入口、11
は反応後の気体を排気する排気口である。
[Prior Art] FIGS. 3 and 4 are diagrams showing the most basic configuration of a conventional optical CVD apparatus. Figure 3 is an example of an apparatus using an incoherent light source such as an ultraviolet lamp. In other words, in Figure 3, 1 is a substrate on which a silicon thin film is formed, 2 is a light source such as an ultraviolet lamp, and 3 is a light source such as an ultraviolet lamp. The reaction vessel is provided with an excitation light entrance window 4a through which excitation light from the light source 2 enters, and a substrate 1 is placed and housed therein on a substrate support f=35. A substrate heater 6 is provided to heat the substrate. 7 is a reflecting mirror that reflects the excitation light from the light source 2; 1o is a reaction gas inlet; 11
is an exhaust port for exhausting gas after the reaction.

光源2の出力光は、発散性であるため放射された出力光
の利用効率を上げるなめには、適当な形状の反射鏡7を
用い、かつある程度の広い面積をもった励起光入射窓4
aが必要とされろ。
Since the output light of the light source 2 is diverging, in order to increase the utilization efficiency of the emitted output light, a reflecting mirror 7 of an appropriate shape and an excitation light entrance window 4 with a certain large area are used.
A is needed.

第4図はレーザのようなコヒーレントな光源8を用いた
装置の例で、光源8の出力光9は指向性が強く、ビーム
状であるため励起光入射窓4aはビーム断面積分の面積
で良く小さくできる。なお、4bはレーザビーム出射窓
で、その他の符号は第3図と同一構成部分を示す。
FIG. 4 shows an example of a device using a coherent light source 8 such as a laser. The output light 9 of the light source 8 has strong directivity and is in the form of a beam, so the excitation light entrance window 4a only needs to have an area equal to the beam cross section. Can be made smaller. Note that 4b is a laser beam exit window, and other symbols indicate the same components as in FIG. 3.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような光CVD法の装置的な問題点は、励起光入
射窓4aへの膜堆積である1、光CVD装置によって基
板1上へ堆積させようとする膜が励起光に対して透明で
あれば問題はないが、不透明、すなオ)ら励起光を吸収
する膜種であれば、生産装置としては致命的な問題とな
る。
The equipment-related problems of the photo-CVD method as described above are 1. The film to be deposited on the substrate 1 by the photo-CVD apparatus is transparent to the excitation light. There is no problem if it is present, but if the film is opaque or absorbs excitation light, it will be a fatal problem for production equipment.

例えば、低圧水銀ランプから放射されろ紫外線(主とし
て1849人と2537人の波長)を励起光として基板
1上にシリコン酸化膜を堆積させろ場合、同時に励起光
入射窓4aへも堆積されろシリコン酸化膜は、基板1上
への膜堆積を阻害しない3.ところが、基板1のjfI
 M l151i種がシリコン膜の場合には、励起光入
射窓4aへの膜堆積は極く薄くても、励起光の反応容器
3内への入射を阻害して基板1上へのシリコン膜堆積を
堆積の初期のうらに停止させてしまい実用的な厚さのシ
リコン膜は1μられなくなる。従来の光CV l)装置
では、乙の問題を解決するために、例えば励起光入射窓
4a付近を[(e、Ar、N2等の不活性ガスでパージ
して、反応気体分子が励起光入射窓4a表面へ接触する
のを抑制したりしているが、効果が不十分である乙とが
多い。
For example, when a silicon oxide film is deposited on the substrate 1 using ultraviolet rays (mainly wavelengths of 1849 and 2537) emitted from a low-pressure mercury lamp as excitation light, the silicon oxide film is simultaneously deposited on the excitation light entrance window 4a. 3. does not inhibit film deposition on the substrate 1; However, jfI of board 1
When the Ml151i species is a silicon film, even if the film is extremely thinly deposited on the excitation light incidence window 4a, it prevents the excitation light from entering the reaction vessel 3 and prevents the silicon film from being deposited on the substrate 1. If the deposition is stopped at the back of the initial stage, a silicon film with a practical thickness of 1 μm cannot be obtained. In conventional optical CV l) devices, in order to solve problem (B), for example, the vicinity of the excitation light incidence window 4a is purged with an inert gas such as Contact with the surface of the window 4a is suppressed, but in many cases the effect is insufficient.

この発明は、上記のような問題点を解消するためになさ
れたもので、特に光CVL)法によりシリコン膜を堆積
させる際に、励起光入射窓に不要で、かつ有害物が11
L栢しないようにした半導体!+!!浩方法全方法こと
を目的とする。1 〔課題を解決するための手段〕 この発明に係る半導体製造方法は、励起光入射窓を基板
加熱湿度より高温に独立して加熱すると°とも1と、乙
の加熱された状態でのみ光化学励起されてシリコンのエ
ツチングガスとして作用する気体と、反応気体として加
熱なしでも光化学励起されるシリコン供給気体との混合
気体を用いて基板上にt8膜を形成するものである。
This invention was made in order to solve the above-mentioned problems, and in particular, when depositing a silicon film by the optical CVL method, unnecessary and harmful substances are removed from the excitation light entrance window.
Semiconductor that does not have L-shape! +! ! Hiroshi method aims to complete the method. 1 [Means for Solving the Problems] The semiconductor manufacturing method according to the present invention achieves photochemical excitation only in the heated state (1) and (2) when the excitation light entrance window is independently heated to a higher temperature than the substrate heating humidity. A T8 film is formed on a substrate using a gas mixture of a gas that is etched and acts as an etching gas for silicon, and a silicon supply gas that is photochemically excited even without heating as a reaction gas.

〔作用〕[Effect]

この発明においては、基板を加熱するとともに、加熱さ
れた状態でのみ光化学励起されてシリコンのエツチング
ガスとして作用する気体と反応気体として加熱なしでも
光化学励起されろシリコン供給気体との混合気体を用い
ることから、所定温度以上の^渇トで紫外線照射されろ
と、混合気体中の−fjの気体がシリコンの工・ソチ>
 ケガスと1ノで作用し、適当な条件下では、励起光入
射窓へ堆積し、1.うとするシリコンの堆積速度より工
・ソチング速度が優勢となって励起光入射窓は常時透明
に保たれ、一方、室温付近の低温では紫外線照射されて
もエツチングガスとして作用せず、単なる不活性ガスと
して機能するため、低温加熱された基板上ではシリコン
供給気体の光化学分解のみが起こってシリコンが堆積す
る。
In this invention, while heating the substrate, a gas mixture of a gas that is photochemically excited only in a heated state and acts as a silicon etching gas and a silicon supply gas that is photochemically excited even without heating is used as a reaction gas. Therefore, if the -fj gas in the mixed gas is exposed to ultraviolet rays at a temperature above a certain temperature, it is assumed that the silicon
Under suitable conditions, it is deposited on the excitation light entrance window, and 1. The etching/soching rate is superior to the deposition rate of the silicon to be etched, and the excitation light entrance window is always kept transparent.On the other hand, at low temperatures near room temperature, it does not act as an etching gas even when irradiated with ultraviolet rays, but is simply an inert gas. Therefore, only photochemical decomposition of the silicon supply gas occurs on the substrate heated at a low temperature, and silicon is deposited.

〔実施例〕〔Example〕

以上、この発明の一実施例を第1図について説明ずろ。 An embodiment of the present invention has been described above with reference to FIG.

第1図において、第3図、第4図と同一符号は同じもの
を示し、12ば前記励起光入射:aaaを基板加熱とは
独立してA渇加熱する入射窓加熱ヒタである、。
In FIG. 1, the same reference numerals as in FIGS. 3 and 4 indicate the same elements, and reference numeral 12 is an entrance window heating heater that heats the excitation light input: aaa independently of substrate heating.

この実施例では、光源2として低圧水銀ランプを用いる
1、第2図は、第3図のような装置によって、ずなオ)
ち加熱された状態でのみ光化学励起されてヘンリコノの
エツチングガスとして作用する気体、例丸ば100%l
(CI中に置かれたシリコン基板(p型(100)基板
)を加熱しながら紫外線照射した際のシリコン基板のエ
ツチング速度と基板温度の関係を示す図である1、また
、第2図には、同時に紫外線照射せず、基板加熱だけ行
った場合のエツチング速度もプロット(7である1、第
2図において重要なことは、HClがシリコンの実用的
なエツチングガスとして作用するのは、シリコン基板が
約200℃以上に加熱され、かつ紫外線照射されている
時に限られろことで、熱アシストされた光化学エツチン
グと呼ぶことができる。
In this embodiment, a low-pressure mercury lamp is used as the light source 2.
A gas that is photochemically excited only when heated and acts as an etching gas, such as Maruba 100% L.
(Figure 1 shows the relationship between the etching rate of the silicon substrate and the substrate temperature when the silicon substrate (p-type (100) substrate) placed in CI is heated and irradiated with ultraviolet rays. , At the same time, the etching rate is also plotted when only the substrate is heated without UV irradiation. This can be called thermally assisted photochemical etching only when the etching is heated to about 200° C. or higher and irradiated with ultraviolet rays.

この発1ガは、との特徴を利用して励起光入射窓4Rへ
のシリコンの#8積を阻止するもので、次の2点が要点
となる。。
This emitter 1 utilizes the characteristics of to prevent the #8 product of silicon from entering the excitation light incidence window 4R, and the following two points are important. .

(+)  励起光入射窓4aを基板加熱とは独立して高
;是加熱ずろ、1 ■ 反応気体をSi2H6またはSiH4のようなシリ
コン供給気体と11 CIとの混合気体とずろ、1 低圧水銀ランプからの紫外線(波長は主として1849
人と2537大)を用イエ光CV l)法でシリコンを
堆積させろ場合は、シリコン供給気体として通常、上記
の波長を吸収して室温でも光化学分解ずろ5i2H,が
用いられるが、この時、基板加熱はSi2H6の光化学
分解自体に影響を与えろものではなく、単に堆積したシ
リコン膜の膜質(電気特性、光学特性等)を制御するだ
けのものである。したがって、例えば第1図のような装
置で、励起光入射窓4aを入射窓加熱ピーク12で^を
晃に加熱し、これとは独立に(通常は励起九人q=を窓
48の加熱温度より低く)基板1を基板加熱ピーク6で
加熱してやれば、基板1上で(,11反応容器3に導入
された混合気体の一方の気体であるII CIは(低温
すぎて)実質的に不活性な気体として作用し、5i21
1.のみが、光化学分解するので基板1−ヒにシリコン
堆積が起こるのに対して、励起光入射窓dn上では、S
1□H6のみならず、II e lも光化学分解され、
シリコンのエソチノグ作用を持つので混合比等を適当に
設定してやれば、励起光入射窓4a上で、シリコンの堆
M速度上すエ・フチング速度の−hh<e勢となって常
に励起光入射窓4aは透明に保つことができろようにな
るのである。。
(+) The excitation light entrance window 4a is heated independently of substrate heating; 1. The reaction gas is a mixture of silicon supply gas such as Si2H6 or SiH4 and 11 CI; 1. A low-pressure mercury lamp. Ultraviolet rays (wavelengths are mainly 1849
When depositing silicon using the optical CV l) method, the silicon supply gas is usually 5i2H, which absorbs the above wavelengths and can be photochemically decomposed even at room temperature. Heating does not affect the photochemical decomposition of Si2H6 itself, but merely controls the film quality (electrical properties, optical properties, etc.) of the deposited silicon film. Therefore, for example, with a device as shown in FIG. If the substrate 1 is heated to the substrate heating peak 6 (lower temperature), then II CI, one of the gases in the mixture introduced into the reaction vessel 3, will become substantially inert (because the temperature is too low) on the substrate 1. acts as a gas, 5i21
1. On the other hand, on the excitation light entrance window dn, the S
Not only 1□H6 but also II e l is photochemically decomposed,
Since it has an esotinog action of silicon, if the mixing ratio etc. are set appropriately, the deposition speed of silicon will increase on the excitation light entrance window 4a, and the excitation speed will always be -hh<e. 4a can be kept transparent. .

この発明におけろ一つの重要なポイントは、室1品付近
の低温では、光化学励起を受けないが、高温で熱的にア
シストをしてやれば、光化学励起を起こす反応気体と励
起光の組み合わせが存在することで、)l CIと低圧
水銀ラップからの紫夕(線の組み合わせはこの一例にあ
たる1.さらに、このような温度に敏感な光化学上・ソ
チバック気体と、温度に鈍感な、すなわち、室温で既に
励起光を吸収して光化学分解するシリコン供給気体を混
合して、反応気体とするととも重要なポイントである4
、ずなわら、温度により反応気体を堆積性にずろかエツ
チング性にずろか制御するのである。
One important point in this invention is that at low temperatures near the room temperature, photochemical excitation does not occur, but when thermally assisted at high temperatures, there is a combination of reactive gas and excitation light that causes photochemical excitation. By doing so, )l CI and purple light from a low-pressure mercury wrap (the combination of lines is an example of this)1.Furthermore, such a temperature-sensitive photochemical gas and a temperature-insensitive gas, i.e., at room temperature, This is an important point when mixing the silicon supply gas, which has already absorbed excitation light and photochemically decomposes, to create a reaction gas.
However, depending on the temperature, the reaction gas is controlled to have either a deposition property or an etching property.

〔発明の効果] 以上説明したようにこの発明は、シリコン堆積が望まし
くない励起光入射窓」二では温度を上げて、反応気体を
エツチング性のないものとし、逆に、ノリ=7シj「槓
が望まれる基板上で(よ温度を「げて、反応気体をNU
槓性のものとずろように(7たので、九〇 V I)装
置の励起光入射窓を常時透明に保ち、かつ基板」:への
堆積速度をほとんど低ドさせずにシリコン膜を連続、か
つ安定に堆積させることができろ効果がある。
[Effects of the Invention] As explained above, the present invention raises the temperature at the excitation light incident window where silicon deposition is undesirable to make the reaction gas non-etching, and conversely, when the excitation light entrance window is undesirable for silicon deposition, the reaction gas is made non-etching. Raise the temperature on the substrate where it is desired to release the reactant gas.
It is possible to keep the excitation light entrance window of the device transparent at all times and to form a continuous silicon film without slowing down the deposition rate on the substrate. Moreover, it is effective because it can be deposited stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は乙の発明の一実施例を示す光Cvl)装置の概
略構成を示す断面図、第2図は基板湿度とエツチング速
度との関係を示す図、第3図、第4図は従来の光CVD
装置の概略構成を示す断面図である。 図において、1は基板、2は光源、3は反応容器、4u
は励起光入射窓、4bはし・−ザビーム出射窓、5は基
板支持台、6は基板加熱ピーク、7は反射tQ、12は
入射窓加熱と−りである。。 なお、各図中の同一符号は同一または相当部分を示す。 代理人  大  岩  増  雄 (外2名) 第 図 蒸着温度(0C) 1、事件の表示 特願昭63 208963号 2、発明の名称 半導体製造方法 3、補正をする者 事件との関係 特許出願人 住 所     東京都千代田区丸の内二丁目2番3号
名 称  (601)三菱電機株式会社代表者 志 岐
 守 哉 4、代 理 住所 人 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 (7375)弁理士大岩増雄 (連絡先03 (2] 3) 3421特許部)5 、
71n正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 明細書の第9頁5行の「のないものとし、「のものとし
、」と補正する。
Fig. 1 is a sectional view showing the schematic configuration of an optical Cvl) device showing an embodiment of the invention of B, Fig. 2 is a diagram showing the relationship between substrate humidity and etching rate, and Figs. 3 and 4 are conventional etching methods. optical CVD
FIG. 1 is a cross-sectional view showing a schematic configuration of the device. In the figure, 1 is a substrate, 2 is a light source, 3 is a reaction container, 4u
4b is the excitation light entrance window, 4b is the beam exit window, 5 is the substrate support, 6 is the substrate heating peak, 7 is the reflection tQ, and 12 is the entrance window heating. . Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent: Masuo Oiwa (2 others) Figure Vapor deposition temperature (0C) 1. Indication of the case Japanese Patent Application No. 1983 208963 2. Name of the invention Semiconductor manufacturing method 3. Person making the amendment Relationship to the case Patent applicant Address: 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name (601) Mitsubishi Electric Corporation Representative: Moriya Shiki 4, Acting address: Within Mitsubishi Electric Corporation, 2-2-3 Marunouchi, Chiyoda-ku, Tokyo (7375) Patent attorney Masuo Oiwa (contact number 03 (2) 3) 3421 Patent Department) 5,
71n In column 6 of the Detailed Description of the Invention in the correct subject specification, amend the following on page 9, line 5 of the description of the contents of the amendment to read ``without'' and ``with''.

Claims (1)

【特許請求の範囲】[Claims] 光化学反応により反応容器内で基板上にシリコン薄膜を
堆積させる光CVD方法において、前記反応容器の励起
光入射窓を基板加熱温度より高温に独立して加熱すると
ともに、この加熱された状態でのみ光化学励起されてシ
リコンのエッチングガスとして作用する気体と反応気体
として加熱なしでも光化学励起されるシリコン供給気体
との混合気体を前記反応容器内に導入して前記基板上に
シリコン薄膜を堆積させることを特徴とする半導体製造
方法。
In an optical CVD method in which a silicon thin film is deposited on a substrate in a reaction vessel by a photochemical reaction, the excitation light entrance window of the reaction vessel is independently heated to a temperature higher than the substrate heating temperature, and the photochemical reaction is performed only in this heated state. A silicon thin film is deposited on the substrate by introducing into the reaction vessel a gas mixture of a gas that is excited and acts as an etching gas for silicon and a silicon supply gas that is photochemically excited even without heating as a reaction gas. A semiconductor manufacturing method.
JP20896388A 1988-08-23 1988-08-23 Semiconductor manufacturing method Expired - Lifetime JPH0713950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20896388A JPH0713950B2 (en) 1988-08-23 1988-08-23 Semiconductor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20896388A JPH0713950B2 (en) 1988-08-23 1988-08-23 Semiconductor manufacturing method

Publications (2)

Publication Number Publication Date
JPH0258214A true JPH0258214A (en) 1990-02-27
JPH0713950B2 JPH0713950B2 (en) 1995-02-15

Family

ID=16565055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20896388A Expired - Lifetime JPH0713950B2 (en) 1988-08-23 1988-08-23 Semiconductor manufacturing method

Country Status (1)

Country Link
JP (1) JPH0713950B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6787787B1 (en) 1998-01-23 2004-09-07 Ushiodenki Kabushiki Kaisha Ultraviolet radiation producing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6787787B1 (en) 1998-01-23 2004-09-07 Ushiodenki Kabushiki Kaisha Ultraviolet radiation producing apparatus

Also Published As

Publication number Publication date
JPH0713950B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
US5083030A (en) Double-sided radiation-assisted processing apparatus
JPS61159576A (en) Formation of silicon nitride film transparent to ultravioletrays
US6232207B1 (en) Doping process for producing homojunctions in semiconductor substrates
JPH08306685A (en) Silicon oxide layer deposition method
JPH0329297B2 (en)
JPH0258214A (en) Manufacture of semiconductor
JPS5982732A (en) Manufacture for semiconductor device
JPS5940525A (en) Growth of film
JPS61216449A (en) Method and apparatus for forming pattern thin-film
JPS60216549A (en) Manufacture of semiconductor device
JPS60260125A (en) Selective formation of semiconductor substrate
JPS5961122A (en) Manufacture of semiconductor device
JPH0136694B2 (en)
JPS58132925A (en) Manufacture of device employing pattern projection
JPH0223621A (en) Oxidizing method for semiconductor
JPS6052579A (en) Optical nitride film forming device
JPS61248424A (en) Photochemical vapor deposition equipment
JPH02122069A (en) Formation of thin film of multi-elemental compound
JPS63183176A (en) Photo-cvd device
JPS60239398A (en) Process for annealing compound semiconductor
JPS6396910A (en) Thin-film forming apparatus
JPH03141639A (en) Heat treatment of compound semiconductor wafer
JPS60211846A (en) Forming method of multilayer insulating film
JPS60211850A (en) Forming method of insulating film pattern
JPS61129819A (en) Semiconductor manufacturing apparatus